

Purpose of this horizontal evaluation/database

Provides an up to date database of relevant information on nuclei that decay by heavy charged particles - It is being updated as new results are published. Web-site update ~ bimonthly

Currently known: 1456 nuclei

(isomers counted separately)

β –delayed emitters

203 β⁺-p emitters

13 β^+ -2p emitters

5 β⁺-3p emitters

 $2 \beta^+$ - αp or β^+ - $p\alpha$ emitters

26 β⁺-α emitters

29 β+-fission emitters

2 β- α emitters

2 β--α emitters

Direct emitters

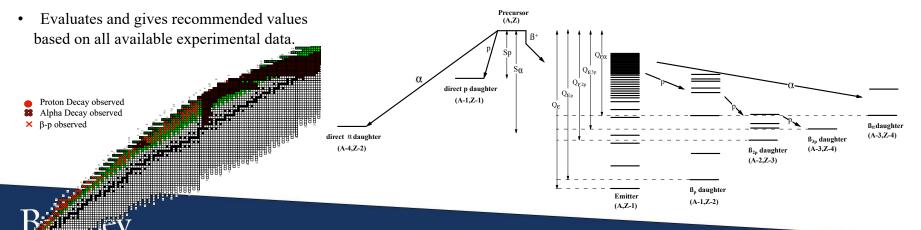
81 direct proton emitters

(many inferred from $T_{1/2}$)

9 direct 2p emitters

907 direct alpha emitters

155 Spontaneous fission


22 cluster (14C, 24Ne, etc.) emitters

Purpose of this horizontal evaluation/database

- Physics motivated! In many cases levels in daughter nuclei have only been observed via heavy charged particles
- Goal is to aid researchers on the topic. Also useful as a teaching tool.
 - systematics
 - Relationships between Energy and B.R.
 - Competition between different decay modes
- Involves the entire chart of the nuclides, provides a comprehensive overview of the topic.

- Is being kept up to date as new papers come out Anything published is out of date.
- Complete (as possible) evaluation of heavy charged particle emitters
- All of the information in one place
 - this allows the user to look at patterns and trends in the data which can lead to the discovery of new physical phenomena.

Purpose of this horizontal evaluation/database

Builds on and expands on recent horizontal database
("Recommended Values for Beta-Delayed Proton Alpha Emission"
J. C. Batchelder, Atomic Dat. Nucl. Data Tables 132, 101323 (2020).)

Recommended values for β^+ -delayed proton and α emission

J.C. Batchelder *

Department of Nuclear Engineering, University of California, Berkeley, CA 84720, USA

**PRINCE Problem, Code Right Nutronal Laboratory, Oak Right, The 7921, ESA

**A R T I C L E I N F O

Article Binstry:

A B S T R A C T

**Received 15 Aprell 2018

**Received 15

Greatly expanded it to include all beta delayed and direct p, α , cluster and fission decays.

Uses the latest mass evaluation used for level energies. **Q and S values** taken or derived from from:

2021Wa16 M. Wang, W. J. Huang, F. G. Kondev, G. Audi, S. Naimi, Chin. Phys. C 45, 030003 (2021),

unless a more accurate value can be obtained from the particle energies (typically from new papers)—examples:

Table 2Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +19/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

	tunen monn	[2021 ((a10] 01 a	dacea mom vara	os uncremi.		
Purpo	Nuclide	S_p	S_{2p}	Q_{lpha}	BR_lpha	Experimental
1	¹³⁵ Ce	6.687(22)	11.641(10)	-0.362(10)		
	¹³⁹ Nd	6.177(29)	10.676(28)	0.174(29)		
D '11	¹⁴³ Sm	5.665(24)	9.904(4)	0.075(28)		
Builds on ADNDT art	¹⁴⁷ Gd	5.528(6)	9.283(1)	1.735(2)		
	¹⁵¹ Dy	4.936(8)	8.203(4)	4.180(3)	5.6(4)%	[1974To07, 1982Bo04, 1978MoZH, 1973Bi06,
						1965Ma51, 1964Ma19 , 1990KaZM, 1989KaYU,
Uses the latest mass e						1988KaZK, 1987KaZI, 1985Ne09, 1982De11,
Oses the latest mass e						1981HoZM, 1979Ho10, 1978AfZZ,
						1976ToZT, 1974ToZN, 1974ToZQ,
						1974ToZU, 1973BoXL, 1972OkZZ, 1968Go13,
2021Wa16 M. Wang,	155					1967Go32, 1960Ma47]
	¹⁵⁵ Er	4.859(10)	7.644(7)	4.118(5)	<0.022(7)%	[1974To07, 1990Po13, 1990KaZM, 1978AfZZ,
unless a more accurate	150					1975ToZT, 1974PeZS, 1970Ma23, 1969To06]
	¹⁵⁹ Yb	4.419(31)	6.998(32)	3.951(18)	<0.0001%***	[1995Hi12]
	¹⁶³ Hf	3.727(79)	6.013(30)	4.139(31)		
	^{167}W	3.284(34)	5.036(34)	4.751(30)	<0.04(1)%	[1991Me05, 1989Me02]
	¹⁷¹ Os	2.682(22)	3.957(24)	5.371(4)	1.8(3)%*	[1995Hi02, 1979Ha10 , 2004GoZZ, 1996Pa01,
						1978Sc26, 1976HoZD, 1972To06, 1972ToZC,
	175					1972ToZL, 1972ToZO, 1972ToZW]
	¹⁷⁵ Pt	2.212(22)	2.848(24)	6.164(4)	64.5(13)%	[2014Pe02, 1979Ha10, 2004GoZZ, 2002Ko09,
						1996Pa01, 1986Ke03, 1982De11, 1981DeZA,
						1981DeZL, 1976HoZD, 1973Ga08, 1971Ha03,
	170					1970Ha18, 1966Si08]
	¹⁷⁹ Hg	1.919(30)	2.140(33)	6.430(4)**	75(4)%	[2012Ve04, 2002Ko09, 1979Ho10, 2002Ro17,
						1996Pa01, 1982HeZM, 1971Ha03, 1971Ho17,
	192					1970Ha18, 1969NaZT, 1968De01]
	¹⁸³ Pb	1.542(31)#	1.497(33)#	6.928(7)	obs [@]	[2002Je09 , 1989To01 , 2012Ve04, 1987To09,
	192					1986Ke03, 1980Sc09]
	183m Pb	1.463(31)#	1.418(33)#	7.007(9)	obs [@]	[2002Je09 , 1989To01 , 1987To09, 1986Ke03,
2500 P	197					1984ScZQ, 1980Sc09]
	¹⁸⁷ Po	1.320(37)	0.213(36)	7.979(15)	100%	[2006An11 , 2007An19, 2005An17, 2005AnZY]

1979Ha10].

^{**} Deduced from α energy, 6.351(31) in [2021Wa16].

[®] Not measured, expected to be 80-90% based on half-life.

What is included (and what is not)

All available measured and predicted $Q_{\epsilon x}$, Q_{α} , S_p , S_{2p} values for nuclei where these decays are energetically possible.

All known charged particle decays – BR, $T_{1/2}$, individual transitions (E & J^{π} , initial and final states)

Complete listing of relevant references for all direct and beta delayed α , p, c and f emitters in one place.

Up to date and evaluated data. Where there are large discrepancies between papers, this is noted.

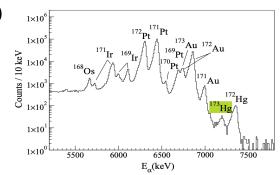
Example:

Table 12 β -p emission from ³⁹Ti*, $T_{1/2} = 28.5(9)$ ms, $BR_{\beta p} = 93.7(28)\%$ **.

$E_p(\text{c.m.})$	$I_p(\text{rel})***$	$I_p(abs)***$	$E_{emitter}$ (39 Sc)	$E_{daughter}(^{38}\mathrm{Ca})$	coincident γ-rays [@]	
3.27(2) 5.17(3) ^a	70(20) 100(30)	7(2) 10(3)				

^{*} All values taken from [2007Do17], except where noted.

*** Note that there is considerable disagreement between the published works in this nucleus, and many β -p transitions are unknown.


rossible two proton peak from the p-2p decay of 3711 to the ground state of \mathbf{x} [20010101, 17721/1013].

https://nucleardata.berkeley.edu/research/betap.html

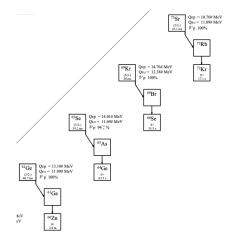
What is included (and what is not)

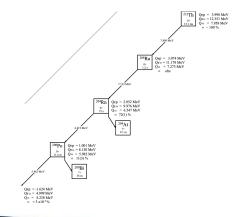
- * Targeted (and complete) references—different from NSR
 - Example:
 - 173 Hg α decay- NSR lists 2009Ha42
 - ¹⁷³Hg only appears as a bg peak in a figure. not included

- NSR includes where nucleus is a possible daughter, but no info
 - Example: search for ¹⁴⁰Dy gives ¹⁴¹Ho proton decay No info on ¹⁴⁰Dy
- Sometimes the reference doesn't even address that type of decay
 - Example: 219 At search gives 223 Fr beta decay papers. No α decay.
- Only references with information relevant to particle emission from the given nucleus are included.
 - In beam studies, beta decay with no heavy particle emission, moments, etc. are not included in the references
- * All papers with information on the given nucleus including conference proceedings and reports. (I'm getting most of my refences from NSR, IAEA, LBNL library and google scholar)

Explicit refs for $T_{1/2}$, Energy, BR, etc.

