

Inference of Photonuclear Theory Parameter Covariances Using ML-Enabled MCMC

Noah A.W. Walton, Ajeeta Khatiwada,
Toshihiko Kawano

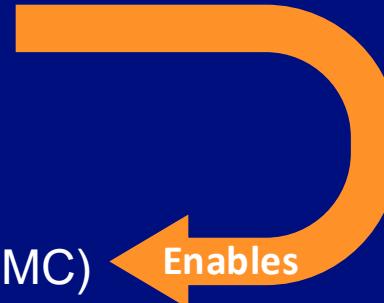
1/8/2026

LA-UR-25-30648

Outline

1. Global photoreaction emulator

1. Deep neural network design
2. Performance tests

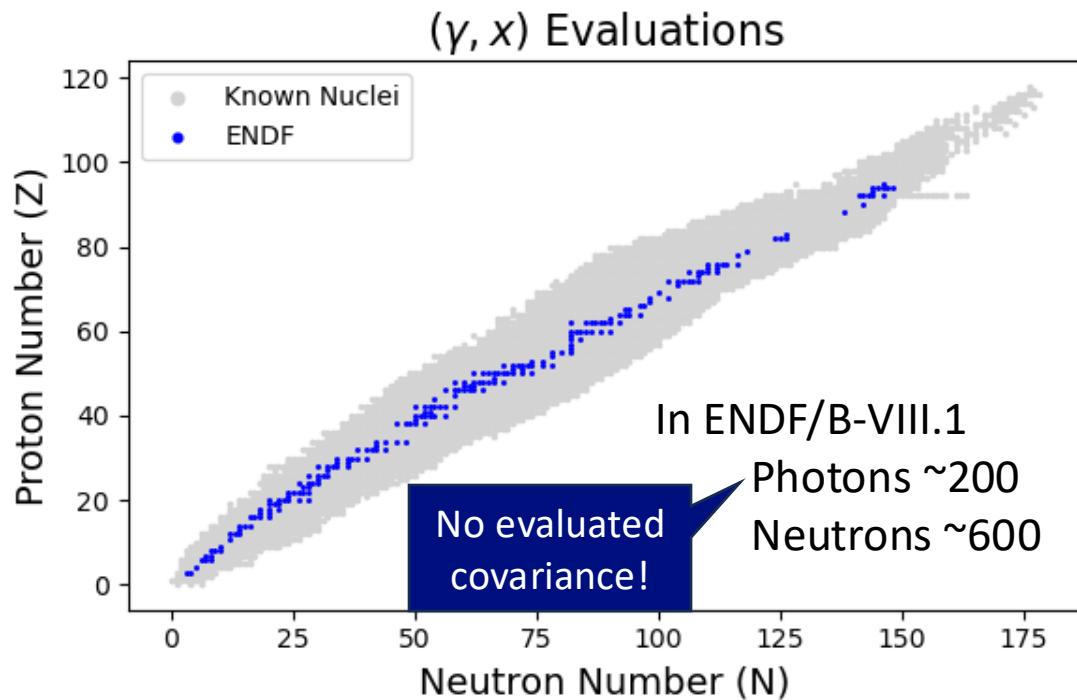


2. Enhanced Bayesian Evaluation (MCMC)

1. Avoid assumptions in GLS / Kalman
2. Additional capabilities to handle data limitations

WHY: photonuclear data are sparse

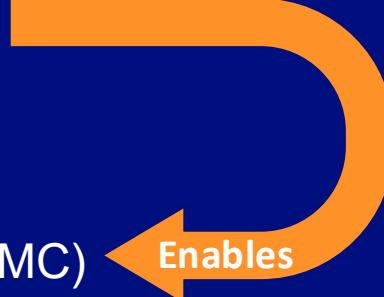
- Experimental data are less abundant and less reliable
 - Traditional evaluation approaches break down
 - Composite observables (ratios or yield) are often more reliable
- How can we use ML to get better evaluated covariance?
 - Emulate the theory model
 - Plug into MCMC framework



Outline

1. Global photoreaction emulator
 1. Deep neural network design
 2. Performance tests

2. Enhanced Bayesian Evaluation (MCMC)
 1. Avoid assumptions in GLS / Kalman
 2. Additional capabilities to handle data limitations



Enables

Deep Neural Network Emulator for CoH3

- Mapping $X \mapsto \sigma_{ZA}(\gamma, c)(E_\gamma)$

- Features $X \equiv [\mathcal{N}, \Gamma, \mathcal{F}, \beta, \Lambda]$

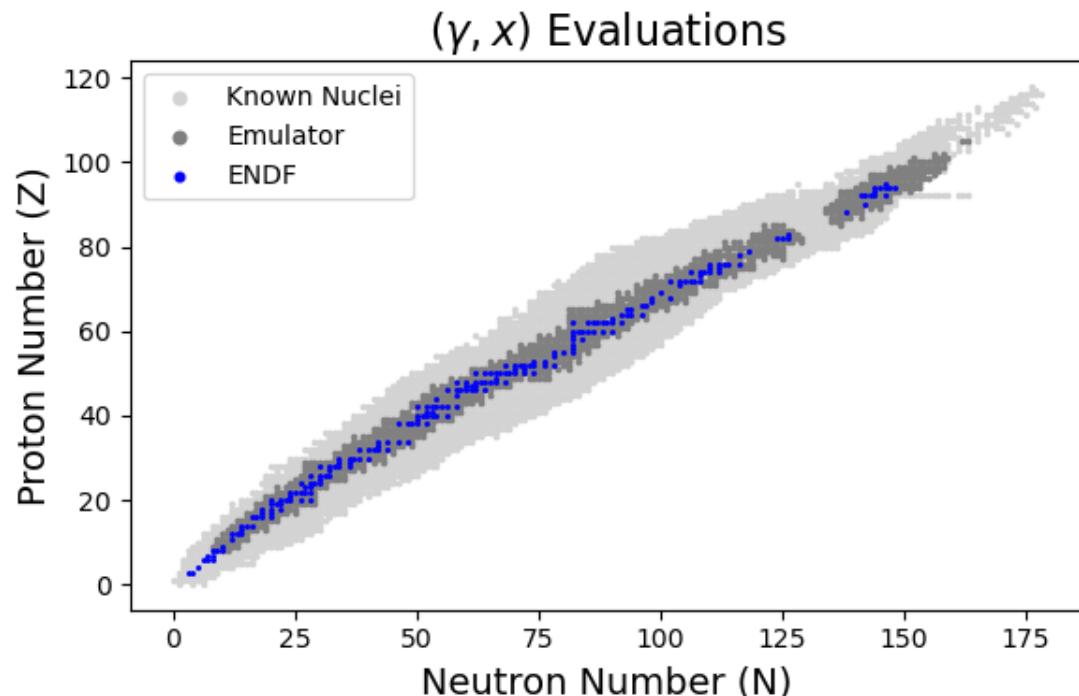
$\mathcal{N}_i \subset \mathbb{R}^{p_N}$ are fundamental nuclear parameters

$\Gamma_i \subset \mathbb{R}^{p_\Gamma}$ are GDR parameters

$\mathcal{F}_i \subset \mathbb{R}^{p_F}$ are fission-barrier descriptors (if applicable)

$\beta_i \subset \mathbb{R}^{p_\beta}$ are deformation parameters

$\Lambda_i \subset \mathbb{R}^{p_\Lambda}$ are level density parameters.



