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Motivation

4 )
Advanced reactors
« Gained interest to meet global energy demands
* Increase in deployment expected in the near to mid future
« Significantly different from well-studied LWRs: different fuel forms,
coolants, enrichments (e.g., HALEU), elevated burnups and temperatures
\ y
( ~\ Pebble-bed HTGR SFR Pebble-bed FHR
Nuclear data
 Limited experimental data increases reliance on mod&sim
* Impact of uncertainties in nuclear data on mod&sim must be assessed g;M'
 Reactivity: Several assessments were conducted % 03,
» Fuel inventory: Very few studies available ) '
E 0.21
M 1: ) 8
This work :
* Propagate cross section and fission yield uncertainties to the fuel z
inventory during operation and spent fuel inventory of a fluoride salt- -
cooled high-temperature pebble-bed reactor (pebble-bed FHR) 103 10-2 10-1 16° 10! 102 10° 10° 10° 10° 107
« Identify key contributors to resulting uncertainties Energy [eV]
\_ y Neutron spectrum: advanced reactors vs. LWRs




Application: UC Berkeley FHR Mark |

General characteristics:
« 236 MWth
« 470,000 fuel pebbles + 218,000 graphite pebbles
* FLiBe molten salt coolant, T ~ 873-973 K
« Graphite reflector, T = 873-973 K

3.0cm

Fuel pebbles: v

« TRISO fuel particles at 40% packing fraction FHR fuel pebble
* UCO fuel with 19.9 wt% 235U enrichment, T =~ 1,003 K (4,730 TRISOs)
» Average discharge burnup: 180 GWd/tU
Fuel pebbles
Equilibrium core: Graphite pebbles
* Fuel pebbles at target burnup continuously replaced by fresh Control rod channels

fuel pebbles

« Core contains fuel pebbles at different levels of burnup Inner graphite reflector

» Average conditions in each zone approximately constant: Outer graphite reflector

average inventory / burnup, flux and power profiles, Vessel
temperatures, etc.
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Approach

Fresh fuel pebbles:
1. Spent and equi"brium core fuel inventory; » Core-average fuel composition « Fresh fuel composition

o Not depleted « Depleted
« Application of "SCALE Leap-In method for Cores at
Equilibrium” (SLICE) —

. Depletion of fuel pebbles in representative spectral 2
environment

+ Tool: SCALE/TRITON with KENO-VI and ORIGEN 7\ /

2. Uncertainty and sensitivity analysis: \

« Generate random samples of XS and FPY using
covariance data

« Perform 1,000 calculations using these random samples
« Perform statistical analysis of results
» Tool: SCALE/Sampler

« Importance ranking of cross sections in terms of sensitivity
index R? € [0,1]

Covariance library: ENDF/B-VII.1 or ENDF/B-VIII.1, e

plus BNL-LANL-ORNL (BLO) uncertainty data
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Approach

Fresh fuel pebbles:

Core-average fuel composition * Fresh fuel composition
Calculations performed with the SCALE code - Not depleted - Depleted
system and ENDF/B-VII.1 or ENDF/B-VIII.1 data,
plus BNL-LANL-ORNL (BLO) uncertainty data ~z
1. Spent and equilibrium core fuel inventory: 7 SR
« TRITON reactor physics sequence - / ;
« KENO-VI Monte Carlo neutron transport '
* ORIGEN depletion and decay solver

2. Uncertainty and sensitivity analysis:

« Sampler uncertainty and sensitivity analysis
sequence

« |Importance ranking of cross sections in terms
of sensitivity index R? € [0,1]
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Relative uncertainty of spent FHR fuel inventory at discharge

Burnup: 180 GWd/tU
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Cross section uncertainties are major drivers for uncertainties, with few exceptions for Ag’19m, Kr85, Sr%0
Differences between E8.1+BLO and E7.1+BLO are small, mostly below <1% relative difference
Impact of BLO uncertainties for key fission products Sm, Eu, Gd point to important missing covariance data




FHR fuel inventory uncertainties are relevant for different applications

Key absorbers for reactivity
(including burnup-credit)

Burnup: 180 GWd/tU

30.0% -, : Key actinides for reactivity — .
B XS E7.1 + BLO | (including burnup-credit) | Key neutron source in

5 25.0% 1 mam XS E8.1 spent nuclear fuel
1= XS E8.1 + BLO
in
E 20.0% A .- FYE7.1 Key burnup Key long-term decay
2 indicators heat contributors
5 15.0% - | Diffusion through
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Cross section uncertainties are major drivers for uncertainties, with few exceptions for Ag’19m, Kr85, Sr%0
Differences between E8.1+BLO and E7.1+BLO are small, mostly below <1% relative difference
Impact of BLO uncertainties for key fission products Sm, Eu, Gd point to important missing covariance data




