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Nuclear reactions away from stability involves extrapolating the optical potential

optical potential reduce many-body
DOF in reactions to few
phenomenological optical potentials are
extrapolated away from β-stability
along with NLDs, γSF, etc., they are
necessary for prediction and evaluation
in data-sparse regime
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1Goriely and Delaroche 2007, Physics Letters B 653(2-4), pp. 178–183
2Beyer et al. 2025, Phys. Rev. C 112, p. 024604
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Past work: optical model uncertainty in CGMF fission observables
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Optical model uncertainty in
CGMF Monte Carlo
Hauser-Feshbach calculations of
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3Beyer et al. 2025, Phys. Rev. C 112, p. 024604
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Calibration of an uncertainty-quantified global optical potential

Canonical KOH statistical approach to model calibration 4

yi + εi︸ ︷︷ ︸
observation with uncertainty

= ζ(xi)︸ ︷︷ ︸
latent truth

= η(xi;α) + δ(xi)︸ ︷︷ ︸
parametric model with discrepancy

+εi (1)

given priors

εi ∼ N (0,Σexp)

δ(xi) ∼ N (0,Σmd)

and data set(s) D = {xi, yi}Ni=0

the likelihood is
p(α, β|D) =

(
(2π)N |V(β)|

)−1/2

exp
{
−1

2
∆>V−1(β)∆

}
,

where ∆ ≡ y − η(x, α) and V (β) ≡ Σexp +Σmd(β)

Baye’s rule provides posterior given priors p(α), p(β)
for global nucleon-nucleus optical potentials, x = {A,Z,E, θ, . . . } and y = dσ/dΩ, Ay, . . .

4Kennedy and O’Hagan 2001, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63(3), pp. 425–464
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Progress on uncertainty quantification and extrapolation of the optical potential

Statistical approach to optical potentials
1950s on: Frequentist, least-squares fitting, a few parameters at a time. Parameter ambiguities observed. a

2003: Koning-Delaroche b is state-of-the-art: 50 parameter fit with computational steering, local, global
hierarchy
2017: Bayesian calibration and UQ with local potentials (Lovell et al. c)
2023: First global Bayesian calibration: CHUQ and KDUQ (Pruitt et al.d)

aSatchler et al. 1964, Physical Review 136(3B), B637
bKoning and Delaroche 2003, Nuclear Physics A 713(3-4), pp. 231–310
cLovell et al. 2017, Physical Review C 95(2), p. 024611
dPruitt et al. 2023, Physical Review C 107(1), p. 014602
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systematic errors ignored!
model discrepancy ignored (or treated with diagonal covariance)!
non-identifiability not treated rigorously!

Can we trust the extrapolation into data-sparse regime?
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Extrapolation off the line of stability constrained by charge-symmetry of the nuclear force

Resonable ansatz for isovector dependence of optical potential 5:

U(r) = U0(r) + 4
τ · T
A

U1(r)

= U0(r) + 4
τ3T3

A
U1(r)︸ ︷︷ ︸

(N − Z)/A dependence in elastic scattering

+4
τ+T− + τ−T+

2A
U1(r)︸ ︷︷ ︸

(p, n) to isobaric analog

Goal: uncertainty-quantified extrapolation in (N − Z)/A using (p, n)IAS as a constraint and rigorous
Bayesian approach

5Lane 1962, Nuclear Physics 35, pp. 676–685
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(p, n) to the isobaric analog state

From measurements at MSU Cyclotron Lab a

aDoering et al. 1975, Physical Review C 12(2),
p. 378

90Zr(p, n)90NbIAS

p

n

θ

90Zr

good single-particle description: replacement of
valence neutron orbital with incident proton
probe of N,Z symmetry energy and neutron skins
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The East Lansing Model

U(r;E,A,Z) = U0(r;E,A) +

(
N − Z

N + Z

)
U1(r;E,A)

New global, uncertainty quantified optical potential
Lane consistent
24 parameters (compared to 48 for
Koning-Delaroche)
Coulomb correction to all orders
open-source data curation (exfor-tools), solver
(jitR), and statistical modeling software (rxmc)
as part BAND framework 6

visitlearn.msu.edu/resources/facility-for-rare- isotope-beams
photos.msu.edu

github.com/beykyle/elm
6Beyer et al. 2025, (Version 0.5.0)
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jitR allows for global calibration without needing emulators

philosophy:
Modular library for building workspaces which take in
interaction models and spit out reaction observables

calculable R-matrix on Lagrange mesh a

modular python library
precompute everything you can
numba just-in-time compilation, heavy numpy
vectorization
2 orders of magnitude faster than comparable
fortran codes, just as fast as emulators b in UQ
setting

aBaye 2015, Physics reports 565, pp. 1–107
bOdell et al. 2024, Physical Review C 109(4), p. 044612
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aBeyer et al. 2025, (Version 0.5.0)
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Curation of a body of experimental data

