


# Progress on MF37: TSL Covariance Format

Chris W. Chapman, Goran Arbanas, Jordan McDonnell, Doro Wiarda

Oak Ridge National Laboratory

CSEWG meeting – 7 January 2026

ORNL is managed by UT-Battelle LLC for the US Department of Energy



# Current Progress

- MF37/MT4 Incoherent Inelastic Covariance  $S(\alpha, \beta)$ 
  - Option for storing 2 different quantities:
    - Covariance of phonon density of states (PDOS), bound scattering cross section
    - Covariance of  $S(\alpha, \beta)$ , bound scattering cross section, effective temperature
  - Each option has pros and cons, can leave up to evaluator to determine best implementation for material
    - PDOS more compact, but potential loss of physical features
    - $S(\alpha, \beta)$  more exact, but needs reduction to be usable
  - Efforts underway to determine best practices for evaluators

# Next Steps

- Currently: 1 temperature for MF37/MT4
- Goal: arbitrary temperatures for MF37/MT2 & MF37/MT4
  - Ambitious, but doable
- MF37/MT2 (incoherent & coherent elastic)
  - Incoherent:
    - Scalar quantity (Debye-Waller) as a function of temperature; mathematically straightforward
  - Coherent:
    - Energy-dependent quantity as a function of temperature; computationally straightforward

# Open Questions

- Temperature Effects
  - Incoherent Elastic: straightforward
  - Coherent Elastic: possible, see below
  - Incoherent Inelastic: difficult, might rely on effective temperature
- MF37/MT2 (coherent elastic)
  - Can be described entirely using the Debye-Waller factor (W) if no desire for temperature-dependent Bragg scattering
  - Current CE implementation involves sampling scattering energy/angle; less intuitive on how covariance would be implemented

# To Do

- MF37/MT4:
  - 1 temperature light water covariance work nearing completion (see talk tomorrow)
  - Multiple temperature implementation ongoing
- MF37/MT2:
  - Need to identify potential candidate materials (contingent on MF37/MT4 above)
  - Covariance generation would be similar to light water MF37/MT4
- Everything:
  - Next CSEWG?!?

# Acknowledgements

- This work is supported under the framework of DOE / US Nuclear Regulatory Commission (NRC) collaboration for Criticality Safety support for commercial-scale HALEU fuel cycles project (DNCSH)