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Pulsed spheres

» Pulsed spheres were a series of experiments performed at LLNL
where nToF measurements were performed for a range of

materials from a 14 MeV source

« 14 MeV neutron source generated from a 400 keV deuteron

beam onto a tritium loaded target

 Significant range of MCNP models with an imposed source

based on Marchetti’'s calculations exist
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Pulsed spheres

« Detailed MCNP models exist to simulate a range of the LLNL pulsed sphere experiments (along with similar
experiments, Wyman Spheres, Oktavian spheres etc).

« The neutron source is based on work by Marchetti simulating the DT interaction in the titanium-tritium target
layer and then acts as an imposed source in MCNP. Other codes also exist for simulating charged particles in
a target layer (DROSG, SRIM)

 AWE has a Monte Carlo neutron transport code which has been developed to perform charged particle
transport (CPT). Uses ACE nuclear data files, processed using NJOY, allowing data to be easily compared
against results in MCNP.

 The AWE code and MCNP are both using exactly the same neutron interaction data

» Pulsed spheres represent a good experiment to compare a calculation of a charged particle induced reaction
against experimental measurements

« Modelled in 2D and considered to be axially-symmetric, room/background not yet modelled fully, but a 2D
approximation can be introduced (or the problem can be modelled in 3D, not yet done)
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Charge Particle Transport

* We can use the incident deuterium on tritium data from ENDF/B-VIII to calculate the neutron source. The
neutrons are transported through the full target assembly before interacting with the pulsed sphere assembly.

« The code has options for a range of stopping power/scattering models for charged particles.

* In theory, we can also model Ti(d,X) interactions (data supplied with TENDL) but are considered to be relatively
low in comparison so have been ignored

» For later investigations, the code can do a full range of incident light ion interactions
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Pulsed spheres
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Pulsed spheres

Integrated flux surface
tally 180° about the target

Older MCNP inputs showed
a simple spectra (blue),
modern inputs provide the
revised spectra (orange).

AWE generated spectra in
black

The resonance doesn’t
match between MCNP and
AWE calculation

The AWE calculated
spectrum shows that
neutrons around 14.2 MeV
are being absorbed, this is
not shown in MCNP

Relative decrease at high
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neutrons absorbed in the
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Pulsed spheres

Removing one of, or all,
the metal components of
the target confirms the
neutron losses and down
scatter to the target

Removing everything
except the tritium (blue
curve) shows a good match
the MCNP source

Removing the titanium or
steel has a limited impact

Removing the tungsten (red
curve) has a larger impact
on the drop at high energies
and increase in lower
energies compared to
tritium only target

No modification can
generate the resonance
shown in the MCNP
spectrum
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P u Ised S p h e reS C_29 time spectrum comparison —
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Pulsed spheres
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Be 08 time spectrum comparison

Pulsed spheres
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Pulsed spheres

With confidence we are generating a
good neutron spectrum from the D
beam, can compare output from AWE
compared to MCNP

Number of models where both AWE and
MCNP match the experimental data
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Pulsed spheres

« We do not anticipate the differences in the source definition to be the cause of the most significant differences
between the codes.

« The AWE modelled versions are lacking background interference from room return, and use a simple
approximation of the collimator (effectively a zero importance region). Some of the MCNP models are much
older and also missing backgrounds.

« While both codes are using the same neutron interaction data, differences/bugs will also exist with the
iImplementation of the scattering laws as described by the ENDF/ACE format
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D build-up

« Many of the experimental
data sets feature a peak
which correlates to neutrons
from DD reactions

Counts (target in) per nsec/total counts (target out)
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D build-up

Many of the experimental data
sets feature a peak which
correlates to neutrons from DD
reactions

Can model the deuteron build
up in the target by loading the
target with D along with T.
Once D concentration reaches
approximately 10%, the effect
is visible in the time of flight.

Displacing tritium for deuterium
has no significant impact to
the DT peak (sufficiently
saturated in tritium) (NB | think
this was true up to approx.
90%D...)

Uncertain on the age of targets
used for each experiment.
Would be good to know typical
D concentrations from a well
used target to get an
anticipated concentration with
age (Are we expecting D:T
ratios of 1:100 or 100:1!).
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D build-up

Many of the experimental
data sets feature a peak
which correlates to neutrons
from DD reactions

Can model the deuteron
build up in the target by
loading the target with D
along with T. Once D
concentration reaches
approximately 10%, the
effect is visible.

Displacing tritium for
deuterium has no
significant impact to the
DT peak (sufficiently
saturated in tritium) (NB |
think this was true up to
approx. 90% D...)

Where these upticks appear
at DD energies in
experimental datasets,
possible to load some D to
better match these points
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Low energy spheres

Further similar experiments include

Energy spectrum comparison
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UK Ministry of Defence © Crown owned copyright 2025/AWE 16

AM NUCLEAR SECURITY
= TECHNOLOGIES




Low energy spheres

Further similar experiments include Ratio comparison
proton beams at 2.5 and 3.5 MeV,
generating neutrons 0.3-2.7 MeV 12

----- AWE calculation
—— experimental data

Measuring prompt fission neutron
spectra from 235U and 23°Pu 0.7 mfp
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Future work

* This work has been very useful for testing the CPT capabilities in a Monte Carlo transport
code (many bugs...). Also a test of the CP induced data in ENDF/B-VIII.O. Unlike critical
assemblies, we have limited benchmarks to test this data on.

« 3D environment, would allow us to set up the full emplacement and collimator. Would also
allow for modelling of LANL “Wyman spheres™ with asymmetrically placed ampules. Would
like to set this up to model other accelerator driven experiments and compare against
other codes.

« Take the source as generated by CPT and replace the imposed source in MCNP — does
the difference in calculated source show any difference?

« Speed up. These models are not fast. The CPT takes a long time, about 90% of the run
time! When running with 10M particles, MCNP takes 20 seconds, CPT takes 16 hours!
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