Deep Neural Network Emulator for CoH3

- Mapping $X \mapsto \sigma_{ZA}(\gamma, c)(E_\gamma)$
- Features $X \equiv [\mathcal{N}, \Gamma, \mathcal{F}, \beta, \Lambda]$

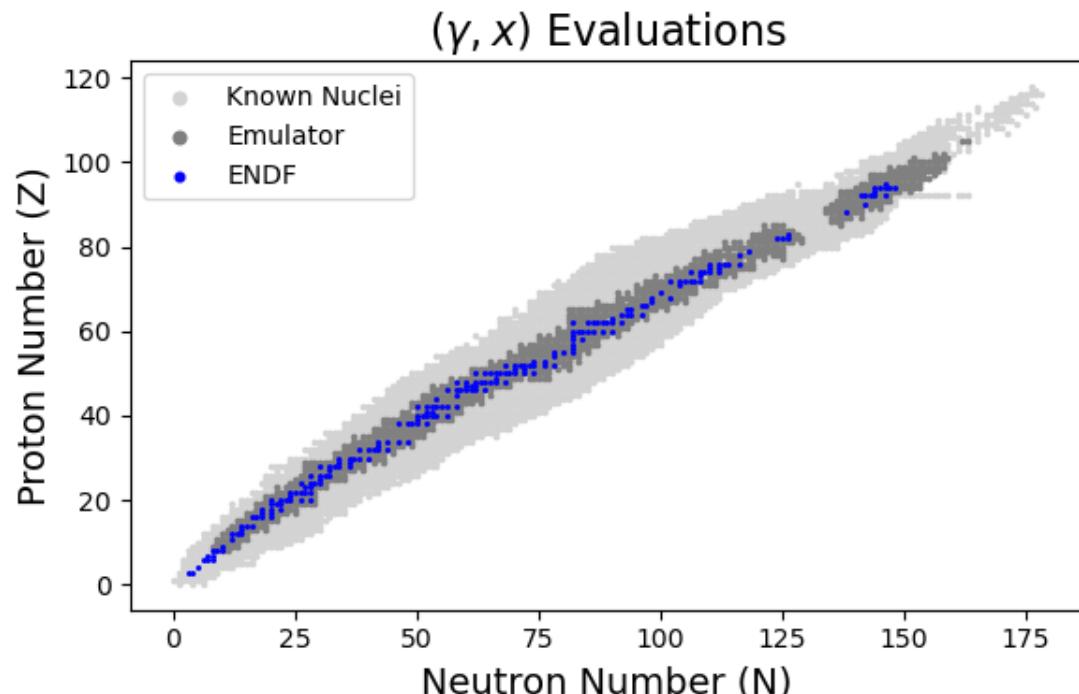
$\mathcal{N}_i \subset \mathbb{R}^{p_N}$ are fundamental nuclear parameters

$\Gamma_i \subset \mathbb{R}^{p_\Gamma}$ are GDR parameters

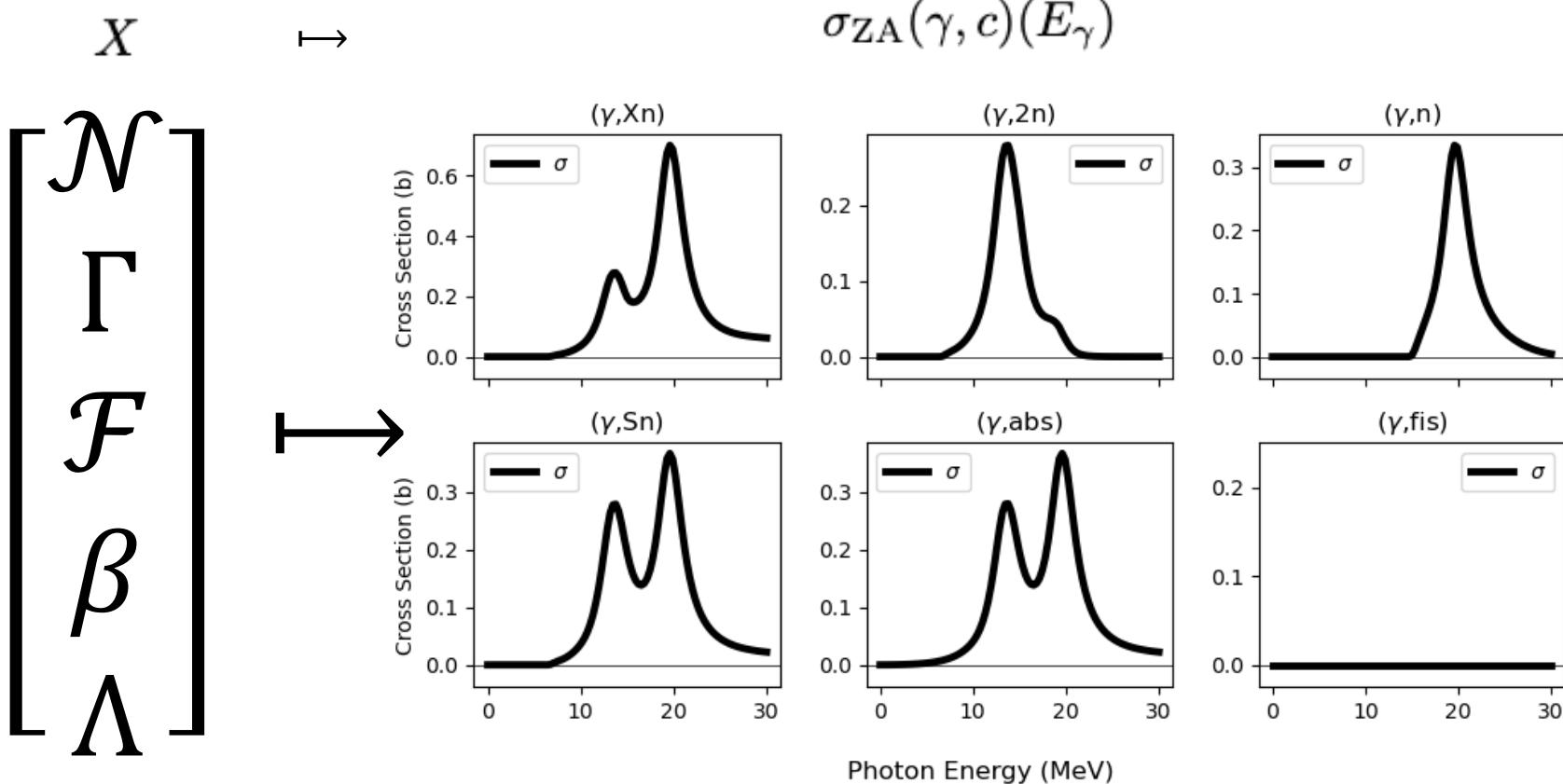
$\mathcal{F}_i \subset \mathbb{R}^{p_F}$ are fission-barrier descriptors (if applicable)

$\beta_i \subset \mathbb{R}^{p_\beta}$ are deformation parameters

$\Lambda_i \subset \mathbb{R}^{p_\Lambda}$ are level density parameters.

