High Current Operations and Collective Effects

High-Brightness Synchrotron Light Source Workshop

NSLS-II April 26-28, 2017

- Ryutaro Nagaoka Collective Beam Instabilities and Methods of their Suppression
- Taekyun Ha Vacuum Systems for Storage Rings with High Current

Collective Effects

- Impedance model, longitudinal and transverse, needs to be calculated for a bunch length much shorter than the length of the circulated bunch. There is no EM field solver yet allowing to calculate the point particle wake.
- Several 2D & 3D numerical codes available for time domain and frequency domain simulations, GdfidL, CST, HFSS, ECHO, URMEL, Vorpal, ACE3P, ABCI, Poisson/Superfish.
- Do we understand contribution of the NEG coating of the Al chambers and Ti-coating of the ceramics chambers to the total impedance of the ring?

- For future low emittance light sources, with small horizontal dispersion, low alpha (mom. compaction) collective effects can be an issue, microwave inst., resistive wall inst., coupled bunch inst. etc.. Bunch lengthening, however, can have a positive effect: by increasing Touschek beam life time, decreasing loss factor (reducing heating issues).
- Contributions to impedance: Tapered transitions, RF cavities, BPMs, Flange gap, stripline etc can be well estimated numerically or analytically.
- Importance of dependence on chamber cross section: can lead to low frequency quadrupole impedance and induced betatron tune shift
- Importance of the impedance of NEG coated chambers (NEG coating of one micron successful in many machines)
- NEG coating may increase reactive part of the impedance (leading to bunch lengthening, coher./incoherent tune shift)
- NEG coating effect on resistive part needs to be studied
- NEG coating and impedance budget in Sirius
- Importance of impedance budget and comparison with measurements
- Comparison often underestimates the impedance (both reactive and resistive part (by a factor of ~2)
- General overview on instabilities and collective effects
 - IBS
 - Bunch lengthening
 - MWI and CSR
 - TMCI (discussed new developments, such VFP approach of R. Lindberg at APS, measurements at MAX-IV)
 - RWI (studies at SOLEIL as a function of chromaticity)
 - HOMs induced instability
 - Ion induced instability (discussed the effect that combining ion effects, RWI and feedback can lead to instability)
- Stabilizing Technics:
 - Bunch lengthening (more than factor of 5 at MAX-IV)
 - BxB feedback
 - Positive Chromaticity
 - Different beam filling pattern

- High Current Operation
 - The electron beam does not forgive even slight errors in vacuum component design, clearance, position, protection, ... Bellows, BPM, IVU foil, RF Spring, Ceramics chambers, ...

- Vacuum systems discussed for the Next Generation of Light Sources (NGLSs) with high current and low emittance.
- Vacuum pumping system methods:
 - Conventional pumping with ante-chamber, used at PLS-II, NSLS-II, ESRF EBS, Spring 8-II
 - NEG coated chamber: SOLEIL (activation with a stored beam), MAX-IV (state-of-art NEG coating)
 - Conventional pumping + NEG coating chamber
 - New technique for NEG coated chamber: ALS-U (in very narrow chambers, with magnetic sputtering), CERN (successful in very small NEG coated chambers)
 - Pill type NEG (low cost option): PLS-II
- Photon absorbers
 - Materials for high heath load photon absorbers
 - OFHC copper, glid copper, cold forged OFHC copper (excellent thermal conductivity), CuCrZr (good thermal conductivity)
- Damage protection
 - Cu/Ni foil damage in IVUs at PLS-II. Improvements: hardware, orbit control
 - RF shielding failure: PLS-II, PEP-II, NSLS-II
 - Design for robust RF shielding: super-KeK, NSLS-II, ESRF EBS (developed new technique, sliding fingers)
- Analysis of the heat location in NSLS-II based on the vacuum pressure profile vs. average current
 - Possible causes: thermal desorption, photon stimulated desorption.
 - Transition behavior of temperature
- BPM support
 - Discussed improvements in BPM position stability in PLS-II. Water cooling.