What is included (and what is not)

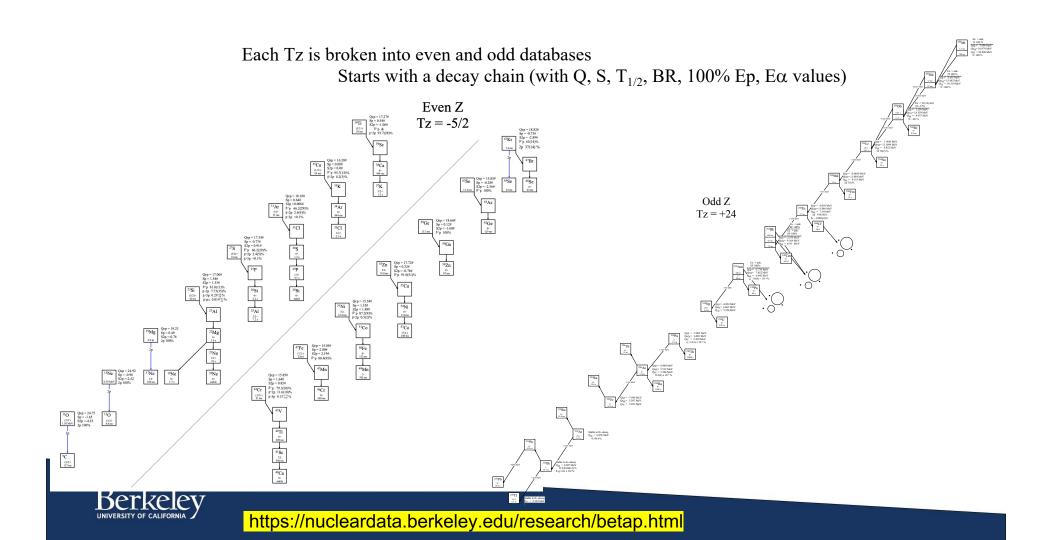

Organized by Tz = (N-Z)/2(-4 to +32, even and odd – 145 datasets!), Simple decay chain figure included for each Tz.


Beta-delayed emitters have similair properties across Tz chain Example: Tz = -3/2 - beta decay primarily proceeds through IAS followed by proton emission (73 Sr, 69 Br, 65 Se, 61 Ge, 57 Zn, etc.)

Alpha emitters decay along Tz chain

Isomers (> 1 ns) are treated separately. - only decay from "long-lived" states included, not high energy states that emit p or α .

No attempt is made at adding theoretical predictions or references.



How this is different from AME/NuBase/ENSDF?

- The AME and our work are very different animals. The main goal of the Berkeley online database is to provide experimentalists access to all the latest information on direct and beta -delayed alpha and proton emitters, all collected in one easy to access place.
- Some mass information might be derived through separation energies, but that is not the goal of this work The AME is a phenomenal work on masses of nuclei across the entire chart, but doesn't have complete information on decay transitions.
- ENSDF offers A chains based on and perfect for beta decay.
- ENSDF A chains updated every 10-20ish years. $BE\alpha_nR$ updated ~ bi-monthly.
- $BE\alpha_pR$ contains complete list of references, allowing a more complete picture for the experimenter.
- Consistent in formatting for C.O.M. and lab frames for energy

Nuclide	J^{π}	$T_{1/2}$	Q_{ε}	Q_{ε_P}	$BR_{\beta p}$	$Q_{\varepsilon 2p}$	Experimental
¹¹⁷ Te	1/2+	61(2) m	3.544(13)	-0.858(13)	_	-10.137(13)	[1961Fi05]
¹²¹ Xe	$(5/2^+)$	38.8(6) m	3.765(11)	-0.408(10)	_	-7.583(12)	[1969Bu07]
¹²⁵ Ba	1/2+	3.3(4) m*	4.421(13)	0.709(11)		-6.304(12)	[1975Ar31, 1968Da09]
¹²⁹ Ce	$(5/2^+)$	3.5(3) m	5.040(40)	1.793(28)		-4.625(28)	[1993Al03]
133 Nd	$(7/2^+)$	70(10) s	5.610(50)	2.847(51)		-3.141(54)	[1977Bo02]
137Sm	(9/2-)	45(1) s	6.080(30)	3.919(31)		-1.634(31)	[1983AlZO]
¹⁴¹ Gd	1/2+	14(4) s	6.701(23)	4.943(23)	0.3(1)%	-0.301(24)	[1989Gi06, 1986Wi15]
¹⁴⁵ Dy	$(1/2^+)$	6(2) s	8.16(11)	6.228(29)	≈50%	1.421(13)	[1993To04, 1984ScZT]
¹⁴⁹ Er	$(1/2^+)$	4(2) s	7.900(30)	6.829(29)	7(2)%	2.423(29)	[1989Fi01, 1984ScZT]
149mEr**	$(11/2^{-})$	8.9(2) s	8.642(30)	7.571(29)	0.18(7)%	3.165(29)	[1989Fi01, 1984To07, 1984ScZT]
153 Yb	7/2-	4.2(2) s	6.81(20)#	6.05(20)#	0.008(2)%	1.89(20)#	[1988Wi05]
¹⁵⁷ Hf	$(7/2^{-})$	115(1) s	7.59(20)#	7.12(20)#		3.19(20)#	[1996Pa01]
^{161}W		409(18) ms	8.27(20)#	8.14(20)#		4.62(20)#	[1996Pa01]
¹⁶⁵ Os	$(7/2^{-})$	21(1) ms	8.91(20)#	9.20(20)#		6.21(20)#	[1996Pa01]
¹⁶⁹ Pt	$(7/2^{-})$	7.0(2) ms	9.63(20)#	10.24(20)#		7.79(20)#	[2004Ke04]
$^{173}{ m Hg}$	(7/2-)	0.80(8) ms	10.17(20)#	11.16(20)#		9.17(20)#	[2012Od01]

^{*} Weighted average of 3.5(4) m [1975Ar31] and 3.0(5) m 1968Da09].

Table 2 Particle separation and β - α emission from the even-Z, $T_z = +13/2$ nuclei

Nuclide	S_p	S_{2p}	Q_{α}	BR_{α}	$Q_{\varepsilon \alpha}$	Experimental
¹¹⁷ Te	5.562(14)	9.640(13)	0.808(14)		1.847(13)	
¹²¹ Xe	6.023(18)	9.876(13)	0.190(17)		3.734(13)	
¹²⁵ Ba	5.217(14)	8.999(15)	0.387(15)		4.152(12)	
¹²⁹ Ce	4.951(61)	8.047(30)	0.957(30)		5.377(29)	
133Nd	4.394(55)	7.202(57)	1.530(54)		6.566(51)	
137Sm	4.111(75)	6.356(34)	1.916(55)		7.521(31)	
¹⁴¹ Gd	3.527(55)	5.422(23)	2.343(35)		8.424(24)	
¹⁴⁵ Dy	3.163(29)	4.59(20)	2.557(21)		9.258(14)	
¹⁴⁹ Er	3.039(88)	4.12(29)	2.076(29)		10.23(11)	
^{149m} Er*	3.781(88)	4.86(29)	2.818(29)		10.97(11)	
¹⁵³ Yb	2.73(21)#	3.47(20)#	4.16(20)#		12.06(20)#	
¹⁵⁷ Hf	2.44(21)#	2.93(20)#	5.880(3)	94(5)%**	12.69(20)#	[1996Pa01. 1979Ho10, 1989Wo02, 1981HoZM]
						1973Ea01, 1965Ma14]
161 W	1.972(208)#	2.23(20)#	5.923(4)	73(3)%	13.51(20)#	[1996Pa01. 1981Ho10, 1989Ho02, 1981HoZM]
165Os	1.563(208)#	1.42(21)#	6.335(6)	90(2)%	14.61(20)#	[2008Bi15, 1996Pa01. 2013Dr06, 2002Pa03
						[1997Da07, 1991Se01, 1981Ho10, 1978Ca11,
						1978CaZF, 1977Ca23]
¹⁶⁹ Pt	1.087(208)#	0.54(22)#	6.858(5)	$\approx 100\%$	15.77(20)#	[2004Ke06, 1999Se14, 2012Od01, 2009Go16]
						[2008Bi15, 1996Pa01, 1981Ho10]
¹⁷³ Hg	0.632(208)#	-0.23(22)#	7.378(4)	100%	17.001(20)#	[2012Od01, 2009Sa27, 2004Ke04, 1999Se14]
						[1998NiZW]

Table 1 – beta delayed particle emission info: parent $J^{\pi},\,T_{1/2},\,Q_{\beta x}$, BR, refs

Table 2 – Direct particle emission info: Q, S, BR, refs

^{**} Excitation energy = 741.8(2) keV [1989Fi01].

Table 10 β -p emission from ${}^{35}\text{Ca*}$, ${}^{1/2}$ = 25.7(2) ms, $BR_{\beta p}$ = 95.7(15)%**.