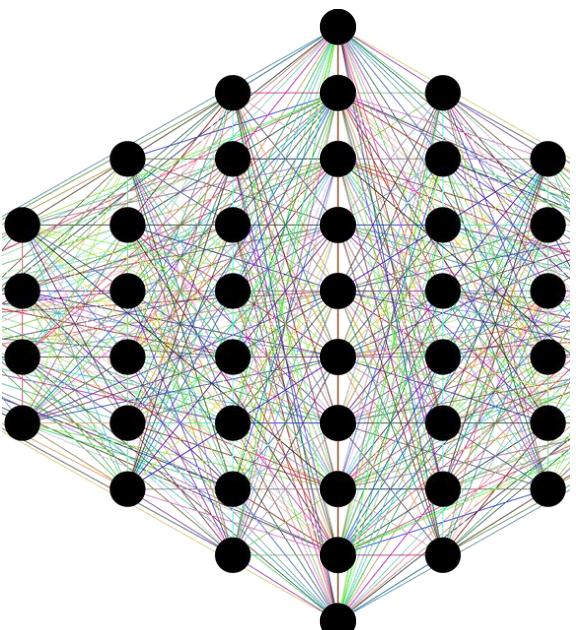
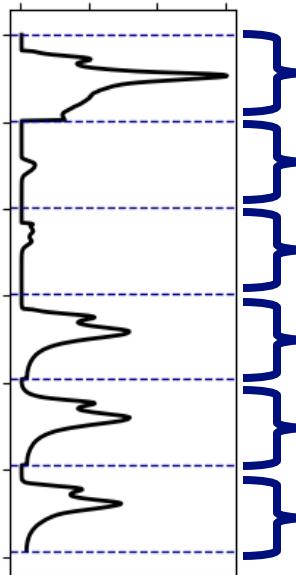


Deep Neural Network Emulator for CoH3



Vectored outputs allow us to apply physics constraints across energies and channels

\mathcal{N}
 Γ
 \mathcal{F}
 β
 Λ



(γ, Xn)
 $(\gamma, 2n)$
 $(\gamma, 1n)$
 (γ, Sn)
 (γ, Abs)
 (γ, f)

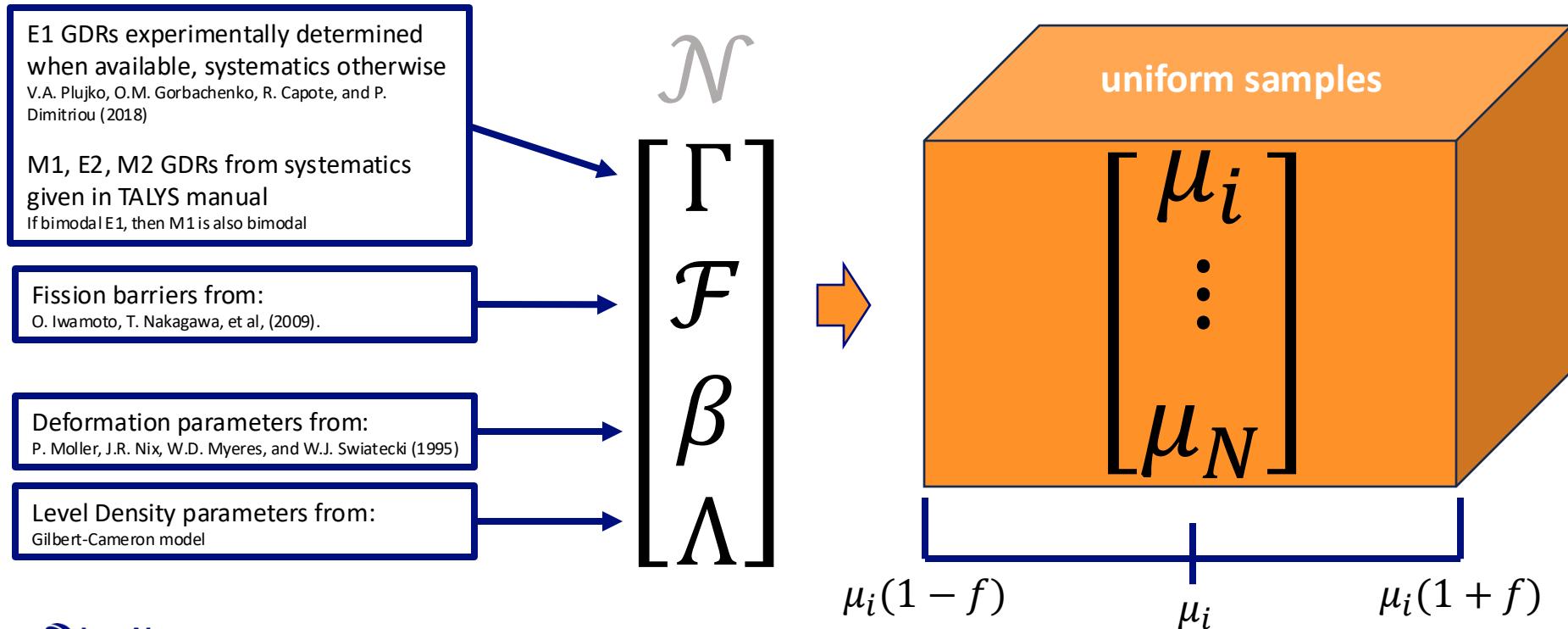
$$(\gamma, 1n)_i \geq + 2(\gamma, 2n)_i + (\gamma, f)_i$$

$$0 \leq \sigma_{i \text{ pred}} \forall i$$

$$\left[\frac{\partial \sigma_i}{\partial E_i} \right]_{\text{true}} - \left[\frac{\partial \sigma_i}{\partial E_i} \right]_{\text{pred}}$$

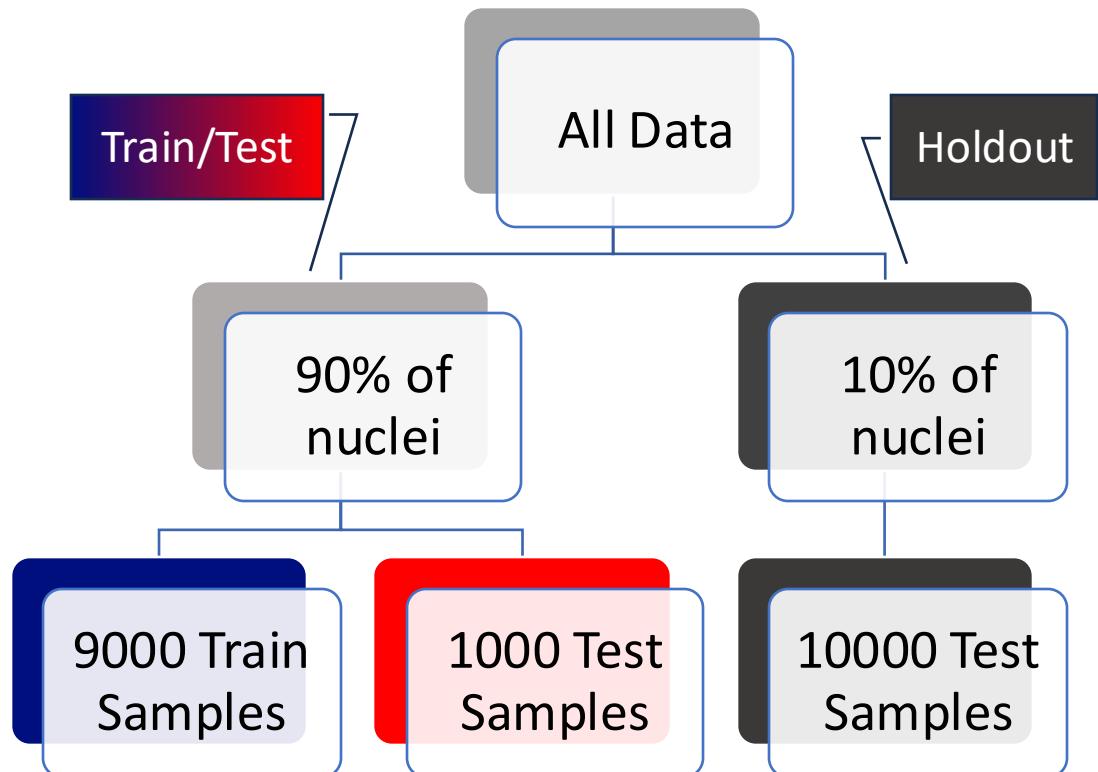
Training Data Generation:

- Generate global prior vector
- Sample phase space around prior w/ Latin Hypercube



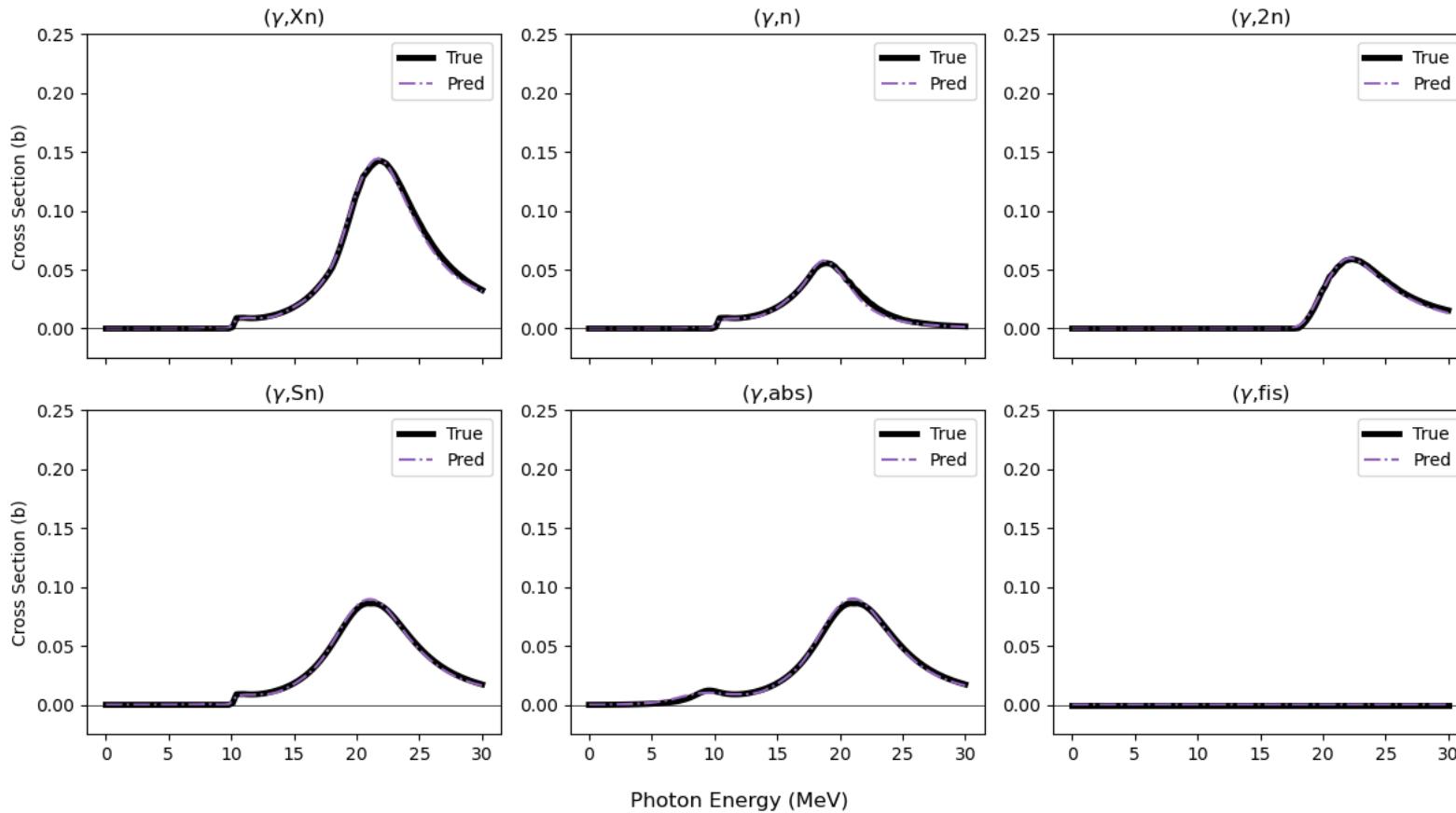
Training, testing, and holdout sets

- Network never sees holdout nuclei
- Train and test samples are evenly balanced across nuclei



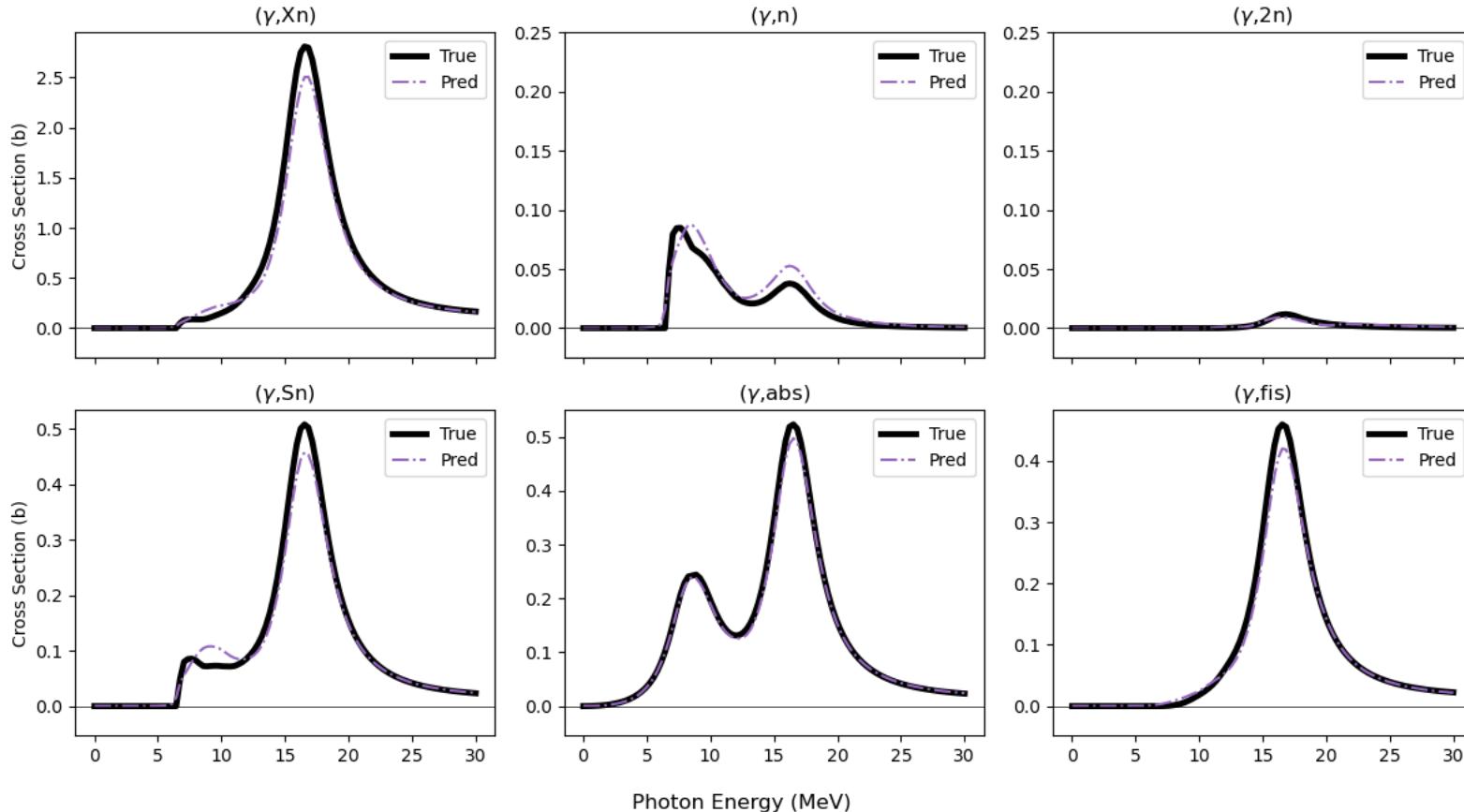
Median performance overall (49th quantile)