∼ 100 EXFOR entries, ∼ 10K data points
sparse coverage of input space
40 ≤ A ≤ 208

10 MeV < Elab < 200 MeV
dσ/dΩ and Ay from elastic (p, p), (n, n)
dσ/dΩ with clean ∆Jπ = 0+ from (p, n)IAS

manual ID & cleaning of outliers
types of error reported inconsistent

github.com/beykyle/exfor_tools, built on top of
David Brown’s x4i package.
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rxmc: flexible, hierarchal Bayesian calibration to heterogeneous data

curating a body of evidence from
multiple constraints
Bayesian calibration with flexible
likelihood models
designed with jitR and exfor-tools
in mind
built-in sampler, or interface with
external MCMC package
handles parametric likelihood models
with batched Metropolis-in-Gibbs
sampling
in alpha stage:
https://github.com/beykyle/rxmc/
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Statistical model for ELM

Likelihood model

ln p(D|α,M) = −1

2

(
∆> · V −1 ·∆+ ln

(
(2π)k |V |

))
∆i(α) ≡ η(xi, α)− yi

V (β) = Σexp
ij +ΣMD

ij (β)

diagonal model discrepancy, learned from data
(following 7).

Σexp
ij ≡ δijσ

2
exp,i

ΣMD
ij (β) ≡ δij (βỹi)

2 , ỹi ≡ (η(xi;α) + yi,exp) /2

β are free parameters (one per data sector)

Prior
estimated from CHUQ

Sampling
Adaptive Metropolis-in-Gibbs with rxmc

Goodman-Weare from emcee8

massively parallel

7Pruitt et al. 2023, Physical Review C 107(1), p. 014602
8Foreman-Mackey et al. 2013, PASP 125(925), p. 306; Goodman and Weare 2010, Communications in applied mathematics and

computational science 5(1), pp. 65–80
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Likelihood model
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(
∆> · V −1 ·∆+ ln
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(2π)k |V |
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ij (β)

diagonal model discrepancy, learned from data
(following 7).

Σexp
ij ≡ δijσ

2
exp,i

ΣMD
ij (β) ≡ δij (βỹi)

2 , ỹi ≡ (η(xi;α) + yi,exp) /2

β are free parameters (one per data sector)

To re-scale or not to re-scale the
log-likelihood?

Pruitt et al. re-scaled the log likelihood
by k/N (# of free parameters / # of
experimental data points ∼ 20/10000):

ln p(D|α,M) →
k

N
ln p(D|α,M)

re-scaling is equivalent to “cold”
posterior with λ = k/N < 1
(post-Bayesian approach) 8

pλ(α|D,M) ∝ p(D|α,M)λp(α)

7Pruitt et al. 2023, Physical Review C 107(1), p. 014602
8Grünwald 2011, vol. 19, pp. 397–420
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Effect of (p, n)
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Introduction of (p, n) constraint doesn’t
make a huge difference . . .
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Effect of independent isovector geometry
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aDanielewicz et al. 2017, Nuclear Physics A 958,
pp. 147–186
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Extrapolation in (N − Z)/A with reduced uncertainties compared to CHUQ

(p, n)IAS for Zr isotopes
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We’ve begun propagating uncertainties to Hauser-Feshbach calculations

BAND Fellow, Samuel Sullivan
(PhD student at University of Surrey)

Lane-consistent potential calibrated to
dσel/dΩ and Ay for (n, n), (p, p) along
isotopic chains from 10-50 MeV using
rxmc

propagation to compound channels
using TALYS
covariances can be obtained empirically
from posterior predictive
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Summary and outlook

ELM coming soon!
need both (p, n) constraints and independent isoscalar and isovector geometries
developed open-source software ecosystem for Bayesian inference in nuclear reactions

Future work:
systematic experimental error, model discrepancy, errors in angle
handle non-identifiability of spin-orbit potential, geometric parameters
dispersion relation and structure constraints
UQ of nuclear level density
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Thank you for your time!