$E_p(\text{c.m.})$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (35K)***	$E_{daughter}(^{34}\mathrm{Ar})^{@}$	coincident γ-rays [@]
1.427(5)	100	48.5(13)	1.511(5)	0	
$1.909-2.647^{a}$	11(2)	5.4(9)	4.084-4.822	2.0911(3)	2.091
1.909-2.647a	2.1(8)	1.0(4)	5.280-6.018	3.2877(5)	1.197, 2.091, 3.286
1.909-2.647a	4.1(14)	2.0(7)	5.866-6.604	3873(3)	1.782, 2.091, 0.585, 1.197
2.727(13)	12.4(10)	6.0(5)	4.902(13)	2.0911(3)	2.091
2.947-3.500 ^a	4.5(6)	2.2(3)	5.122-5675	2.0911(3)	2.091
3.592(25)	6.2(6)	3.0(3)	3.676(25)	0	
3.822(36)	7.8(6)	3.8(3)	3.906(36)	0	
4.041(71)	6.0(6)	2.9(3)	6.216(71)	2.0911(3)	2.091
4.570(48)	6.0(6)	2.9(3)	4.654(48)	0	
4.754(38)	8.7(8)	4.2(4)	4.838(38)	0	
5.018(71)	8.0(6)	3.9(3)	5.102(71)	0	
5.294(48)	1.5(4)	0.72(18)	5.378(48)	0	
5.466(48)	1.26(31)	0.61(15)	5.550(48)	0	
5.616(37)	2.95(35)	1.43(17)	5.700(37)	0	
5.834(60)	2.9(4)	1.40(19)	5.918(60)	0	
5.983-6.649 ^a	2.25(35)	1.09(17)	6.067-6.733	0	
6.783(22)	7.8(4)	3.8(2)	8.958(22)	2.0911(3)	2.091
$7.131-7.887^a$	2.3(4)	1.1(2)	4.084-7.971	0	
8.802(89)	0.85(12)	0.41(6)	8.886(89)	0	

^{*} All values are taken from [1999Tr04], except where noted.

Table 11 β-2p emission from ${}^{35}\text{Ca*}$, $BR_{\beta 2p} = 4.2(3)\%**$.

$E_{2p}(c.m.)$	$I_p(\text{rel})$	$I_p(abs)$	$E_{emitter}$ (35 K)****	$E_{daughter}(^{33}\text{Cl})$	coincident γ-rays	
4.305(26)	100	4.2(3)	9.053(27)	0		

^{*} All values are taken from [1999Tr04], except where noted.

If individual transitions are known for beta-delayed particles, the particle energy, initial and final states, branching, and explicit refences for each number given.

^{**} From [2016Ci05].

^{***} Calculated from proton energies and S_p (35 K) = 83.6(5) keV [2021Wa16].

[@] Values from adopted levels in ENSDF [2012Si06].

a unresolved multiplet

^{**} From [2016Ci05].

^{***} Calculated from two-proton energy and S_{2p} (35 K) = 4747.5(6) keV [2021Hu06].

If individual transitions are known for direct particle emitters, the particle energy, initial and final states, J^{π} , branching, HF (α only) and explicit refences for each number given.

Table 6 direct α emission from 171 Os*, $J^{\pi} = 5/2^{-}$, $T_{1/2} = 8.3(2)$ s, $BR_{\alpha} = 1.8(3)\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(abs)$	$\mathbf{J}^{\boldsymbol{\pi}}_f$	$E_{daughter}(^{167}\mathrm{W})$	coincident γ-rays	R ₀ (fm)	HF	
5.290(10) 5.367(7)	5.166(10) 5.241(7)	7.0%*** 100%***	(7/2 ⁻) (5/2 ⁻)	0.12(3)% 1.68(3)%	0.079 0.0	1.5721(95) 1.5721(95)	$7.7_{-2.1}^{+3.0} \\ 1.3_{-0.3}^{+0.4}$	

^{*} All values from [1995Hi02], except where noted.

Table 7 direct α emission from 175 Pt*, $J^{\pi} = (7/2^{-})$, $T_{1/2} = 2.43(4)$ s, $BR_{\alpha} = 64.5(13)\%$.

E_{α} (c.m.)	$E_{\alpha}(lab)$	$I_{\alpha}(\mathrm{rel})$	$I_{\alpha}(abs)$	J_f^π	$E_{daughter}(^{171}\mathrm{Os})$	coincident γ-rays	R ₀ (fm)	HF
5.950(4) 5.955(4) 6.087(4) 6.162(4)	5.814(4) 5.819(4) 5.948(4) 6.021(4)	7.3(16)% 1.3(4)% 100(1)% 8.7(15)%	4.0(9)% 0.7(2)% 55.0(5)% 4.8(8)%	(7/2 ⁻ , 9/2 ⁻) (9/2 ⁻) (7/2 ⁻) (5/2 ⁻)	0.2112(5) 0.2079(5) 0.0767(3) 0.0	0.2112(5), 0.1341(4), 0.0767(3) 0.2079(5), 0.1308(4), 0.0767(3) 0.0767(3)	1.5574(37) 1.5574(37) 1.5574(37) 1.5574(37)	$6.6_{-1.4}^{+2.1}$ 38_{-9}^{+16} $1.71(15)$ 40_{-7}^{+9}

^{*} All values from [2014Pe02], except where noted.

^{**} Weighted average of 1.9(3)% [1995Hi02] and 1.7(3)% [1979Ha10].

^{***} Uncertainties not given in [1995Hi02].

If individual transitions are known for direct particle emitters, the particle energy, initial and final states, J^{π} , branching, HF (α only) and explicit referces for each number given.

Table 10 direct α emission from ¹⁸⁹Po*, $J^{\pi} = (7/2^{-})$, $T_{1/2} = 3.5(5)$ ms, $BR_{\alpha} = 100\%$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(lab)$	$I_{\alpha}(\mathrm{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}^{\boldsymbol{\pi}}_f$	$E_{daughter}(^{173}\mathrm{Os})$	coincident γ-rays	R ₀ (fm)	HF
7.416(15) 7.467(20) 7.695(20)	7.259(15) 7.309(20) 7.53(20)	100(21)% 15(7)% 10(8)%	80(12)% 12(5)% 8(6)%	(5/2 ⁻) (3/2 ⁻)	0.280 0.226 0.0	0.280 0.226	1.4991(51) 1.4991(51) 1.4991(51)	$ \begin{array}{c c} 0.18^{+0.07}_{-0.05}*\\ 1.0_{-0.7}\\ 14^{+49}_{-7} \end{array} $

^{*} All values from [2005Va04].

When HF don't make sense, this is pointed out in the comments. If possible I've attempted to contact authors. (many times the values come from VERY old papers).

^{**} The reason for this unphysically low value is unknown.

Fission - direct and ε -delayed

Table 1024
Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +47/2$ nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	Q_{α}	BR_{α}		BR_{SF}	BR _{cluste}	r	type	Experimental
207 📙 🚗	9.59(30)#	0.60(20)#							
211Pb(AcB)	9.535(30)#	3.570(30)							
Po(AcB)	6.555(12)	7.526(1)	99.99977(2)01					[1998Li53, 1971Gr17, 1950Av61, 2023Ta02, 2019Ma02,
FO(ACA)	0.030(11)	7.520(1)	99.99911(.	2)70					1996Wi27, 1979Be58, 1976Bl13, 1971Er02, 1971Gr17,
									1990W127, 1979Be38, 1970B113, 1971E102, 1971G117, 1967Da20, 1965Va10, 1962Wa18, 1961Ry02, 1961Vo06,
									1960Ry02, 1950Av61, 1942Wa04]
²¹⁹ Rn(An)	6.560(12)	6.9462(3)	100%						[1999Li05, 2019Ma02, 2015Co07, 2015Pi10, 1989It01,
KII(AII)	0.300(12)	0.9402(3)	100%						1979Be58, 1974Bo11, 1972NgZZ, 1970Da09, 1970Kr01,
									1970Kr01, 1970Kr08, 1967Le05, 1962Wa18, 1961Ro14,
									1961Ry02, 1960Ry02, 1960Wa16]
223Ra(AcX)	6.434(8)	5.9790(2)	100%			8.9(4)×	10-80%	¹⁴ C	[1998Sh02, 1995Ho11, 1992Ar02, 1962Wa18, 1971Gr17
Ka(ACA)	0.434(8)	3.9790(2)	100%			0.9(4)×	10 %	C	2021Si11, 2019Ma02, 2016Jo02, 2015Be13, 2015Co02,
									2015Co07, 2015Ko06, 2015Pi10, 1991Ho15, 1990Hu02,
									1990Hu07,1990We01, 1989Br34, 1987Mi10, 1985Al28,
									1985Ku24, 1985Pr01, 1984Al34, 1984Ga38, 1984Ro30,
									1976Bl13, 1974Ri05, 1971Gr17, 1970Da08, 1970Kr01,
									1969Be67, 1968Br37, 1968Be37, 1967JoZX, 1965Ki05,
									1962Gi04, 1961Ry02, 1960Ry02, 1959Ro51, 1957Pi31,
									1954Ha60]
Th(RdAc)	5 703(3)	6.1466(1)	100%						[19s64Ba33, 2019Ma02, 1998Jo08, 1972He18, 2019Ko06
III(KuAC)	3.193(3)	0.1400(1)	100 /6						2019Co04, 2015Co11, 1990Br23, 1990BrZZ, 1987Mi10,
									1977Ma32, 1972HeYM, 1968Wa07, 1967JoZX, 1965Br23
									1954Ha60, 1949Pe08]
²³¹ U	5.657(4)	5.576(2)	4(1)×10			_			[1997Mu08, 1994Li12, 1949Os01]
	5.061(22)	5.951(20)	$3.0(6) \times 1$	%					[1957Th10, 1952Or03]
235mpu	2.06(20)	7.95(20)	5.0(0)///	~	100%				[1970Bu02, 1971Br39, 1972Ga42, 1969Me11]
	4.56(16)	6.54(15)	< 1×10		100%				[2008Qi03]
	4.05(23)#	7.42(10)#	obs	-					[1967Fi04, 1967Si08]
	3.44(20)#	8.258(10)	64%						[2006He27 , 2004HeZY, 2004He28]
	3.39(20)#	8.305(11)	88(2)%						[2006He27 , 2004HeZY, 2004He28]
	2.84(20)#	8.752(4)	91+9/%	-	$0.14^{+0.31}_{-10.12}\%$	_			[2006He27, 2004He25, 2022Te01, 2009Dr02, 2005KuZZ,
NO	2.04(20)#	0.732(4)	91_2270		$0.14_{-10.12}$ %				2005SuZX, 2004He28, 2004HeZY, 1999He07, 1997He29,
									1967Gh01]
251mNo	2.74(20)#	8.858(7)	100%						[2006He27, 2022Te01, 2005KuZZ, 2005SuZX, 2004He28.
140	2.74(20)#	0.030(7)	100%						2004HeZY]
255 p.c	2.61(20)#	9.055(4)	46(5)%	╟	54(5)%*				[2006He27, 2015An05, 2001He35,2020Mo11,
KI	2.01(20)#	5.055(4)	40(3)70		J+(J)70.				2008Dr05, 1997He29, 1986He06, 1984De07, 1984Og02,
									2008Dt03, 1997He29, 1986He06, 1984De07, 1984Og02, 1984Og03]
²⁵⁹ Sg	2.278(30)#	9.765(8)	≈ 97%		3(1)%**				[2015An05, 2013An08, 2009Dr02, 2009He20, 1985Mu11,
sg	2.278(30)#	9.703(8)	≈ 91%		3(1)%***				
259m c -	2.191(20)#	9.852(22)	≈ 97%		3(1)%**				1984De07] [2015An05 , 2009He20]
	1.86(22)#	10.733(78)	≈ 97%	1	<8.4%				[2009Dr02, 2009He20]
	1.86(22)#	10.733(78)			< 8.4%				
		11.777(51)	≈ 100%						[1995Gh05]

Direct (129 nuclei, g.s. and isomer) and β -delayed fissioning (29 β ⁺, 2 β ⁻) nuclei are included in the database.

