Summary Session: Lattice Solutions towards High Brightness

Yoshiteru Hidaka
3 Talks

Lattice Solutions towards High Brightness
08:30 **Review of Lattice Options for High-Brightness Light Sources** 25’
Speaker: Laurent Nadolski

08:55 **Comparison of Optimization Methods for APS Upgrade Nonlinear Dynamics** 25’
Speaker: Yipeng Sun

09:20 **Coupling Control and Optimization at Diffraction-Limited Light Sources** 25’
Speaker: Christoph Steier
Review of Lattice Options for High-Brightness Light Sources (L. S. Nadolski, SOLEIL)

<table>
<thead>
<tr>
<th>Chain</th>
<th>Energy</th>
<th>Circumference</th>
<th>Emittance</th>
<th>emit/gamma*2</th>
<th>Lattice</th>
<th>Qx</th>
<th>Qy</th>
<th>Q’x</th>
<th>Q’y</th>
<th>Optics strain</th>
<th>Cell Length Cell #</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETRA-IV</td>
<td>6</td>
<td>2304</td>
<td>10</td>
<td>7,3E-08</td>
<td>H7BA</td>
<td>113</td>
<td>65</td>
<td>-162</td>
<td>-130</td>
<td>2.8</td>
<td>NA</td>
</tr>
<tr>
<td>Pep-X</td>
<td>4.5</td>
<td>2200</td>
<td>30</td>
<td>3,9E-07</td>
<td>7BA</td>
<td>108</td>
<td>45.6</td>
<td>-143</td>
<td>-147</td>
<td>4.3</td>
<td>30</td>
</tr>
<tr>
<td>Spring8-II</td>
<td>6</td>
<td>1436</td>
<td>67</td>
<td>4,9E-07</td>
<td>H5BA</td>
<td>95</td>
<td>36.1</td>
<td>-131</td>
<td>-122</td>
<td>4.7</td>
<td>27.6</td>
</tr>
<tr>
<td>APS-U</td>
<td>6</td>
<td>1104</td>
<td>41</td>
<td>3,0E-07</td>
<td>H7BA</td>
<td>76</td>
<td>27.34</td>
<td>-109</td>
<td>-82</td>
<td>4.3</td>
<td>26.4</td>
</tr>
<tr>
<td>ESRF-EBS</td>
<td>6</td>
<td>844.4</td>
<td>133</td>
<td>9.6E-07</td>
<td>H7BA</td>
<td>58.18</td>
<td>21.31</td>
<td>-77</td>
<td>-118</td>
<td>7.3</td>
<td>22.6</td>
</tr>
<tr>
<td>DIAMOND-II</td>
<td>3</td>
<td>561</td>
<td>120</td>
<td>3.5E-06</td>
<td>DTBA</td>
<td>42.2</td>
<td>16.28</td>
<td>-50</td>
<td>-50</td>
<td>3.6</td>
<td>26</td>
</tr>
<tr>
<td>MAX-IV</td>
<td>3</td>
<td>528</td>
<td>328</td>
<td>9.5E-06</td>
<td>7BA</td>
<td>49</td>
<td>14.17</td>
<td>-119</td>
<td>-85</td>
<td>13.9</td>
<td>25.9</td>
</tr>
<tr>
<td>SIRIUS</td>
<td>3</td>
<td>518</td>
<td>240</td>
<td>7.0E-06</td>
<td>5BA</td>
<td>37.22</td>
<td>10.32</td>
<td>-66.7</td>
<td>-40.4</td>
<td>7.0</td>
<td>24.3</td>
</tr>
<tr>
<td>CLS-II</td>
<td>3</td>
<td>510</td>
<td>186</td>
<td>5.4E-06</td>
<td>7BA</td>
<td>39.12</td>
<td>14.24</td>
<td>-75</td>
<td>-85</td>
<td>11.4</td>
<td>22</td>
</tr>
<tr>
<td>SOLEIL-II</td>
<td>2.75</td>
<td>354.1</td>
<td>200</td>
<td>6,9E-06</td>
<td>H6BA-H7BA</td>
<td>29.21</td>
<td>9.28</td>
<td>-69.3</td>
<td>-41</td>
<td>10.5</td>
<td>21.9</td>
</tr>
<tr>
<td>SLIT-J</td>
<td>3</td>
<td>350</td>
<td>600</td>
<td>1.7E-06</td>
<td>DDBA</td>
<td>37.22</td>
<td>10.32</td>
<td>-66.6</td>
<td>-40.4</td>
<td>7.0</td>
<td>24.1</td>
</tr>
<tr>
<td>SLS-II</td>
<td>2.4</td>
<td>290</td>
<td>100</td>
<td>4.5E-06</td>
<td>7BA</td>
<td>33.2</td>
<td>9.3</td>
<td>-60</td>
<td>-50</td>
<td>10.2</td>
<td>12.6</td>
</tr>
<tr>
<td>Elettra-II</td>
<td>2</td>
<td>259.2</td>
<td>250</td>
<td>1.6E-05</td>
<td>S6BA</td>
<td>41.38</td>
<td>20.39</td>
<td>-64</td>
<td>-67</td>
<td>5.1</td>
<td>16.35</td>
</tr>
<tr>
<td>ALS-U</td>
<td>2</td>
<td>196.8</td>
<td>109</td>
<td>7.1E-06</td>
<td>H6BA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Optics strain = Qx’/Qx * Qy’/Qy