In collaboration with Filomena Nunes and the Few Body Reactions Group
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rxmc: building and composing likelihood models

LikelihoodModel

parameters (θ)

log_posterior(Observation, ~ym, θ)

UnknownNoiseLikelihood

log_posterior(Observation, ~ym, σ)

UnknownModelErrorLikelihood

log_posterior(Observation, ~ym, σm)

UnknownNormalizationLikelihood

log_posterior(Observation, ~ym, N )

UnknownNormalizationErrLikelihood

log_posterior(Observation, ~ym, σN )

StudentTLikelihood

log_posterior(Observation, ~ym, ν)

CorrelatedDiscrepancyLikelihood

log_posterior(Observation, ~ym, amplitude, length_scale)
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Empirical coverage
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“Cold” posterior
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“Cold” posterior: over-emphasis on the prior
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“Cold” posterior: over-emphasis on the prior
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Predictive posteriors and empirical coverage
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Multimodality, parameter ambiguity in radii

Vt = 12.10+0.45
0.44

1.2
0

1.3
5

1.5
0

1.6
5

r 0

r0 = 1.19+0.01
0.01

0.7
5

0.5
0

0.2
5

0.0
0

0.2
5

r(0
)

0

r(0)
0  = 0.03+0.03

0.06

0.6
6

0.7
2

0.7
8

0.8
4

a 0

a0 = 0.68+0.03
0.01

0.4

0.8

1.2

1.6

r 1

r1 = 0.99+0.17
0.05

0.6

0.0

0.6

1.2

1.8

r(0
)

1

r(0)
1  = 1.54+0.22

0.82

0.4

0.8

1.2

1.6

a 1

a1 = 0.71+0.06
0.06

15

30

45

60

W
st

Wst = 32.28+12.37
16.74

1.0
0

1.2
5

1.5
0

1.7
5

r s
o

rso = 1.09+0.22
0.08

8 16 24 32

Vt

1.8

1.2

0.6

0.0

0.6

r(0
)

so

1.2
0

1.3
5

1.5
0

1.6
5

r0

0.7
5

0.5
0

0.2
5

0.0
0

0.2
5

r(0)
0

0.6
6

0.7
2

0.7
8

0.8
4

a0

0.4 0.8 1.2 1.6

r1

0.6 0.0 0.6 1.2 1.8

r(0)
1

0.4 0.8 1.2 1.6

a1

15 30 45 60

Wst

1.0
0

1.2
5

1.5
0

1.7
5

rso

1.8 1.2 0.6 0.0 0.6

r(0)
so

r(0)
so  = 0.10+0.33

0.99

posterior
prior

beyerk@frib.msu.edu CSWEG 2025 28 / 38



Multimodality, parameter ambiguity in radii
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Handling multiple constraints with systematic errors

Each synthetic data set j has it’s own
systematic error σj

treat data normalization as free parameter:
yi∈Dj = ζ(xi) + εi = ρjη(xi;α) + δ(xi)

explicitly marginalize over ρj ∼ N (1, σj),
leads to model-dependent covariance matrix:
Σlm = δlmσ2

stat,l + σ2
j η(xl;α)η(xm;α).

Note: doing this wrong leads to Peelle’s
Pertinent Puzzle 9!

Adapted from open source demos in https://github.com/beykyle/rxmc

9Barlow 2021, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 987, p. 164864; D’Agostini 1994, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 346(1-2), pp. 306–311; Neudecker et al. 2012, Nuclear science and engineering 170(1), pp. 54–60
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Each synthetic data set j has it’s own
systematic error σj

treat data normalization as free parameter:
yi∈Dj = ζ(xi) + εi = ρjη(xi;α) + δ(xi)

explicitly marginalize over ρj ∼ N (1, σj),
leads to model-dependent covariance matrix:
Σlm = δlmσ2

stat,l + σ2
j η(xl;α)η(xm;α).

Note: doing this wrong leads to Peelle’s
Pertinent Puzzle 9!
compare to ignoring systemtic error

Adapted from open source demos in https://github.com/beykyle/rxmc

9Barlow 2021, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
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beyerk@frib.msu.edu CSWEG 2025 30 / 38

https://github.com/beykyle/rxmc


Handling multiple constraints with systematic errors

Each synthetic data set j has it’s own
systematic error σj

treat data normalization as free parameter:
yi∈Dj = ζ(xi) + εi = ρjη(xi;α) + δ(xi)

explicitly marginalize over ρj ∼ N (1, σj),
leads to model-dependent covariance matrix:
Σlm = δlmσ2

stat,l + σ2
j η(xl;α)η(xm;α).