Test Isotope: ('K41', 3581.0)



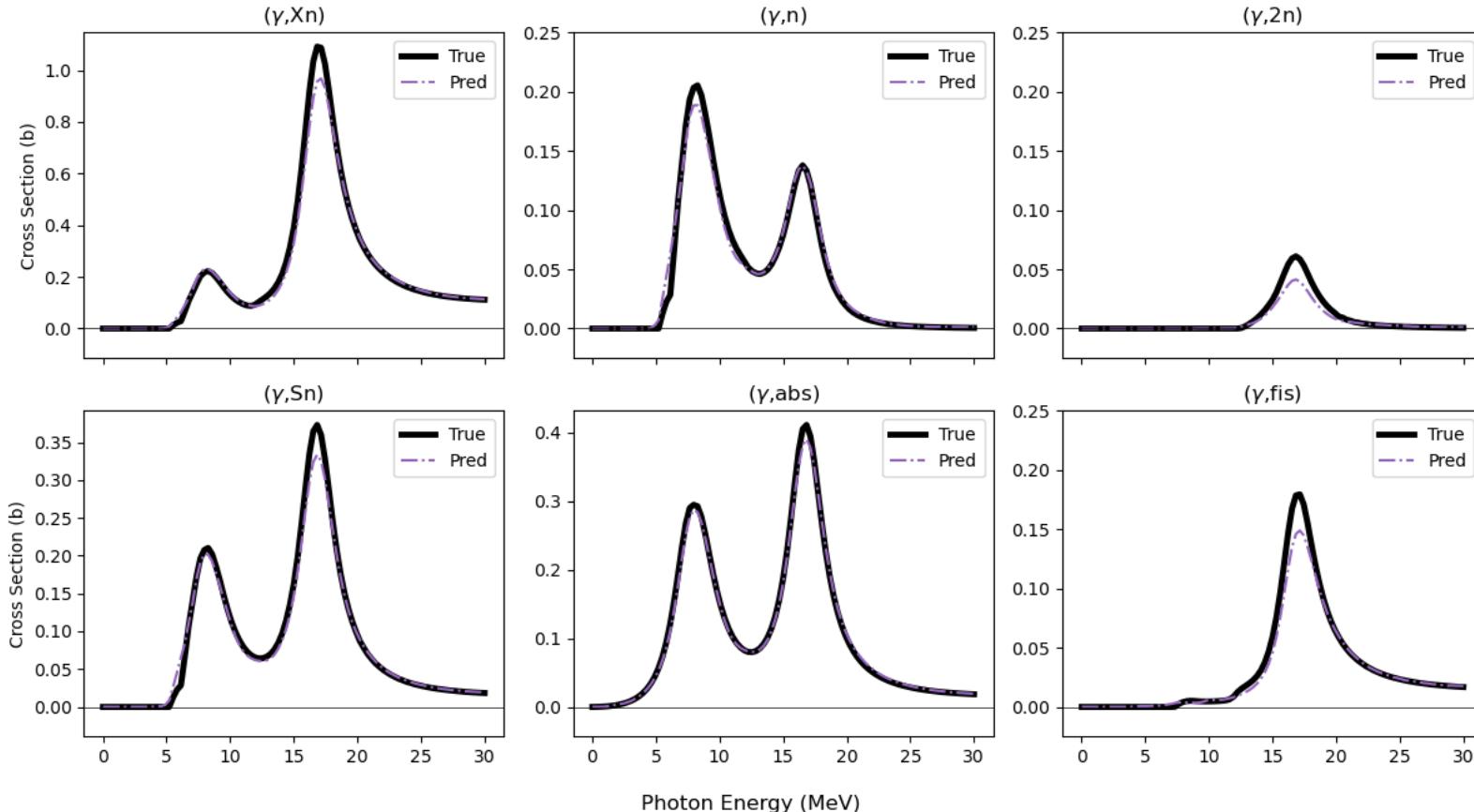
Worst performance overall (99th quantile)

Test Isotope: ('Cm248', 7901.0)



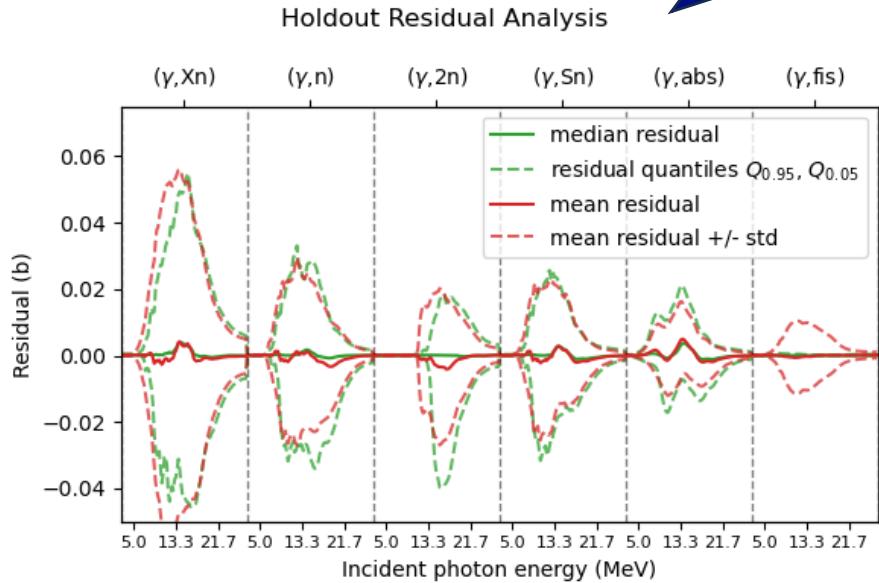
Median performance for U-235 / Pu-239

Test Isotope: ('U235', 4821.0)