- Only half-lives, branching ratios and isomer energies are detailed.
- no attempt is made to detail fission products, ave. # of neutrons, etc.

Only refs. that detail some aspect of the fission decay are listed.

(*i.e.* papers that only detail gammas/states in a particular fission fragment are not listed.)

Cluster emission

Table 994

Particle separation, Q-values, and measured values for direct particle emission of the even-Z, $T_z = +23$ nuclei. Unless otherwise stated, all S and Q-values are taken

from [2021Wa16] or deduced from values therein.

Nuclide	S_p	Q_{α}	BR_{α}	В	$BR_{cluster}$	type	imental
²¹⁰ Pb(RaD) ²¹⁴ Po(RaC')		3.792(20) 7.834(0)	1.9(3)×10 ⁻⁶ %* 100%				W005, 1962Ka27, 1969Ho26] Ku08, 1971Gr17, 1961Ry02, 2022Be20, 2016Al28, J10, 2013Al11, 2013Be10, 2012Su11, 2011AlZX, h30, 1973BoXL, 1973BoXW, 1971Er02, 1965Le08, r22, 1961Do02, 1960Og01, 1960Ry01, 1953Ba60, 602]
²¹⁸ Rn	6.466(5)	7.262(2)	100%				Ko54, 1973BoXL, 2012Su11, 1971Er02, 1963Di08,
²²² Ra	6.246(6)	6.678(4)	100%		2.64(31)×10 ⁻⁸ %*	** ¹⁴ C	e17, 1962Di08, 1961Ru06, 1958To25, 1948St42] Ko54, 1991Hu02, 1985Ho21, 1985Pr01, 1956As38, o13, 1991Hu2Y, 1991LeZV, 1987BaZS, 1976Ka08, aZD, 1969Pe17, 1964Ba49, 1963Le17, 1961Fo08, u06, 1960Be25, 1958To25, 1958Sm88, 1948St42]
²²⁶ Th	5.729(6)	6.453(1)	100%				Ma30, 1995Ko54, 1976Ku08, 2012Po13, 1987Mi10, aZD, 1974KaZM, 1969Br10, 1968GuZU, 1963Le17, v06, 1956As38, 1953AsZZ, 1948St42]
²³⁰ U	5.571(5)	5.992(1)	100%		4.8(20)×10 ⁻¹² %	²² Ne	Ma30, 2001Bo11, 1995Ko54, 1976Ku08, 2012Po12, a54, 1999Pa22, 1996Tr10, 1974KaZM, 1969Pe17, a14, 1963Le17, 1961Ru06, 1956As38, 1953AsZZ,

22 examples of cluster emission are detailed.

- ¹⁴C, ²⁰O, ²³F, ^{22,24}Ne, ^{28,30}Mg. ^{32,34}Si

Branching ratios and type

are listed in table 2 of each Tz

Table 1028

direct ¹⁴C emission from ²²³Ra*, $J^{\pi} = 3/2^+$, $T_{1/2} = 11.4354(17)$ d**, $Q_{14C} = 31.83$ MeV, $BR_{14C} = 8.9(4) \times 10^{-8} \%$ ***.

$E_{14C}(\text{c.m.})$	$E_{14C}(\text{lab})$	$I_{14C}(\text{rel})$	$I_{14C}(abs)$	$J_f^{\boldsymbol{\pi} @}$	$E_{daughter}(^{209}\text{Pb})^{@}$	coincident γ-rays [@]
30.43 31.07 31.50	28.52 29.12 29.52	5% ^{@@} 100% ^{@@} 19% ^{@@}	$3.6 \times 10^{-9}\%$ $7.2 \times 10^{-8}\%$ $1.3 \times 10^{-8}\%$	15/2 ⁻ 11/2 ⁺ 9/2 ⁺	1.423 0.779 0.0	0.6435, 0.7789, 1.4227 0.7789

If energies were measured, individual tables are presented.

^{*} All values from [1992Ar02], except where noted.

^{** [2015}Co02].

^{*** [1995}Ho11].

^{@ [2015}Ch30].

• Summary tables for all types of charged particle decays have been added

Summary of known β_p Emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	Q_{ε_p} (MeV)	BR	other decays	T_z
		-,-			-	-
9C	(3/2-)	126.5(9) ms	16.680(2)	61.1(17)%	$\beta_{\alpha},\beta_{p},\alpha$	-3/2
13O	$(3/2^{-})$	8.58(5) ms	15.826(10)	11.3(20)%	β_{α}	-3/2
¹⁷ Ne	1/2-	109.3(6) ms	13.9485(4)	94.4(29)%	β_{α}	-3/2
20 Mg	0^{+}	90.4(6) ms	8.437(2)	30.0(12)%		-2
²¹ Mg	5/2+	118.6(5) ms	10.657(1)	20.9(13)%	β_{α}	-3/2
²² Al	4+	91.1(5) ms	13.10(40)#	54.5(25)%	$\beta_{2p}, \beta_{\alpha}$	-2
²² Si	0^{+}	28.6(14) ms	15.45(50)#	61.8(52)%	β_{2p}	-3
²³ Al	5/2+	446(6) ms	4.6406(4)	1.22(5)%	, -,	-3/2
²³ Si	$(5/2)^+$	42.3(4) ms	17.06(50)#	81.8(11)%	β_{2p} , β_{3p}	-5/2
²⁴ Al	4+	2.053(4) s	2.19207(23)	0.0012(3)%	β_{α}	-1
²⁴ Si	0+	141.4(15) ms	8.930(19)	33.3(16)%	,	-2
²⁵ Si	5/2+	220(3) ms	10.472(10)	35.0(20)%		-3/2
^{26}P	3+	43.6(3) ms	12.775(61)	33.5(20)%	β_{2p}	-2
^{27}P	$(5/2)^+$	260(80) ms	4.262(9)	≈0.07%	1	-3/2
²⁷ S	$(5/2^+)$	16.3(2) ms	17.34(40)#	62.2(29)%	β_{2p}	-5/2
28P	3+	270.3(5) ms	2.7600(11)	0.0013(4)%	βα	-1
²⁸ S	0^+	125(10) ms	9.17(16)	20.7(20)%		-2
²⁹ S	$(5/2^{+})$	187(6) ms	11.109(13)	47(5)%		-3/2
³¹ C1	3/2+	190(1) ms	5.877(3)	2.4(2)%		-3/2
31 Ar	5/2+	15.1(3) ms	18.10(20)#	68.3(3)%	β_{2p} , β_{3p}	-5/2
32C1	1+	298(1) ms	3.8169(6)	0.026(5)%	β_{α}	-1
³² Ar	0+	98(2) ms	9.553(2)	35.58(22)%		-2
³³ Ar	1/2+	173.0(20) ms	9.3423(4)	38.8(14)%		-3/2
35 K	3/2+	150(25) ms	5.9782(5)	0.37(15)%		-3/2
³⁵ Ca	$(1/2^+)$	25.7(2) ms	16.28(20)#	95.7(15)%	β_{2p}	-5/2
³⁶ K	2+	342(2) ms	4 3075(3)	0.048(14)%	R	-1

Summary of known β_{α} emitters. Detailed references for each nucleus can be found in their respective T_z tables.