Note: doing this wrong leads to Peelle’s
Pertinent Puzzle 9!
advantage of keeping ρj free is the ability to
renormalize experimental data to be
consistent with each other

Adapted from open source demos in https://github.com/beykyle/rxmc

9Barlow 2021, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 987, p. 164864; D’Agostini 1994, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 346(1-2), pp. 306–311; Neudecker et al. 2012, Nuclear science and engineering 170(1), pp. 54–60
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rxmc demos and tutorials: Peelle’s Pertinent Puzzle

statistical only:

Σij = δijσ
2
i

fit (fractional) statistical error:

Σij = δij(η yM(xi;α))
2

full covariance:

Σij = δijσ
2
i + σ2

NyM(xi;α)yM(xj ;α)

full covariance, wrong:

Σij = δijσ
2
i + σ2

Nyiyj
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x-offset constraints with systematic normalization error
stat only
stat fit
full covariance
full covariance, wrong
truth
experiment 1
experiment 2

https://github.com/beykyle/rxmc/blob/main/
examples/systematic_err_demo.ipynb
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rxmc demos and tutorials: comparison of sampling algorithms for fitting an optical potential

https://github.com/beykyle/rxmc/blob/main/examples/fitting_an_optical_potential.ipynb
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Extra slides: ELM physical model

U(r, E,A,Z) = U0(r, E,A)± N − Z

N + Z
U1(r, E,A) + VC

U0(r, E,A) = V0(E)f((r −R0(A))/a0) + iW0(E)f((r −Rw(A))/aw)

− 4iawWs,0(E)
d

dr
f((r −Rw(A))/aw) + 2 (σ · `) Vso

1

r

d

dr
f((r −Rso(A))/aso)

U1(r, E,A) = V1(E)f((r −R1(A))/a1)− 4iawWs,1(E)
d

dr
f((r −Rw(A))/aw)

f(x) =
1

1 + exp(x) Ri(A) = ri,0 + ri,AA
1/3 EC = 6Zαh̄c/5RC

V0(1)(E) = V0(1) − α(E − EC)

W (E) = W

/(
1 + exp

(
ηW − (E − EC)

λW

))
Ws,0(1)(E) = Ws,0(1)

/(
1 + exp

(
(E − EC)− ηs

λs

))
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Extra slides: ELM statistical model and calibration

Goodman-Weare 10 affine-invariante stretch move sampler from emcee11, using default step-size (a = 2)
256 chains, 200,000 samples each
massively parallel calibration requires ∼ 3 days to run
priors taken from CHUQ posterior
priors for r01, rA1 and a1 taken from Danielewicz12

each data sector re-scaled to be equally important
fractional uncertainties reasonably consistent with CHUQ:
dσ(n,n)

dΩ
: 35%, dσ(p,p)

dΩ
: 44%, A(n,n)

y : 140%, A(p,p)
y : 155%, dσ(p,n)

dΩ
: 55%

10Goodman and Weare 2010, Communications in applied mathematics and computational science 5(1), pp. 65–80
11Foreman-Mackey et al. 2013, PASP 125(925), p. 306
12Danielewicz et al. 2017, Nuclear Physics A 958, pp. 147–186

beyerk@frib.msu.edu CSWEG 2025 34 / 38



Charge exchange to isobaric analog states

Reprinted from13

13SD Schery et al. (1974). “The (p, n) reaction to the isobaric analogue state of high-Z elements at 25.8 MeV”. In: Nuclear Physics A
234.1, pp. 109–129.
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Charge exchange to isobaric analog states

Reprinted from14

14Michael A Bentley (2022). “Excited States in Isobaric Multiplets—Experimental Advances and the Shell-Model Approach”. In: Physics
4.3, pp. 995–1011. issn: 2624-8174. doi: 10.3390/physics4030066. url: https://www.mdpi.com/2624-8174/4/3/66.
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jitR demos and tutorials: built-in optical potentials
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https://github.com/beykyle/jitr/blob/main/examples/
notebooks/builtin_omps_uq.ipynb
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Curating a body of evidence

https://github.com/beykyle/exfor_tools
reproducible curation
systematically improvable with new
evaluations
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