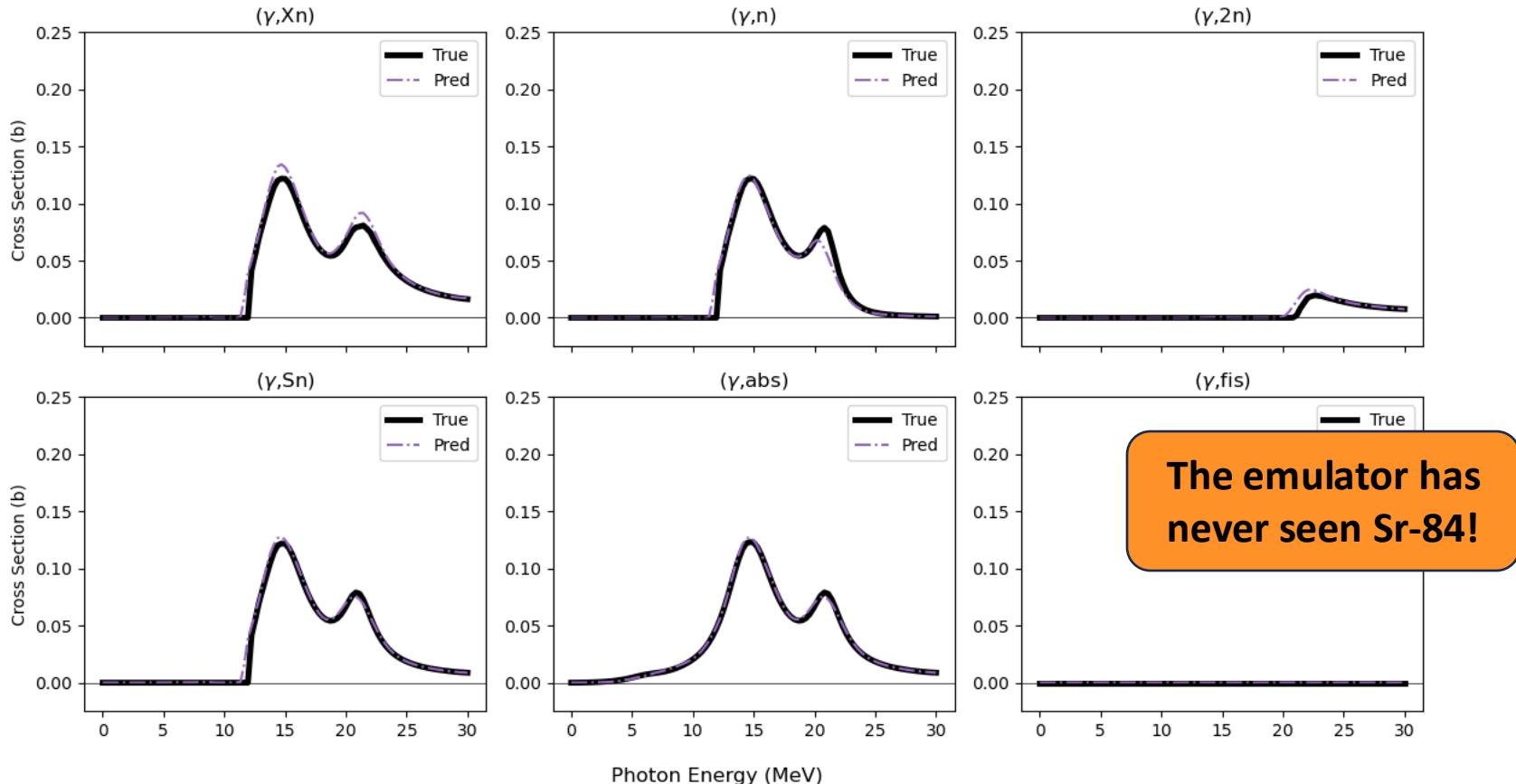
Residual analysis shows unbiased photo-reaction predictions on test set

Comparable performance
on holdout set



Median performance in holdout (48th quantile)

Test Isotope: ('Sr84', 4789.0)



Emulator makes traditional Bayesian evaluation faster, enabling better posteriors

2.5 million X speedup

- Speed & ease of use
 - Prior covariance matrix converges with ~5k samples
 - Reproducibility across team
- Plug & play with fancy Bayesian Monte Carlo algorithms
 - More flexible modelling
 - Better tools for physics interpretations

Model	CoH3	Emulator
CPU (s) / 1 sample	153.90	6.33e-05
CPU (s) / 5k samples	7.7e+05	0.32

```
from tensorflow import load_model  
  
loaded_model = load_model('path/to/my/saved_emulator.keras')  
  
pred = loaded_model(X)  
pred = inverse_transform(pred)
```

Keras/TensorFlow model is differentiable, can be added to graph for Hamiltonian Monte Carlo

Outline

1. Global photoreaction emulator

1. Deep neural network design
2. Performance tests

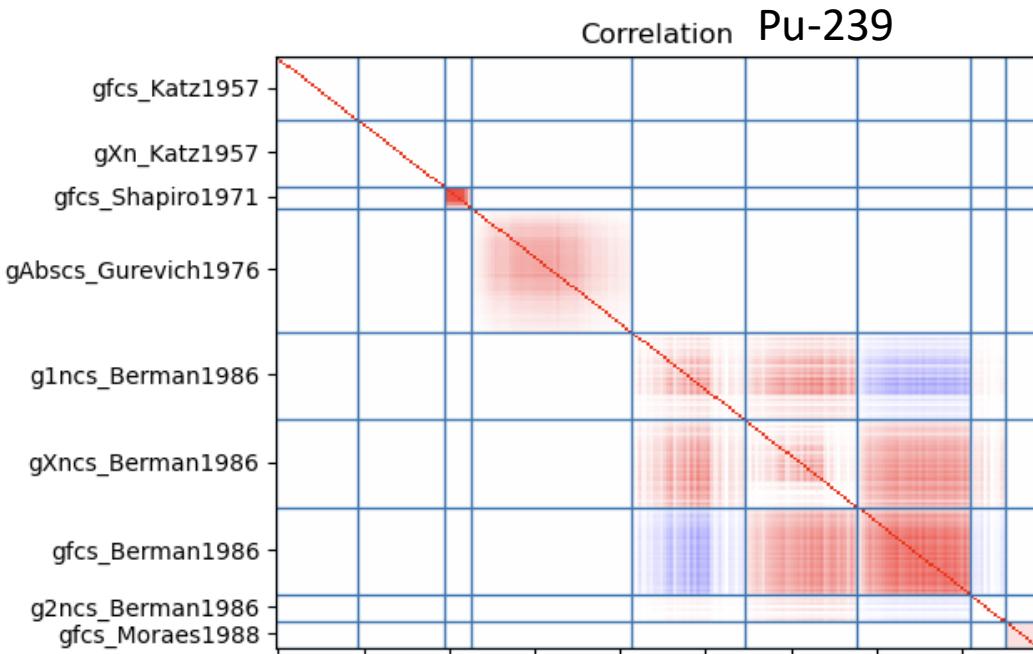
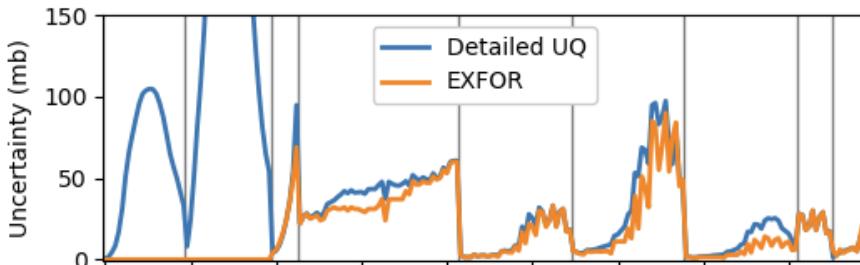
2. Enhanced Bayesian Evaluation (MCMC)