Sensitivity analysis reveals missing covariance data influencing
important neutron absorber
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Sensitivity analysis reveals missing and updated covariance data
impacting burnup indicators
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 Uncertainty in Nd-148 concentration is mainly impacted by Nd-147 (n,y)
BUT: Nd-147 (n,y) covariance data is not included in E8.1, only in BLO

« Uncertainty in Cs-137 concentration (0.3%-0.5%) showed small changes between libraries, mainly due to
updates in U-238 (n,y) and fission
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Sensitivity analysis reveals covariance data updates impacting major
actinides U-235 and Pu-239

235U 235U 239Pu 239];)u
1.0 1.0 1.0 1.0
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 Uncertainty in U-235 concentration (0.4%-0.5%) shows only small change between libraries, likely due to

compensating effects from updates of (n,y) and fission in U-235 and Pu-239
 Uncertainty in Pu-239 concentration (1.2%) did not change between libraries; but individual uncertainty

contributions changed, mainly due to updates in U-238 (n,y) and fission
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% Standard deviation

% Standard deviation

Relevant cross section uncertainty updates between E7.1 and ES8.1

U-235 mt=18 fission

U-238 mt=18 fission

Pu-239 mt=18 fission
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Summary and Conclusions

4 Random sampling approach was applied to investigate the impact of uncertainties in cross sections and fission yields on h

uncertainties in FHR spent fuel pebble inventory

Fission product yield uncertainties have minor impact, with few exceptions

Cross section uncertainties cause inventory uncertainties of up to 25% (Sm, Eu,Gd)

Comparison of cross section uncertainties between libraries highlight:
« Impact of covariance data update in ENDF/B-VIII.1: U-235, U-238, and Pu-239 (n,y) and fission
« Missing important covariance data ENDF/B-VIII. 1, as identified through use of BLO data: Nd-148 (n,y) and Eu-155 (n,y)

L Preliminary results presented, with the more comprehensive analysis to follow soon )

( h

Sensitivity analysis identified cross sections that are top contributors of uncertainties in fuel inventory predictions:

« Change in cross section importance points to relevant cross section uncertainty updates between ENDF/B libraries
» Use of BLO-data reveals impact of cross section covariance data missing in ENDF/B-VIII.1

 ldentified top contributing cross sections can inform recommendations for new measurements and evaluations
. J
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SLICE method for PBR equilibrium core generation

Inner iteration:
Calculate zone-average fuel compositions

Fresh fuel composition i Core-average fuel composition N
(depletable pebbles) 9 (non-depletable pebbles) y

Outer iteration:
Calculate k¢, power/flux profiles

]

i Zone-average
fuel composition

Yes Solution No
converged?
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Discretized full core model

Axial zone 1

« Model discretization based on radial and axial
Axial Zone 2 flux profile

Axial zone 3

e Eachregion (i.e. specific radial zone within
specific radial zone) has unique region-
average fuel inventory

Axial zone 4

« Region-average fuel inventory represents
average of fuel pebbles at different passes, at
different burnups in this region

« TRITON calculation of this model results in
Axializone 10 axial/radial flux/power profiles

Radial zone 3
Radial zone 2
Radial zone 1

Example FHR full core with

discretization of fuel region
%OAK RIDGE
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Axial slice surrogate model

%

Example FHR axial slice model
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Core-average fuel composition
Fuel mixture id 100
Not to be depleted

Compositions updated after each inner iteration

Fresh fuel pebble:

Fresh fuel composition

Fuel mixture id 150

Located in innermost radial zone
» To be depleted

Fresh fuel pebble:

Fresh fuel composition

Fuel mixture id 160

Located in middle radial zone
+ To be depleted

Fresh fuel pebble:

Fresh fuel composition

Fuel mixture id 170

Located in outermost radial zone
» To be depleted

TRITON model of axial slice
through center of the core

Depletion of only “depletable”
fuel pebbles to target discharge
burnup

“Core-average’ fuel pebbles
provide representative spectral
conditions

TRITON depletion calculation of
this model results in ORIGEN
cross section libraries (1-group
Cross sections)
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Inventory of a discharged FHR fuel pebble
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Core-average FHR inventory uncertainty at equilibrium operation using
ENDF/B-VII.1

4 — )

N XS B Y

25.0% -

20.0% A

15.0% A

10.0% A

Relative uncertainty
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Uncertainties are approximately the same as for the spent fuel inventory
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Zone inventory uncertainty at equilibrium operation using ENDF/B-VII.1
4 )

Axial zone 1

Spread of uncertainty in the 30 spatial zones
of the core at equilibrium operation

Axial zone 2

Axial zone 3

Axial zone 4
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Significant uncertainty spread for only few nuclides: Eu, Gd, Cm isotopes
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