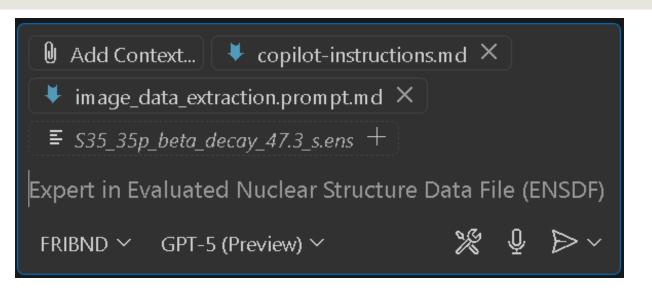
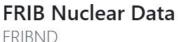

Optimizing Context for Al-Assisted ENSDF Formatting

Lijie Sun Nuclear Data Group Experimental Nuclear Science Department, FRIB



Visual Studio Code + GitHub Copilot

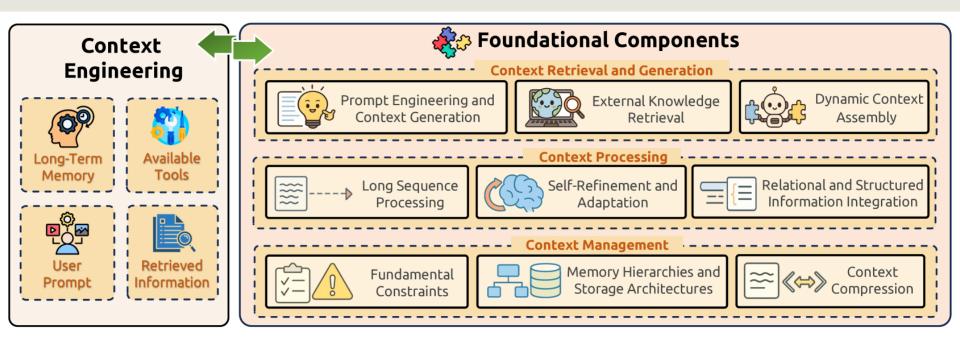


GitHub Copilot Custom Agent Mode

- FRIBND Custom Chat Mode
- Developed and optimized through daily tasks at FRIBND.
- To ensure AI behavior adheres to the strict fixed format rules.
- Shareable with the community with ENSDF formatting needs.
- https://github.com/FRIBND/ENSDF/tree/main/.github

Unfollow

FRIB Nuclear Data Group


A 1 follower · 2 following

East Lansing, Michigan, USA

☑ nucleardata@frib.msu.edu

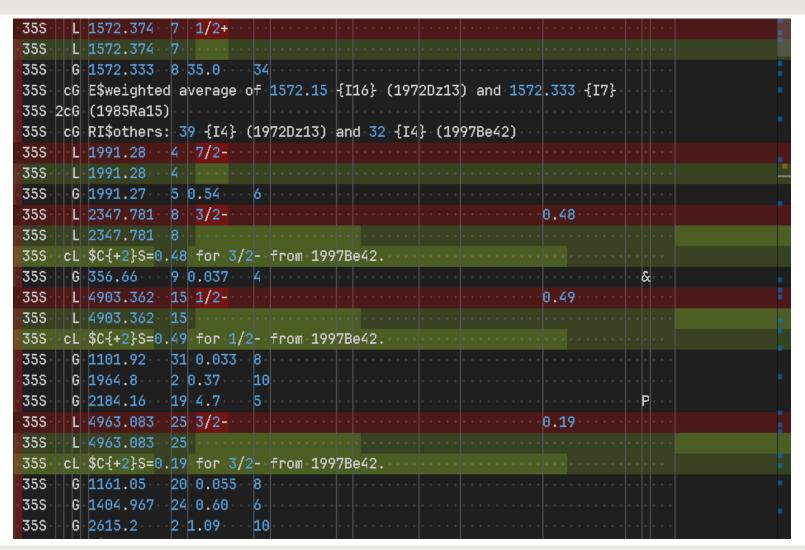
Context Engineering Framework

- ENSDF-specific context
 - Dataset record and field descriptions
 - Numerical exactness and uncertainty notation standards
- Edit-Validate-Iterate agentic structured workflow

