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Main findings

Cross section uncertainty ~10% in RRR with good differential data
Access to distribution of error

Quantifiable impact on benchmarks / applications
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Why Synthetic Data?

* A repeatable test environment with ground truth

+ “Best Case” scenario: all Unknown Sources of Uncertainty can be controlled
* Reveals the true distribution of errors
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What Synthetic Data Tests Reveal

Relative empirical s versus fitted cross section with LOESS trend
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Example Criticality benchmark
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Example Criticality benchmark

No differential data

37% of original error remains

High quality (ENDF) differential data
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Transition to Real Data




Real Data
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ENDF Fit
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AutoFit
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Fit Comparison
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Elastic o(E) [barns]

Capture o(E) [barns]

ENDF Cross Section
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Confidence Intervals vs. Alternate Fit
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Confidence Intervals vs Relative Difference
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Elastic: vVar / u [%]

Capture: vVar / u [%]
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Summary

1. Can estimate the actual cross section inference uncertainty using high-fidelity synthetic data
2. Can (ML-) learn to predict cross section inference uncertainty reliably
3. Log-normal distribution of error performs best in quantitative testing

Performance Metric Across Energy Domain
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Summary

1. Can estimate the actual cross section inference uncertainty using high-fidelity synthetic data

2. Can (ML-) learn to predict cross section inference uncertainty reliably

3. Log-normal distribution of error performs best in quantitative testing
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Backup Slides



Synthetic Data V & V Synthetic Data Model Verification for Transmission (exponential)
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Brown, et al. Synthesized

Distribution of Residuals in Window Distribution of Residuals at Black Resonances
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emp_var/o

Empirical relative error s/o

Total Cross Section Error

Empirical relative error (s/o) vs fitted total cross-section (o)
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AutoFit Reaction Relative Error
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Distribution of Error
Examples

Fitted XS density + LogNormal overlays
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Distribution of Error
Examples

Fitted XS density + LogNormal overlays
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Density

Distribution of Error
Examples

Fitted XS density + LogNormal overlays
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Distribution of Error
Examples

Fitted XS density + LogNormal overlays
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Distribution of Error
Examples

Fitted XS density + LogNormal overlays
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Density

Fitted XS density + LogNormal overlays
ladder 207 | E=214.800 eV

Distribution of Error
Examples
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PU-MET-MIXED-003-003

Benchmark Simulation Results

Ta-181 Resonances 200-2500eV Replaced with Syndat
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PU-MET-MIXED-003-003

Benchmark Simulation Results
Ta-181 Resonances 200-2500eV Replaced with Syndat
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PU-MET-MIXED-003-003

Benchmark Simulation Results
Ta-181 Resonances 200-2500eV Replaced with Syndat
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