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Outline

1.Global photoreaction emulator

1. Deep neural network design
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2.Enhanced Bayesian Evaluation (MCMC)

1. Avoid assumptions in GLS / Kalman

2. Additional capabilities to 
handle data limitations

Enables
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WHY: photonuclear data are sparse

• Experimental data are less 

abundant and less reliable

− Traditional evaluation 
approaches break down

− Composite observables (ratios 
or yield) are often more reliable 

• How can we use ML to get 
better evaluated covariance?

− Emulate the theory model

− Plug into MCMC framework 

In ENDF/B-VIII.1
Photons ~200
Neutrons ~600No evaluated 

covariance!
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• Mapping

• Features

Deep Neural Network Emulator for CoH3
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• Mapping

• Features
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Deep Neural Network Emulator for CoH3
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Vectored outputs allow us to apply physics constraints 

across energies and channels

(𝛾, 𝑋𝑛)
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Training Data Generation:

 - Generate global prior vector

 - Sample phase space around prior w/ Latin Hypercube

Deformation parameters from:
P. Moller, J.R. Nix, W.D. Myeres, and W.J. Swiatecki (1995)

Fission barriers from:
O. Iwamoto, T. Nakagawa, et al, (2009). 

E1 GDRs experimentally determined 
when available, systematics otherwise
V.A. Plujko, O.M. Gorbachenko, R. Capote, and P. 
Dimitriou (2018)

M1, E2, M2 GDRs from systematics 
given in TALYS manual
If bimodal E1, then M1 is also bimodal

𝜇𝑖

⋮
𝜇𝑁

𝜇𝑖(1 + 𝑓)𝜇𝑖(1 − 𝑓) 𝜇𝑖

Γ
ℱ
𝛽
Λ

 

uniform samples

Level Density parameters from:
Gilbert-Cameron model 

𝒩
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Training, testing, and holdout sets

• Network never sees holdout 

nuclei

• Train and test samples are 

evenly balanced across 
nuclei

All Data

90% of 
nuclei

9000 Train 
Samples

1000 Test 
Samples

10% of 
nuclei

10000 Test 
Samples

Train/Test Holdout
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Median performance overall (49th quantile)
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Worst performance overall (99th quantile)



131/7/2026

Median performance for U-235 / Pu-239 
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Residual analysis shows unbiased photo-reaction 

predictions on test set Comparable performance 
on holdout set
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Median performance in holdout (48th quantile)

The emulator has 
never seen Sr-84!
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Emulator makes traditional Bayesian evaluation 

faster, enabling better posteriors

• Speed & ease of use

− Prior covariance matrix converges 
with ~5k samples

− Reproducibility across team

• Plug & play with fancy Bayesian 

Monte Carlo algorithms

− More flexible modelling 

− Better tools for physics 
interpretations

Model CoH3 Emulator

CPU (s) / 1 sample 153.90 6.33e-05

CPU (s) / 5k samples 7.7e+05 0.32

2.5 million X 
speedup

Keras/TensorFlow model is 
differentiable, can be added to graph 

for Hamiltonian Monte Carlo  



171/7/2026

Outline

1.Global photoreaction emulator

1. Deep neural network design

2. Performance tests

2.Enhanced Bayesian Evaluation (MCMC)

1. Avoid assumptions in GLS / Kalman

2. Additional capabilities to 
handle data limitations

Enables



181/7/2026

• Photo-reaction data

− Detailed look at Pu-239 

− Started U-235

− Planned U-238

• Fission ratio data exist between 
all three of these nuclei 

Preliminary experimental 

UQ for demonstration

Pu-239
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MCMC framework allows clean 

simultaneous evaluation across 

channels and isotopes
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MCMC framework give posterior 

parameter samples – very flexible 

output
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• Can put back into CoH3 to get all 

physics data

• Some parameters have bimodality

− Important physics interpretation

• Prior and posterior are far from 

one another

𝐄𝟏:  𝑬𝟐

𝐄𝟏:  𝑬𝟏

MCMC gives parameter 

posteriors

𝐌𝟐:  𝑬𝟐

𝐌𝟏:  𝑬𝟏
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Conclusions

1.Global photoreaction emulator

1. Deep neural network design

2. Performance

2.Enhanced Bayesian Evaluation (MCMC)

1. Avoid assumptions in GLS / Kalman

2. Additional capabilities to 
handle data limitations

• Fast, accurate, easy to use
• Performance on holdout nuclei 

is interesting… alludes to future 
work

• Main result so far is to enable 
MCMC evaluation

• No assumptions 
(linearity/Gaussianity)

• More complex analysis 
• Still rigorous/interpretable… just 

made feasible with ML
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