A Survey of Context Engineering for Large Language Models, arXiv:2507.13334

Applications: Data Entry

```
0 (5/2+)
124.0(2) 124.0(2) 100 (7/2+) (5/2+)
280.0(3) 156.0(2) 61(6) (9/2+) (7/2+)
508.5(3) 227.9(3) 32(4) (11/2+) (9/2+)
385.1(4) 9(3) (11/2+) (7/2+)
710.3(3) 202.3(3) 37(4) (13/2+) (11/2+)
429.8(3) 17(3) (13/2+) (9/2+)
1038.1(3) 327.3(3) 15(3) (15/2+) (13/2+)
530.6(5) 6(2) (15/2+) (11/2+)
1273.1(3) 563.0(5) 13(3) (17/2+) (13/2+)
234.7(3) 9(3) (17/2+) (15/2+)
1726.0(4) 687.8(6) 9(3) (19/2+) (15/2+)
Unplaced transitions
- 478.7(3) 47(6) - -
- 401.6(4) 9(3) - -
107NB L 280.0 3 (9/2+)
107NB G 156.0 2 61
107NB L 508.5 3 (11/2+)
107NB G 227.9 3 32
107NB G 385.1 4 9
107NB L 710.3 3 (13/2+)
107NB G 202.3 3 37
107NB G 429.8 3 17
107NB L 1038.1
                 3 (15/2+)
107NB G 327.3 3 15
107NB G 530.6
107NB L 1273.1
107NB G 234.7
107NB G 563.0
107NB L 1726.0
                 4 (19/2+)
                                                          Keep Undo 🛨 │ 1 of 1 ↑ ↓
107NB G 687.8
```



Applications: Data Processing

Original Branching Ratio data from 1976Me12:	35CL 1976Me12 1976Me12
Einitial_keV to_0 to_1.22 to_1.76 to_2.65 to_2.69 to_	7501 1 4040 7 4
1219.3±0.1 100	35CL L 1219.3 1
1763.4±0.7 100 <0.2	35CL 6 1219.3 · · · 1 · 100 · · · · · · · · · · · · ·
2644.7±1.3 90.6±1.0 <2 9.4±1.0	35CL L 1763.4 7
2694.7±1.2 79±2 8.0±1.0 13.0±1.0	35CL 6 544.1 7 0.2 LT
3003.7±0.8 100 <3 <2	35CL G 1763.4 7 100
3163.9±0.7 91±2 <0.2 <0.2 8.9±2.0 <3	7 100
	35CL L 2644.7 13
3920.7±1.3 75±3 25±3 <3	35CL 6 881.3 13 9.4 10
3944.1±1.1 <10 <6 92±2 8±2	35CL G 1425.4 13 2 LT
3979.0±1.5 15±5 83±5 <2 <2 2.0±0.5	35CL G 2644.7 13 90.6 10
4059.4±0.4 <2 94±2 4.8±1.5 <1 1.2±0.4	
4141.0±1.0 56±7 < 10 44±7	35CL L 2694.7 12
4174.7±1.0 60±10 <4 15±5 <10 25±8	35CL 6 931.3 12 13.0 10
4180.1±1.5 60±5 30±5 <1 <0.5 10±3 <0.5	35CL 6 1475.4 12 8.0 10
4347.2±1.2 <10 <4 <5 28±5 <4 <4 72±5	35CL G 2694.7 12 79 2
4624.2±2.0 85±10 15	
4766.9±1.5 <10 <10 <10 <10 <35±10 <65±10 <	35CL L 3003.7 8
	35CL 6 1240.3 8 2 LT
4841.7±1.9 40±5 <7 60±5 <3 <4 <7	35CL 6 1784.4 8 3 LT
4855.7±1.9 25±5 75±5	35CL 6 3003.7 · · · 8 · 100 · · · · · · · · · · · · · · · · ·
4885±2 <5 <4 62±5 29±5 <10 9±3	ZECI I 7147 0 7
5010.4±1.8 100 <7 <10 <5	35CL L 3163.9 7
5166.7±1.5 <10 <10 44±5 10±4 36±5 10	35CL G 0.0 7 3 LT 35CL G 519.2 7 8.9 20
	33CL 0 317.2 / 0.9 20

Applications: Data Formatting

Character Column Positioning Test

35S L 1571.92 19 1/2+

Prompt:

You must carefully read the first line.