- **Compact & Rigid** lattice
- **Exotic** magnets
- **TGB / LGB**
- **Combined function** - magnets

Hybrid MBA more adapted for large storage ring (sextupole strength relaxed)

Relevant cell length is the one limited to magnetic structure

Anti-bend relaxes fairly nicely the constraints on the emittance and increases tunability

High periodicity is privileged for ultra-low emittance lattices

3-4 % LMA

Low MCF
Deciding on the “M” part of the MBA.

MAX-IV style (or ‘traditional’) 7BA*

\[\varepsilon_0 \sim \frac{\gamma^2}{N^3_B} \]

SIRIUS MAX-IV
ELETTRA-II* SLS-II**
ALS-U*** CLS-II
SLiT-J
ESRF-EBS HEPS
PEPX APS-U*
SPRing8-II PETRA-IV
DIAMOND-II*** SOLEIL-II***

* variation
Comparison of Optimization Methods for APS Upgrade Nonlinear Dynamics (Y. Sun, ANL)

- Both linear and nonlinear optics optimized for APS-U 41-pm lattice
- Different algorithms and optimization targets implemented for nonlinear optics optimizations
 - Some are much faster than original optimization approach using LMA
 - Explored different solutions spaces
 - Comparable performance
- There are some indications that improved orbit and lattice correction will allow increasing the lifetime of APS-U
- APS applications improved machine performance
 - Simulation based optimization
 - Online machine based optimization
In general, these methods take less computing time than LMA and DA

- **ANA**: objective of nonlinear chromaticity and driving/detuning terms\(^1\)
 - Objectives targets selected from optimization results of other methods (LMA, DET...)

- **CSI**: objective of CS invariant distortion and chromatic detuning\(^2,3,4\)
 - Track for one turn, or one super-cell
 - Different initial conditions of x-y space

- **DET**: objective of detuning of x-y grids, w/ or w/o energy offset

Coupling Control and Optimization in DLSRs
(C. Steier, LBNL)

• Coupling correction is important to optimize the performance
 – Direct benefit: increased brightness
 – Also improves dynamic (momentum) aperture and therefore injection efficiency and lifetime

• There are several correction methods:
 – Combined approach targeting local coupling, global coupling and vertical dispersion simultaneously is usually used.
 – Using orbit response matrix analysis (LOCO), emittance ratios below 0.1% have been achieved (<1 pm at ALS).

• DLSRs can require larger emittance ratios than currently in use
 – Multiple ways to achieve (including operating on coupling resonance)
 – Beam dynamics impact manageable
 – Beamsize stability requires good tune control, reasonable resonance strength

• Insertion devices provide new challenge if they contribute significantly to total energy loss
Emittance Stability and Undulators

Max-4 example: S. Leemann, et al., PRSTAB 12, 120701 (2009)

- DLSRs / MBAs / Rings with low average bend magnet field have Beamsize stability issue beyond coupling
- Significant variation of energy loss per turn results in variation of damping times, natural emittance, energy spread
- Extend of effect varies, but can be >20% (including machines already in operation)
- This does not just mean emittance goes down as more undulators are installed, also depends on undulator scans (larger field variation for longer period undulators – ALS: undulator energy loss varies 50% typical week)
- (Additional) Damping wigglers can help in correction, but expensive (cost, space, RF) – full range might not be feasible
 - Other means are less efficient (e.g. limited tunability of MBA lattices)
 - Need to better understand user requirements / impact of uncorrected or partially mitigated