¹¹⁴ Cs	(1^{+})	0.57(2) s	15.115(90)	0.16(6)%	β_p, α	+2	
¹¹⁵ Cs		1.03(10) s	11.46(10)#	0.010(5)%	β_p	+5/2	
¹¹⁵ Xe	$(5/2^{+})$	18(4) s	9.755(15)	0.0003(1)%	$\hat{\beta_p}$	+7/2	
¹¹⁶ Cs	(1^{+})	0.70(4) s	13.08(10)#	0.049(25)%	β_p	+3	
^{116m} Cs		3.85(13) s	13.18(12)#	< 0.0033%	β_p	+3	
117Ba	(3/2)	1.75(7) s	11.24(25)	0.011-0.038%	β_p	+5/2	_
¹¹⁸ Cs	2	14(2) s	11.055(31)	< 0.0024(4)%	β_p	+4	
¹²⁰ Cs	2(+)	61.3(11) s	8.955(30)	0.000020(4)%	β_p	+5	
¹⁸¹ Hg	$(1/2^{-})$	3.6(1) s	12.961(25)	9(2)X10 ⁻⁶ %	β_p, α	+21/2	

Table 1121 Summary of known β_{α}^- emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	Q _β - α (MeV)	BR _β - α (%)	other decays	T_z
^{212m} Bi	(9 ⁻)	25.0(2) m	11.625(30)	30(1)%	$\begin{array}{c} \alpha \\ \alpha \end{array}$	+23
²¹⁴ Bi	1 ⁻	19.71(2) m	11.102(11)	$3.03 \times 10^{-3}\%$		+24

 Table 1122

 Summary of known BR_{E_F} emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	$\mathrm{BR}_{arepsilon_F}$	other decays	T_z	
¹⁷⁸ Tl	$(4^-, 5^-)$	252(20) ms	0.15(6)%	α	+8	
180Tl	(5-)		3.2(3)X10 ⁻³ %	α	+9	
¹⁸⁶ Bi	(3 ⁺)	14.8(8) ms	< 0.022(13)%	α	+10	
^{186m} Bi	(10^{-})	9.8(4) ms	< 0.022(13)%	α	+10	
¹⁸⁸ Bi	(3+)	60(3) ms	0.46(9)%	α	+11	
188m Bi	(10^{-})	265(10) ms	≈0.11%	α	+11	
¹⁹⁰ Bi	(3 ⁺)	6.3(1) s	$2.5(5)\times10^{-5}$	α	+12	
^{190m} Bi	(10^{-})	6.2(1) s	$4.1^{+0.8}_{-1.5} \times 10^{-5}$	α	+12	
¹⁹² At		11.5(6) ms	< 0.42(9)%	α	+11	
192m ∆t	(9- 10-)	88(6) ms	~0.42(9)%	ď	±11	

Summary of known direct α emitters. Detailed references for each nucleus can be found in their respective T_z tables.

Nuclide	J^{π}	$T_{1/2}$	Q_{α}	BR_{α} (%)	other decays	T_z
404						
¹⁰⁴ Te	0+	<18 ns	5.10(21)	100%		0
¹⁰⁵ Te	$(5/2^{+})$	0.62(7) μs	5.069(3)	100%		+1/2
¹⁰⁶ Te	0+	$70^{+20}_{-10}~\mu s$	4.290(9)	100%		+1
¹⁰⁷ Te	$(5/2^{+})$	3.1(1) ms	4.004(6)	70(30)%		+3/2
108I		26.4(8) ms	4.099(5)	100%		+1
¹⁰⁸ Te	0+	2.1(1) s	3.445(4)	49(4)%		+2
¹⁰⁸ Xe	0+	$58^{+106}_{-23} \mu s$	4.57(21)	100%		0
109I	1/2+	93.5(3) μs	3.918(21)	0.014(4)%	p	+3/2
109 Xe	(7/2+)	13(2) ms	4.217(7)	100%	•	+1/2
¹⁰⁹ Te	(5/2+)	4.3(1) s	3.198(6)	3.9(13)%	β_p , β_α	+5/2
110Xe	0+	93(3) ms	3.872(9)	64(35)%	.,	+1
110Te	0+	18.4(8) s	2.723(15)	≈0.00076%		+3
110I	(1 ⁺)	664(24) ms	3.536(10)	17(4)%	β_p , β_α	+2
111 Xe	(7/2+)	0.81(20) s	3.719(10)	10.4(19)%		+3/2
112Xe	0+	2.7(8) s	3.330(6)	0.8 ^{+1.1} _{-0.5} %		+2
112I	(1 ⁺)	3.34(8)s	2.957(12)	≈0.0012%	β_p, β_α	+3
113Xe	(5/2+)	2.74(8) s	3.087(8)	≈0.011%	β_p, β_α	+5/2
114Cs	(1+)	0.57(2) s	3.360(60)	0.018(6)%	β_p, β_α	+2
114 Ba	0+	380 ⁺¹⁹⁰ ms	3.592(19)	0.9(3)%	β_n	+1

Database was finished May 2025. Datasets from -4 to +31! Li to Og!

139 datasets with 1456 delayed and direct emitters from 1241 nuclei, with 3962 discrete transitions detailed with 3962 unique references

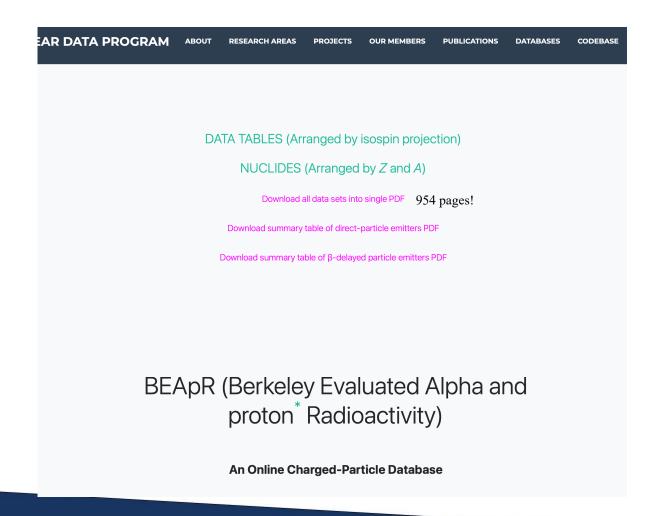
All beta-delayed and direct p, α , c and f emitters

All of these are available for download (as .pdf) individually or everything in one document.

Information on nuclei are updated as new papers come out.

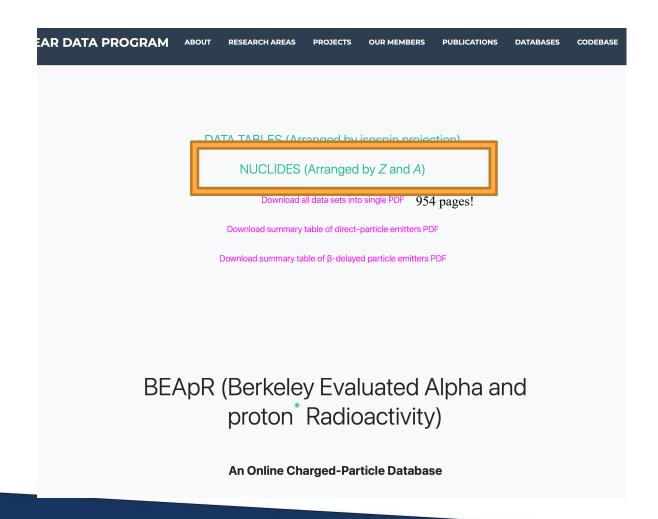
Website is updated ~bi-month

Update emails are sent out every couple months.



https://nucleardata.berkeley.edu/research/betap.html

Where is the database?



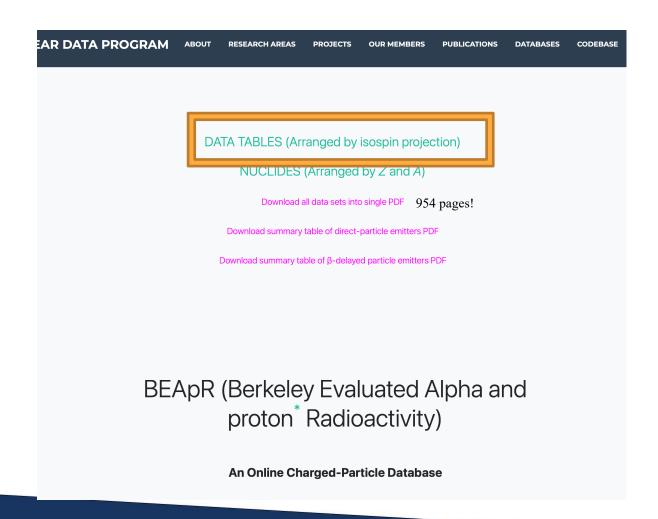


Table 1: Master list of nuclides (click on T_z to open link)

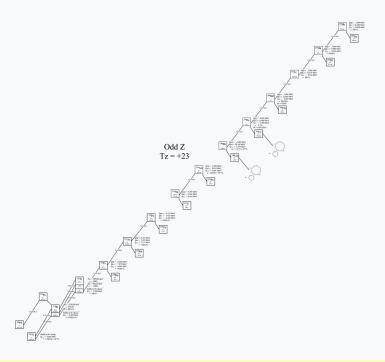
Nuclide	Decay Mode(s)	T_z			
⁴ Li	p	-1 odd Z			
⁷ B	p	-3/2 odd Z			
$^{8}\mathrm{B}$	β -2 α	-1 odd Z			
°C	β-p, β-α	-3/2 even Z			
¹⁰ N	p	-2 odd Z			
^{11}N	p	-3/2 odd Z			
^{12}N	β-α	-1 odd Z			
¹¹ O	2p	-5/2 even Z			
12O	p	-2 even Z			
¹³ O	β-p	-3/2 even Z			
¹³ F	3p	-5/2 odd Z			
^{14}F	p	-2 odd Z			
15 _E	n .	-3/2 odd 7			
²⁸⁷ Mc	α	+57/2 odd Z			
²⁸⁸ Mc	α	+29 odd Z			
²⁸⁹ Mc	α	+59/2 odd Z			
²⁹⁰ Mc	α	+30 odd Z			
²⁸⁹ Lv	α	+57/2 even Z			
²⁹⁰ Lv ²⁹¹ Lv	α	+29 even Z			
²⁹¹ Lv ²⁹² Lv	α	+59/2 even Z +30 even Z			
2893Lv	α	+30 even Z +61/2 even Z			
		TOTAL EVER Z			
$^{293}{ m Ts}$	α	+59/2 odd Z			
²⁹⁴ Ts	α	+30 odd Z			
²⁹³ Og ²⁹⁴ Og	α	+57/2 even Z			