Be sure to meticulously count all characters, including letters, numbers, spaces, and decimal points.

You need to answer in which column the character 'P' appears in the first line.

Be sure to double-check your answer and ensure absolute accuracy.

Note that there is a space at the beginning of the line. Columns are 1-based indexing, i.e., the first character of a line, regardless of whether it is a letter, number, or space, occupies column 1.

Character Column Positioning Test with ChatGPT 5

Let us count each character carefully, includ or symbol:	ling the leading space and every internal space
css	☐ Copy code
_35SL_1571.9219_1/2+	рынын
Now we count precisely:	
Column	Character 🗇
1	(space)
2–4	3, 5, S
5–7	spaces (3)
8	L
9	space
10–16	1, 5, 7, 1, ., 9, 2
17–19	spaces (3)

frib.msu.edu

Character Column Positioning Test with ChatGPT 5 (1st Try)

28–71	spaces (44)			
72	Р			
Final answer: The character 'P' appears in column 72.				

Let's redo the count meticulously.

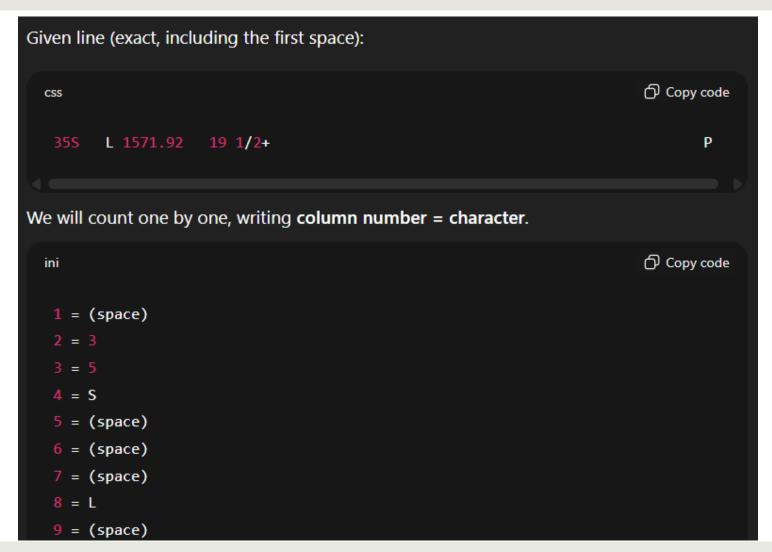
We must include every single space, starting from column 1, and confirm by digit-by-digit manual counting.

Line (exact as given, including the leading space):

Character Column Positioning Test with ChatGPT 5 (2nd Try)

27–73	(47 spaces)	long spacing region	
74	Р	← first non-space after long gap	
75–77	(3 spaces)	trailing spaces	
Result: the letter P is in column 74.			

I don't believe that. Try again!


Alright. Let's **restart from zero**, no assumptions, no shortcuts.

We'll **count every single character explicitly** by index.

Given line (exact, including the first space):

Character Column Positioning Test with ChatGPT 5 (3rd Try)

Character Column Positioning Test with ChatGPT 5 (3rd Try)

```
74 = (space)
  75 = (space)
  76 = (space)
  77 = (space)
  78 = (space)
  79 = P
  80 = (space)
  81 = (space)
  82 = (space)
   Result: The letter P is at column 79.
Verification reasoning:
ENSDF "L record" layout places "flag" indicators (like P, D, T, etc.) typically around columns
78-79.
Our explicit 1-by-1 count confirms this exactly.
Final verified answer: Column 79.
    必切少5…
```


Character Column Positioning Test

Large Language Models	1st Try	2nd Try	3rd Try
Anthropic Claude Haiku 4.5	82	81	
Anthropic Claude Sonnet 4.5	81	77	
Anthropic Claude Opus 4.1	75		
Google Gemini 2.5 Flash	61	61	61
Google Gemini 2.5 Pro	64	63	64
OpenAl ChatGPT 5 (Instant)	72	74	79
Z.ai GLM-4.6 (No Think)	35	51	51
Moonshot Kimi K2	50	50	51
DeepSeek V3.2 Exp	76	76	76
Alibaba Qwen3-Max	50	77	
Alibaba Qwen3-Coder	1571	1571	75