1. Avoid assumptions in GLS / Kalman
2. Additional capabilities to handle data limitations

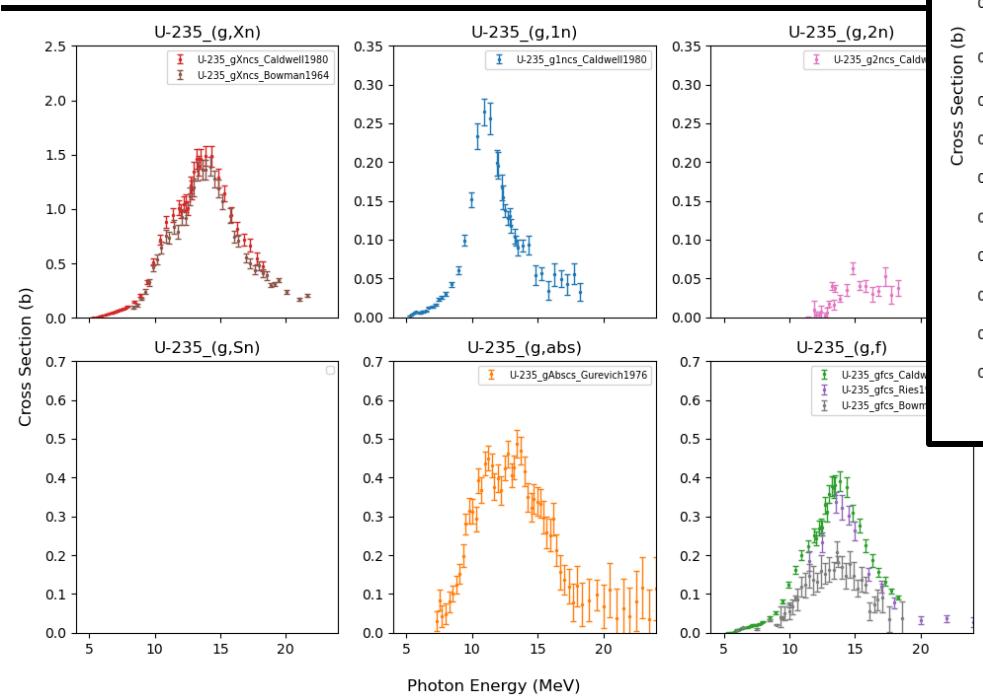
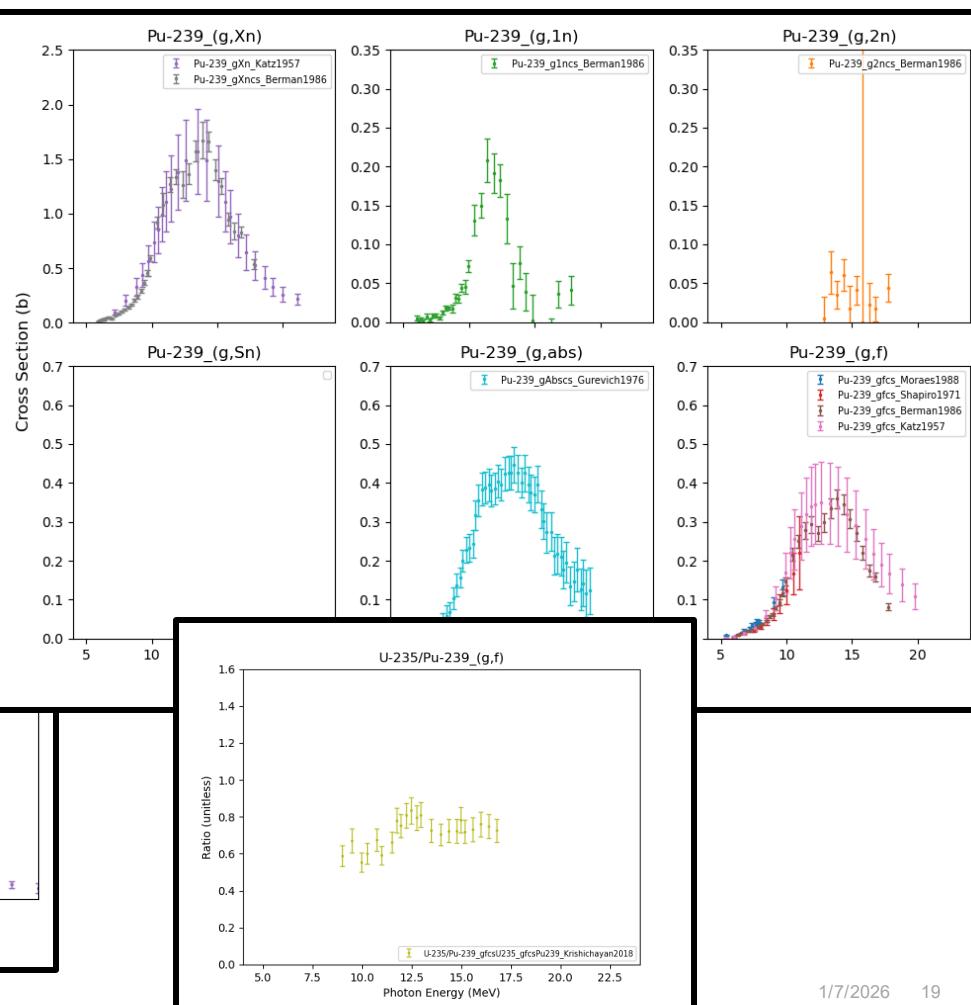
Enables