Tz values are clickable clickable links

 $T_z = -7/2 \text{ (Even-}Z)$ $T_z = -4 \text{ (AII-Z)}$ $T_z = -7/2 \text{ (Odd-}Z)$ $T_z = -5/2 \text{ (Even-}Z)$ $T_z = -5/2 \text{ (Odd-}Z)$ $T_z = -3$ (Even-Z) $T_z = -3$ (Odd-Z) $T_z = -2$ (Even-Z) $T_z = -5/2 \text{ (Odd-2)}$ $T_z = -3/2 \text{ (Even-Z)}$ $T_z = -3/2 \text{ (Odd-Z)}$ $T_z = -1/2 \text{ (Even-Z)}$ $T_z = -1/2 \text{ (Odd-Z)}$ $T_z = +1/2 \text{ (Even-Z)}$ $T_z = +1/2 \text{ (Odd-Z)}$ $T_z = -2 \text{ (Even-2)}$ $T_z = -2 \text{ (Odd-Z)}$ $T_z = -1 \text{ (Even-Z)}$ $T_z = -1 \text{ (Odd-Z)}$ $T_z = 0$ (Even-Z) $T_z = 0$ (Odd-Z) $T_z = +1$ (Even-Z) $T_z = +3/2$ (Even-Z) $T_z = +3/2$ (Odd-Z) $T_z = +5/2$ (Even-Z) $T_z = +1 \text{ (Odd-}Z)$ $T_z = +2 \text{ (Even-}Z)$ $T_z = +2 \text{ (Odd-}Z)$ $T_z = +5/2 \text{ (Odd-}Z\text{)}$ $T_z = +7/2 \text{ (Even-}Z\text{)}$ $T_z = +3 \text{ (Even-Z)}$ $T_z = +3 \text{ (Odd-Z)}$ $T_z = +7/2 \text{ (Odd-}Z)$ $T_z = +4 \text{ (Even-}Z)$ $T_z = +9/2 \text{ (Even-}Z)$ $T_z = +9/2 \text{ (Odd-}Z)$ $T_z = +4 \text{ (Odd-}Z)$ $T_z = +5 \text{ (Even-}Z)$ $T_z = +11/2 \text{ (Even-Z)}$ $T_z = +5 \text{ (Odd-}Z)$ $T_z = +11/2 \text{ (Odd-}Z\text{)}$ $T_z = +13/2 \text{ (Even-}Z\text{)}$ $T_z = +6 \text{ (Even-Z)}$ $T_z = +6 \text{ (Odd-Z)}$ $T_z = +13/2 \text{ (Odd-}Z)$ $T_z = +7 \text{ (Even-}Z\text{)}$ $T_z = +15/2 \text{ (Even-Z)}$ $T_z = +15/2 \text{ (Odd-Z)}$ $T_z = +7 \text{ (Odd-}Z)$ $T_z = +8 \text{ (Even-}Z)$ $T_z = +17/2 \text{ (Even-Z)}$ $T_z = +8 \text{ (Odd-}Z)$ $T_z = +17/2 \text{ (Odd-}Z)$ $T_z = +19/2 \text{ (Even-}Z)$ $T_z = +9 \text{ (Even-}Z)$ $T_z = +9 \text{ (Odd-}Z)$ $T_z = +19/2 \text{ (Odd-}Z)$ $T_z = +10 \text{ (Even-Z)}$ $T_{v} = +21/2$ (Even-Z $T_{v} = +10 \text{ (Odd-Z)}$ $T_z = +21/2 \text{ (Odd-Z)}$ $T_z = +11 \text{ (Even-}Z)$ $T_z = +23/2 \text{ (Even-}Z\text{)}$ $T_Z = +11 \text{ (Odd-}Z)$ $T_z = +12 \text{ (Even-}Z\text{)}$ $T_z = +12 \text{ (Odd-}Z\text{)}$ $T_r = +23/2 \text{ (Odd-Z)}$ $T_z = +25/2 \text{ (Even-}Z)$ $T_z = +25/2 \text{ (Odd-}Z)$ $T_z = +13 \text{ (Even-}Z\text{)}$ $T_z = +13 \text{ (Odd-}Z)$ $T_z = +14 \text{ (Even-}Z)$ $T_z = +27/2$ (Even-Z) $T_z = +27/2 \text{ (Odd-}Z)$ $T_z = +29/2 \text{ (Even-Z)}$ $T_z = +29/2 \text{ (Odd-Z)}$ $T_z = +14 \text{ (Odd-}Z)$ $T_z = +15 \text{ (Even-}Z)$ $T_z = +31/2 \text{ (Even-}Z)$ $T_z = +15 \text{ (Odd-}Z)$ $T_z = +31/2 \text{ (Odd-}Z)$ $T_z = +33/2 \text{ (Even-}Z)$ $T_z = +16 \text{ (Even-}Z\text{)}$ $T_z = +16 \text{ (Odd-}Z)$ $T_z = +33/2 \text{ (Odd-}Z)$ $T_z = +17 \text{ (Even-}Z)$ $T_z = +35/2$ (Even-Z) $T_z = +35/2$ (Odd-Z) $T_z = +17 \text{ (Odd-}Z)$ $T_z = +18 \text{ (Even-}Z)$ $T_z = +37/2$ (Even-Z) $T_z = +18 \text{ (Odd-}Z)$ $T_z = +37/2 \text{ (Odd-}Z)$ $T_z = +39/2 \text{ (Even-}Z)$ $T_z = +19 \text{ (Even-}Z)$ $T_z = +19 \text{ (Odd-}Z)$ $T_z = +39/2 \text{ (Odd-}Z)$ $T_z = +20 \text{ (Even-}Z)$ $T_z = +20 \text{ (Odd-}Z)$ $T_z = +21 \text{ (Even-}Z)$ $T_z = +41/2$ (Even-Z) $T_z = +41/2$ (Odd-Z) $T_z = +43/2$ (Even-Z) $T_z = +21 \text{ (Odd-}Z)$ $T_z = +43/2 \text{ (Odd-}Z)$ $T_z = +45/2 \text{ (Even-}Z)$ $T_z = +22 \text{ (Even-}Z)$ $T_z = +22 \text{ (Odd-}Z)$ $T_z = +45/2 \text{ (Odd-}Z)$ $T_z = +23 \text{ (Even-}Z\text{)}$ $T_z = +47/2 \text{ (Even-}Z)$ $T_z = +47/2 \text{ (Odd-}Z)$ $T_z = +23 \text{ (Odd-}Z\text{)}$ $T_z = +24 \text{ (Even-}Z\text{)}$ $T_z = +49/2 \text{ (Even-Z)}$ $T_z = +24 \text{ (Odd-}Z)$ $T_z = +49/2 \text{ (Odd-}Z)$ $T_z = +25 \text{ (Even-}Z)$ $T_z = +25 \text{ (Odd-}Z)$ $T_z = +51/2 \text{ (Even-}Z\text{)}$ $T_z = +51/2 \text{ (Odd-}Z)$ $T_z = +26 \text{ (Even-}Z)$ $T_z = +26 \text{ (Odd-}Z\text{)}$ $T_z = +27 \text{ (Even-}Z\text{)}$ $T_z = +53/2$ (Even-Z) $T_z = +53/2 \text{ (Odd-}Z)$ $T_z = +55/2 \text{ (Even-}Z\text{)}$ $T_z = +27 \text{ (Odd-}Z)$ $T_r = +55/2 \text{ (Odd-}Z)$ $T_z = +28 \text{ (Even-Z)}$ $T_z = +57/2 \text{ (Even-}Z\text{)}$ $T_z = +28 \text{ (Odd-}Z)$ $T_z = +57/2 \text{ (Odd-}Z\text{)}$ $T_z = +59/2 \text{ (Even-}Z\text{)}$ $T_z = +29 \text{ (Even-}Z\text{)}$ $T_7 = +29 \text{ (Odd-}Z)$ $T_z = +59/2 \text{ (Odd-}Z)$ $T_z = +30 \text{ (Even-}Z)$ $T_z = +61/2 \text{ (Even-}Z\text{)}$ $T_z = +30 \text{ (Odd-}Z)$ $T_z = +31 \text{ (Even-}Z)$