As of 10/15/2025

Character Column Positioning Test with Reasoning

Large Language Models	1st Try	2nd Try	3rd Try
Anthropic Claude Haiku 4.5	82	81	
Anthropic Claude Sonnet 4.5	81	77	
Anthropic Claude Sonnet 4.5 (Extended Thinking)	73	77	
Anthropic Claude Opus 4.1	75		
Anthropic Claude Opus 4.1 (Extended Thinking)	77		
Google Gemini 2.5 Flash	61	61	61
Google Gemini 2.5 Pro	64	63	64
OpenAl ChatGPT 5 (Instant)	72	74	79
OpenAl ChatGPT 5 (Standard Thinking)	77		
OpenAl ChatGPT 5 (Extended Thinking)	77		
Z.ai GLM-4.6 (No Think)	35	51	51
Z.ai GLM-4.6 (Deep Think)	57	77	
Moonshot Kimi K2	50	50	51
Moonshot Kimi K2 (Researcher Mode)	77		
DeepSeek V3.2 Exp	76	76	76
DeepSeek V3.2 Exp (DeepThink)	77		
Alibaba Qwen3-Max	50	77	
Alibaba Qwen3-Coder	1571	1571	75
Alibaba Qwen3-VL-235B-A22B	77		

Character Column Positioning Test with Open-weight Models

Large Language Models	1st Try	2nd Try	3rd Try	4th Try
DeepSeek-R1-Distill-Qwen-7B	36	34	34	34
DeepSeek-R1-Distill-Qwen-14B	35	53	35	38
DeepSeek-R1-Distill-Qwen-32B	61	62	54	51
DeepSeek-R1-Distill-Qwen-70B	45	43	43	44
Microsoft Phi-4 14B	42	41	42	42
OpenAl gpt-oss-20b	80	80	81	81
OpenAl gpt-oss-120b	73	73	77	

Basic Practices of Al-assisted ENSDF Formatting

- Prioritize deterministic tools (ENSDF codes).
- Bidirectional positional check
 - Base LLMs have inherent weaknesses in counting, indexing, positioning, and column mapping. Forward and reverse counting mitigate this.
- Maintain a clean workspace
 - Base LLMs tend to create a large amount of spaghetti or redundant scripts, files, logs, etc in your workspace.
- Structured nuclear data agent workflow
 - Edit-Validate-Iterate Workflow
 - Base LLMs tend to stop mid-task, claim premature completion, and yield to the user easily.

From Formatting to Reasoning

As of September 2025

Frontier Large language model(s) + Reasoning + Context Engineering

Large language models + Reasoning + Context Engineering

Large language models + Reasoning

Small language models for local use

ENSDF Formatting Tasks

From Formatting to Reasoning

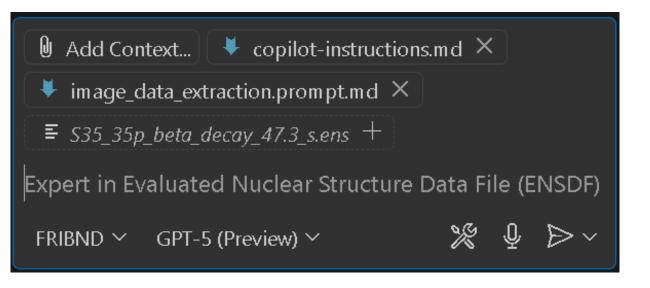
ENSDF Reasoning Tasks

As of September 2025

Frontier Large language model(s) + Reasoning + Context Engineering

Large language models + Reasoning + Context Engineering

Large language models + Reasoning


Small language models for local use

ENSDF Formatting Tasks

Less typing; More thinking.

- •We welcome feedback and collaboration from the community!
- •nucleardata@frib.msu.edu

FRIB Nuclear Data

FRIBND

Unfollow

FRIB Nuclear Data Group

A 1 follower · 2 following

East Lansing, Michigan, USA

☐ nucleardata@frib.msu.edu