Preliminary experimental UQ for demonstration

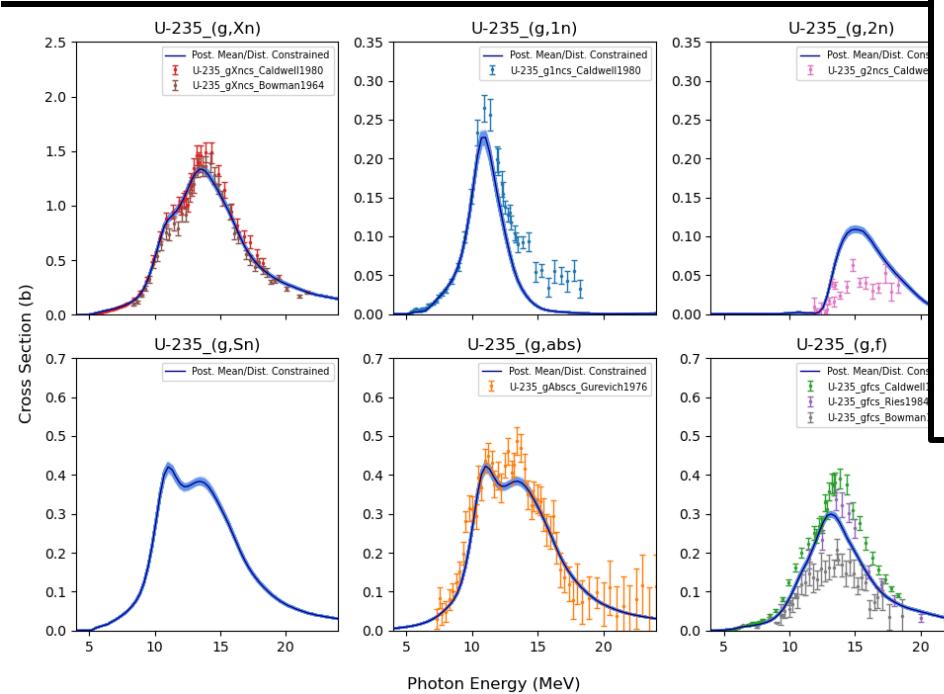
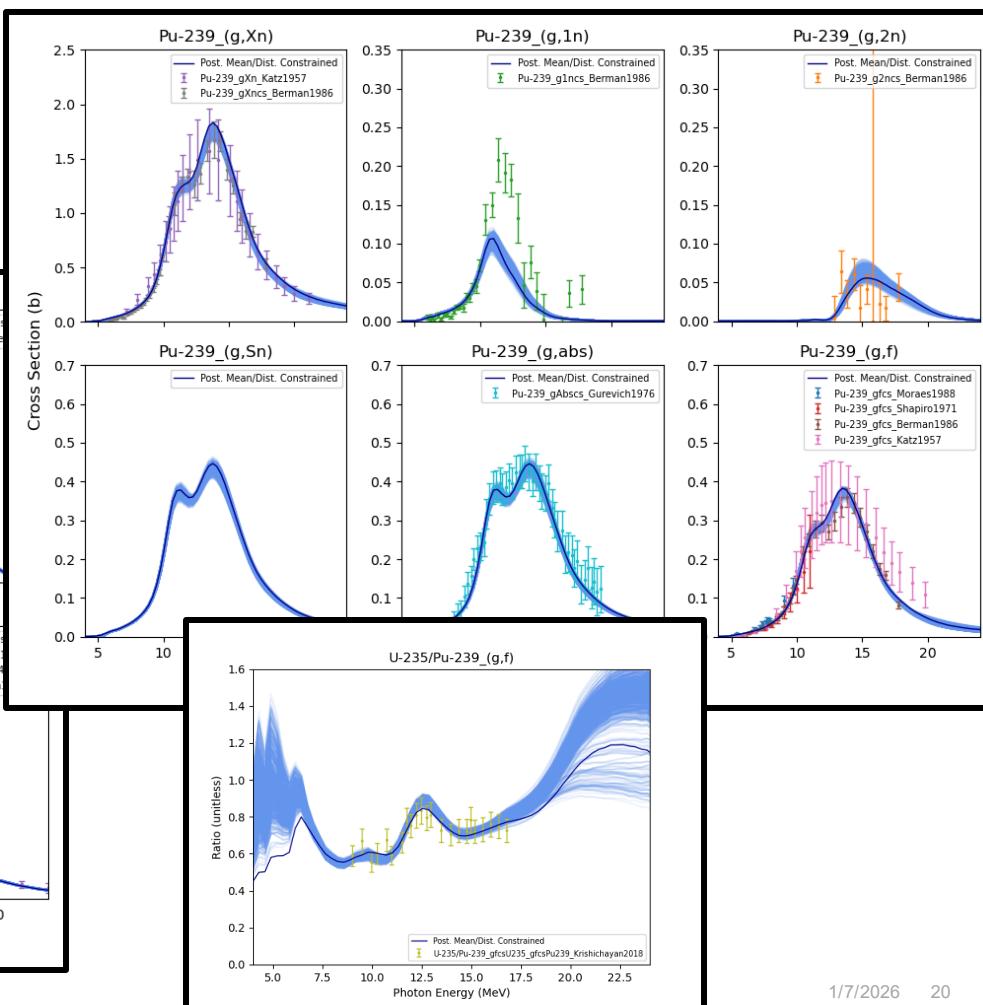
- Photo-reaction data
 - Detailed look at Pu-239
 - Started U-235
 - Planned U-238
- Fission ratio data exist between all three of these nuclei



MCMC framework allows clean simultaneous evaluation across channels and isotopes



MCMC framework give posterior parameter samples – very flexible output

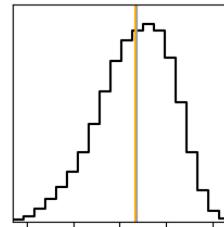


MCMC gives parameter posteriors

- Can put back into CoH3 to get all physics data
- Some parameters have bimodality
 - Important physics interpretation
- Prior and posterior are far from one another

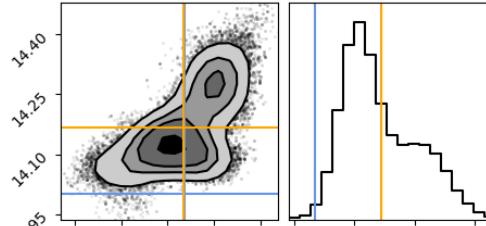
E1: E_1

$11.07^{+0.06}_{-0.07}$



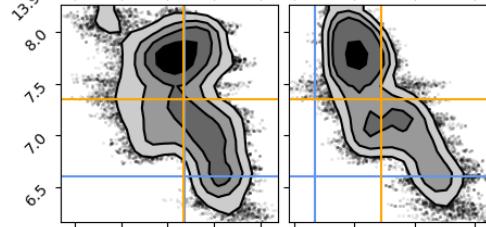
E1: E_2

$14.14^{+0.14}_{-0.06}$



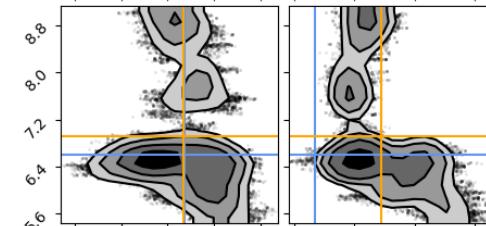
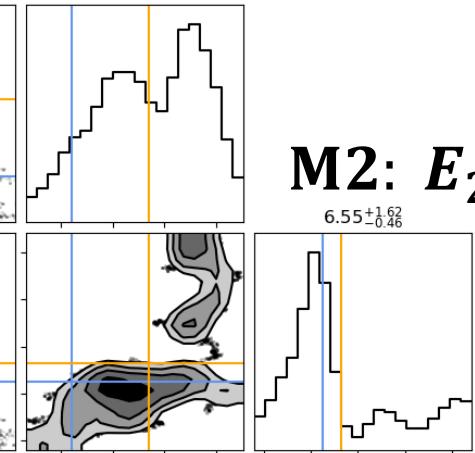
M1: E_1

$7.36^{+0.51}_{-0.54}$



M2: E_2

$6.55^{+1.62}_{-0.46}$



Conclusions

1. Global photoreaction emulator

1. Deep neural network design
2. Performance

- Fast, accurate, easy to use
- Performance on holdout nuclei is interesting... alludes to future work

2. Enhanced Bayesian Evaluation (MCMC)

1. Avoid assumptions in GLS / Kalman
2. Additional capabilities to handle data limitations

- Main result so far is to enable MCMC evaluation
 - No assumptions (linearity/Gaussianity)
 - More complex analysis
- Still rigorous/interpretable... just made feasible with ML

Acknowledgements

Research reported in this presentation was in part supported by the U.S. Department of Energy LDRD program at Los Alamos National Laboratory under project number(s) 20240878PRD4, 20250691ECR