 $T_z = -7/2 \text{ (Odd-}Z)$ $T_z = -5/2$ (Even-Z) $T_z = -5/2 \text{ (Odd-}Z)$ $T_z = -1/2 \text{ (Odd-}Z)$ $T_{\nu} = +1/2$ (Even-Z $T_z = +1/2 \text{ (Odd-}Z)$ $T_z = +3/2 \text{ (Even-}Z)$ $T_z = +3/2 \text{ (Odd-Z)}$ $T_z = +5/2 \text{ (Even-}Z)$ $T_z = +5/2 \text{ (Odd-}Z)$ $T_{\tau} = +7/2 \text{ (Even-Z)}$ $T_z = +7/2 \text{ (Odd-}Z)$ $T_z = +9/2 \text{ (Even-}Z)$ $T_2 = +9/2 \text{ (Odd-}Z)$ $T_z = +11/2 \text{ (Even-Z)}$ $T_z = +11/2 \text{ (Odd-}Z)$ $T_z = +13/2 \text{ (Even-}Z)$ $T_z = +13/2 \text{ (Odd-}Z)$ $T_z = +15/2$ (Even-Z $T_z = +15/2 \text{ (Odd-}Z)$ $T_z = +17/2 \text{ (Even-Z)}$ $T_z = +17/2 \text{ (Odd-Z)}$ $T_z = +19/2 \text{ (Even-}Z\text{)}$ $T_z = +19/2 \text{ (Odd-}Z)$ $T_{\tau} = +21/2$ (Even-Z $T_z = +21/2 \text{ (Odd-Z)}$ $T_z = +23/2 \text{ (Even-}Z\text{)}$ $T_r = +23/2 \text{ (Odd-}Z)$ $T_z = +25/2 \text{ (Even-}Z)$ $T_z = +25/2 \text{ (Odd-}Z)$ $T_z = +27/2$ (Even-Z) $T_z = +27/2 \text{ (Odd-}Z)$ $T_z = +29/2 \text{ (Even-Z)}$ $T_{\tau} = +29/2 \text{ (Odd-Z)}$ $T_z = +31/2 \text{ (Even-}Z)$ $T_z = +31/2 \text{ (Odd-}Z)$ $T_z = +33/2 \text{ (Even-}Z)$ $T_z = +33/2 \text{ (Odd-}Z)$ $T_z = +35/2$ (Even-Z) $T_z = +35/2$ (Odd-Z) $T_z = +37/2 \text{ (Odd-}Z)$ $T_z = +39/2$ (Even-Z) $T_z = +39/2 \text{ (Odd-}Z)$ $T_z = +41/2$ (Even-Z) $T_z = +41/2$ (Odd-Z) $T_z = +43/2 \text{ (Odd-}Z)$ $T_z = +45/2 \text{ (Even-}Z)$ $T_z = +45/2 \text{ (Odd-}Z)$ $T_{\tau} = +47/2 \text{ (Even-Z)}$ $T_z = +47/2 \text{ (Odd-Z)}$ $T_z = +49/2 \text{ (Even-Z)}$ $T_z = +49/2 \text{ (Odd-}Z)$ $T_z = +51/2 \text{ (Even-}Z\text{)}$ $T_z = +51/2 \text{ (Odd-}Z)$ $T_z = +53/2$ (Even-Z) $T_z = +53/2 \text{ (Odd-}Z)$ $T_z = +55/2 \text{ (Even-Z)}$ $T_r = +55/2 \text{ (Odd-}Z)$ $T_z = +57/2 \text{ (Even-}Z\text{)}$ $T_z = +57/2 \text{ (Odd-}Z)$ $T_z = +59/2$ (Even-Z) $T_z = +59/2 \text{ (Odd-}Z)$ $T_z = +61/2 \text{ (Even-}Z)$

 $T_z = -3$ (Even-Z) $T_z = -3 \text{ (Odd-}Z)$ $T_z = -2 \text{ (Even-}Z)$ $T_z = -2 \text{ (Odd-}Z)$ $T_z = -1$ (Even-Z) $T_z = -1$ (Odd-Z) $T_z = 0$ (Even-Z) $T_z = 0 \text{ (Odd-}Z)$ $T_z = +1$ (Even-Z) $T_z = +1 \text{ (Odd-}Z\text{)}$ $T_z = +2 \text{ (Even-}Z\text{)}$ $T_z = +2 \text{ (Odd-}Z)$ $T_z = +3$ (Even-Z) $T_{\tau} = +3 \; (Odd-Z)$ $T_z = +4 \text{ (Even-}Z)$ $T_z = +4 \text{ (Odd-}Z)$ $T_z = +5 \text{ (Even-}Z)$ $T_z = +5 \text{ (Odd-}Z)$ $T_z = +6 \text{ (Even-Z)}$ $T_z = +6 \text{ (Odd-Z)}$ $T_z = +7 \text{ (Odd-}Z)$ $T_z = +8 \text{ (Even-}Z)$ $T_z = +8 \text{ (Odd-}Z)$ $T_z = +9 \text{ (Even-Z)}$ $T_z = +9 \text{ (Odd-Z)}$ $T_z = +10$ (Even-Z) $T_{\tau} = +10 \text{ (Odd-Z)}$ $T_z = +11 \text{ (Even-}Z)$ $T_z = +11 \text{ (Odd-}Z)$ $T_{\nu} = +12 \text{ (Even-Z)}$ $T_z = +12 \text{ (Odd-}Z)$ $T_z = +13 \text{ (Even-}Z\text{)}$ $T_{r} = +13 \text{ (Odd-}Z)$ $T_z = +14 \text{ (Even-}Z)$ $T_z = +14 \text{ (Odd-}Z)$ $T_z = +15 \text{ (Even-}Z)$ $T_z = +15 \text{ (Odd-}Z)$ $T_z = +16 \text{ (Even-}Z)$ $T_z = +16 \; (Odd-Z)$ T_z = +17 (Odd-Z) T_z = +18 (Even-Z) $T_z = +18 \text{ (Odd-}Z)$ $T_z = +19 \text{ (Even-}Z)$ $T_z = +19 \text{ (Odd-}Z)$ $T_z = +20 \text{ (Even-}Z)$ $T_z = +20 \text{ (Odd-}Z)$ $T_z = +21 \text{ (Even-}Z)$ $T_z = +21 \text{ (Odd-}Z)$ $T_z = +22 \text{ (Even-Z)}$ $T_Z = +23 \text{ (Even-}Z)$


T_e = +24 (Odd-Z)
T_e = +25 (Even-Z)
T_e = +25 (Odd-Z)
T_e = +26 (Odd-Z)
T_e = +26 (Odd-Z)
T_e = +27 (Even-Z)
T_e = +27 (Gdd-Z)
T_e = +27 (Even-Z)
T_e = +28 (Even-Z)
T_e = +28 (Odd-Z)
T_e = +28 (Odd-Z)
T_e = +30 (Odd-Z)
T_e = +30 (Even-Z)
T_e = +30 (Even-Z)
T_e = +30 (Even-Z)
T_e = +30 (Even-Z)

 $T_z = +24 \text{ (Even-}Z)$

Isospin $T_z = +23$ (Odd-Z)

Downloadable documentation:

Data table (PDF)

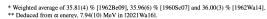

https://nucleardata.berkeley.edu/research/betap.html

Table 1 Observed and predicted β -delayed particle emission from the odd-Z, T_c = +23 nuclei. Unless otherwise stated, all Q-values are taken from [2021Wa16] or deduced from values therein. The J^{π} value for Z^{300} T1 is taken from ENSDE.

Nuclide	Ex.	J^{π}	$T_{1/2}$	Q_{ε}	Q _β -	Q _β - α	BR _β - α	$\mathrm{BR}_{arepsilon F}$	Experimental
208Tl(ThC")*		5+	3.0527(33) m	-3.480(30)	4.998(2)	5.695(2)			[1971Ac02]
212Bi(ThC)		1-	60.600(43) m	-0.569(2)	2.252(2)	11.386(2)			[1961Ap03]
^{212m} Bi	0.239(30)	(9^{-})	25.0(2) m	-0.340(30)	2.491(30)	11.625(30)	30(1)%		[2013Ch12, 1984Es01, 1980Le27,
									1978Ba44, 1978BaYL, 1978BaZI]
					Q_{ε_P}	$Q_{\varepsilon\alpha}$			
²¹⁶ At		1-	300(30) μs	0.474(4)	-6.662(7)	7.381(4)			[1951Me10]
216m1 At	0.048(24)	(4^{-})		0.522(24)	-6.614(25)	7.429(24)			[1994Li10, 1971Br13, 1965Br11]
^{216m2} At	0.399(30)	(9-)		0.873(30)	-6.263(31)	7.780(30)			[1994Li10, 1971Br13, 1965Br11]
²²⁰ Fr		1+	27.4(3) s	0.870(4)	-6.203(5)	7.275(4)			[1971Br13]
²²⁴ Ac		0-	2.78(16) h**	1.408(4)	-5.437(4)	7.197(4)			[1951Me10, 1987Mi10]
²²⁸ Pa		3+	19.5(4) h	2.153(4)	-4.215(5)	7.673(5)			[2021Km01]
²³² Np		(4^{+})	14.7(3) m	2.75(10)#	-3.35(10)#	8.16(10)#			[1970Ho27]
236Am		5-	3.6(2) m	3.14(12)#	-2.29(12)#	9.01(12)#			[2005As01]
²⁴⁰ Bk			4.8(8) m	3.94(15)#	-1.02(15)#	10.34(15)#		$1.3^{+1.8}_{-0.7} \times 10^{-3}\%$	[1983Ga05, 1980Ga07, 1980GaZZ]
²⁴⁴ Es			37(4) s	4.55(18)#	0.05(18)#	11.88(18)#		0.012(4) %	[2002Sh02, 1980Ga07, 1980GaZZ]
²⁴⁸ Md			13 ⁺³ ₋₂ s	5.05(18)#	1.08(19)#	13.05(18)#		< 0.05%	[2024PoXY]
²⁵² Lr			410^{+70}_{50} ms	5.67(19)#	2.28(19)#	14.21(19)#			[2024PoXY]
²⁵⁶ Db			410 ⁺⁷⁰ ₋₅₀ ms 1.4 ^{+0.3} _{-0.2} s	6.08(19)#	3.06(19)#	15.00(19)#			[2024PoXY]
²⁶⁰ Bh			35 ⁺¹⁹ ₋₉ ms	6.58(20)#	3.84(20)#	16.48(20)#			[2008Ne01]
						. ,			

Particle separation, Q-values, and measured values for direct particle emission of the odd-Z, T_z = +23 nuclei. Unless otherwise stated, all S and Q-values are taken from [2021Wa16] or deduced from values therein.

Nuclide	S_p	Q_{α}	BR_{α}	BR_{SF}	Experimental
208Tl(ThC")	7.552(30)	1.22(20)			
²¹² Bi(ThC)	4.914(3)	6.207	35.94(3) %*		[1971Gr17, 1962Be09, 1960Sc07, 1960Wa14, 1984Es01,
(,	(-)	0122.	55		1969Gr28, 1966II01, 1966KIZZ, 1963Co28, 1961Ap03,
					1961Ba12, 1961Fe04, 1960Ga15, 1960Gi07, 1960Ha19,
					1958De25, 1956Ho11, 1956Ko60, 1955We10, 1949Me54,
					1948Gh01, 1943Ka05, 1933Ru03]
212m Bi	4.675(30)	6.446(30)	67(1)%		[1984Es01, 1978Ba44]
216At	4.491(4)	7.950(3)	100%		[1994Li10, 1971Br13, 1965Br11, 1973BoXL, 1973BoXW,
					1964Br16, 1964Mc21, 1962Wa28, 1951Me10, 1949Me54,
					1948Gh01]
^{216m1} At	4.443(24)	7.998(24)	obs		[1994Li10, 1971Br13, 1965Br11]
^{216m2} At	4.092(20)	8.349(30)	obs		[1994Li10, 1971Br13, 1965Br11]
²²⁰ Fr	4.636(4)	6.801(2)	99.65%		[1996Sh05, 1971Br13, 1974Ho27, 1973ChZH, 1970Br29,
					1968Ba73, 1964Br16, 1964Mc21, 1951Me10, 1949Me54,
					1948Gh01]
²²⁴ Ac	4.288(4)	6.327(1)	10(2)%		[1968Le17, 1992Li31, 1951Me10, 1987Mi10, 1976MiZR,
					1973ChZH, 1970Br31, 1969LeZW, 1968Ba73, 1968Br15,
					1967Br15, 1964Mc21, 1958Hi78, 1949Me54, 1948Gh01]
²²⁸ Pa	4.170(5)	6.265(1)	2.0(2)%		[1994Ah03, 1993Sh07, 1964Ge08, 1958Hi78, 1951Me10,
					1949Me54, 1948Gh01]
²³² Np	3.74(10)#	6.01(10)#			
²³⁶ Am	3.43(12)#	6.256(64)	$4.0(10)\times10^{-3}\%$		[2004Sa05, 2002As08, 1989HaZO]
240 Bk	2.77(21)#	7.20(19)#			
²⁴⁴ Es	2.25(26)#	7.696(20)**	$4^{+3}_{-2}\%$		[1973Es02]
²⁴⁸ Md	2.01(26)#	8.785(47) [@]	61(16)-68(22)%		[2024PoXY, 1973Es01, 2008Ne01, 1971EsZY, 1971EsZZ]
²⁵² Lr	1.60(26)#	9.132(47)@@	70-90%		[2024PoXY, 2001He35, 2008Ne01, 1999He07, 1999HeZX]
²⁵⁶ Db	1.32(26)#	9.265(47) ^{@@@}	90(4)%	10(4)%	[2024PoXY, 2001He35, 2020Ku23, 1999He07, 1999He11,
					1999HeZX]
²⁶⁰ Bh	0.69(27)#	10.400(59)	100%	<18%	[2008Ne01, 1983OgZX]
		* *			, , , , , , , , , , , , , , , , , , , ,

^{**} Weighted average of 2.9(2) h [1951Me10] and 2.55(28) h [1987Mi10].

Possible future additions

• Summary tables of values that are poorly or not known. Many of these values might be in experimental data and ignored as "background".

Examples: direct α emission from $^{234}Pu^*, J^\pi=0^+, T_{1/2}=8.7(1)~h^{***}, \textit{BR}_\alpha=\approx 6\%$

E_{α} (c.m.)	$E_{\alpha}(\text{lab})$	$I_{\alpha}(\text{rel})$	$I_{\alpha}(abs)$	$\mathbf{J}^{m{\pi}***}_f$	$E_{daughter}(^{230}\mathrm{U})^{***}$	coincident γ-rays***	R_0 (fm)	HF
6.130 6.252 6.304	6.025 6.145 6.196	0.6% 47% 100%	pprox 0.024% pprox 1.9% pprox 4.1%	4 ⁺ 2 ⁺ 0 ⁺	0.1693 0.0517 0.0	0.0517, 0.1693 0.0517	1.518(27) 1.518(27) 1.518(27)	≈ 25 ≈ 1.1 ≈ 0.9

^{*} All values from [1964Hy02] p. 799 (based on unpublished results from R. W. Hoff, F. Asaro, I. Perlman [1960Ho18]), except where noted.

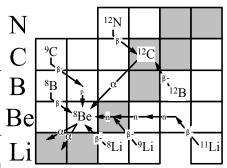
direct α emission from 207 At, $J^{\pi} = 9/2^{-}$, $T_{1/2} = 1.80(3)$ h*, $BR_{\alpha} = \text{obs**}$.

$E_{\alpha}(\text{c.m.})$	$E_{\alpha}(\mathrm{lab})$	$I_{\alpha}(abs)$	$\mathbf{J}^{\boldsymbol{\pi}}_f$	$E_{daughter}(^{203}\mathrm{Bi})$	coincident γ-rays	R ₀ (fm)]	HF
5.872(3)	5.759(3)***	obs**	9/2-	0.0		1.4651(131)	≈1.10

^{*} Weighted average of 1.80(5) h [1962Th08], 1.82(4) h [1969Ba69] and 1.77(5) h [1968GuZX].

^{**} Weighted average of 8.8(1) h [1973Ja06] and 8.5(1) h [1949Pe04].

^{*** [2012}Br12].


^{** &}quot;No serious attempt has been made to determine the degree of alpha-branching of At^{207} . The best estimate from the alpha-particles of At^{207} and the yield of Po^{207} is 10 percent alpha-branching." [1951Ba14]. $\approx 10\%$ is used for the branching ratio in determining the HF value. *** [1969GoZX].

Possible future additions (once datasets up to Tz = +30 are finished):

- * p and α emission from highly excited states (not populated by beta decay)?
- * (mostly) Low Z exotic decays (β - α , etc.) (how to handle this)?

Summary of more exotic β delayed charged particle emitters

Nuclide		$T_{1/2}$	decay mode	$Q_{\varepsilon x}$ (MeV)	BR (%)	other decays	ENSDF	Experimental
⁶ He		806.7(1) ms	eta^- -d	2.03245(5)	0.0000076(6)%		[2002Ti10]	[2015Pf01 , 1993Bo24]
⁸ He		119.1(12) ms	eta^- -t $lpha$ n	6.16364(9)	0.9(1)%	$oldsymbol{eta}^-$ -n	*	[1996Ba66 , 1993Bo24, 1986Bo41]
⁸ Li	2^{+}	839.9(9) ms	eta^- -2 $lpha$	16.09597(5)	100%		*	[2013Li12, 1986Wa01, 1974Tr01]
								[1970Sc34, 1971Wi05]
^{8}B	2^+	770(3) ms	eta^+ -2 $lpha$	18.072(1)	100%		*	[1964Ma35, 1971Wi05]
⁹ Li	3/2-	178.3(4) ms	β^- -n2 α	12.03375(19)	50.0(18)%		[2004Ti06]	[1991Re02 , 1992Te03, 1970Ch07]
¹¹ Li	$3/2^{-}$	8.75(4) ms	β^- -n α	12.6400(6)	0.29(4)%	β^- -n, β^- -2n	[2012Ke01]	[2008Ma34]
			β^- -d	2.6377(6)	0.0130(13)%			[2008Ra23 , 1996Mu19]
			β^- -t	4.832.7(6)	0.000093(8)%			[2009Ma72]
			β^- -3n2 α	11.6645(6)	1.4(2)%			[2008Ma34]
			β^- - α n	12.6400(6)	0.29(4)%			[2008Ma34]
¹¹ Be		13.76(7) s	$eta^- lpha$	2.84515(24)	3.1(5)%		[2012Ke01]	[1971Al07,1981Al03, 1982Mi08]
$^{12}\mathbf{B}$		20.20(2) ms	$\beta^{-}3\alpha$	6.0946(13)	1.58(30)%		[1990Aj01]	[2009Hy01, 2009Hy02 , 2010Hy01, 1990Aj01]
^{12}N	1+	11.000(16) ms	β^+ -3 α	10.063(1)	3.5(5)%		[1990Aj01]	[2009Hy01, 2009Hy02 , 2010Hy01, 1990Aj01]
^{16}N	2^{-}	7.13(2) s	eta^- - $lpha$	3.259(2)	0.00106(10)%		[1993Ti07]	[2016Re01, 1993Zh13, 1974Ne10]
¹⁷ Ne	1/2-	109.2(6) ms	β^+ -p α	6.7866(4)	0.0016(4)%	β-p, β-α	[1993Ti07]	[2002Ch61]
^{18}N	-	624(12) ms	eta^- - $lpha$	7.668(19)	12.2(6)%	β^- -n	[1995Ti07]	[2007Bu01 , 1995ReZZ]
21 Mg	5/2+	122(3) ms	$oldsymbol{eta}^+$ -p $oldsymbol{lpha}$	5.937(16)	0.016(3)%	β - α	[2015Fi05]	[2015Lu13]
212m Bi	$(8^-, 9^-)$	25.0(2) m	β^- - α	11.456(2)	30(1)%	α	[2005Br03]	[1984Es01 , 1978Ba44]

^{*} J. H. Kelley, J. L. Godwin, C. G. Sheu, ENSDF Jan. 2018, http://www.nndc.bnl.gov/ensdf/

Possible future additions (once datasets up to Tz = +30 are finished):

- * p and α emission from highly excited states (not populated by beta decay)?
- * Low Z exotic decays (β - α , etc.) (how to handle this)?
- * Links to theory papers?

A BIG thank you to all those who have given me suggestions, commented, etc!

Several experimental colleagues (Rykaczewski, Liddick, Schatz, Sun, Hardy, etc.) have offered suggestions/corrections

Any corrections, additions, or suggestions to improve this database?

new (or old) papers/thesis that I missed?

Please let me know so I can fix it

What else would be useful???

batchelder@berkeley.edu

Thank you for your attention!

Evaluation/compilation (UC Berkeley) – Jon Batchelder

Web/moderization development team (UC Berkeley) -Aaron Hurst

