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SNS Transmission measurements journey: VISION
® Short distance (= 0.28m from sample to
detector). Needs collimation (polymer

B4C or BN 3D printed collimators:

® ORNL VISION transmission setup:

Sample to monitor: 0.287 m
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® For background characterization “double

notch” technique is used (Cadmium,
Indium, and Erbium)
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SNS Transmission measurements journey: VISION

® Measured transmission for Copper at VISION:

, . ® Characterization of background:
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Bump was caused by neutron thermalization from scattering Energy [eV]
in the hydrogen of the collimators. ) . . )
yarog ® Fixed issues seen in a Cd notch due to vertical beam
® |mpromptu cadmium collimator proves the cause of the divergence:
bump.
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SNS Transmission measurements journey: SNAP

® ORNL SNAP transmission : . . .
© S transmission setup ) ® Initial measured transmission for Nickel:
\ 8x107! 1y : .
7x107!
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® Final measured transmission for Copper:

8x107! L

.
" Theoretical Cu 5543 mm transmission
— SNAP exp.trans. WL=1.55 A
—— SNAP exp.trans, WL=d A
- — SNAP exp.trans. WL=6 A

x
7x10 Cu plate VENUS

6x1071
+ Detector efficiency really low, 0.5%.

Transmission

+ Chopped frames. Manual sample changes. Sx10-1

Pros:

+ Long distance. ax10 : T
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SNS Transmission measurements journey: VENUS

+ Sample changer!

+ The detectors (TimePix1 and
TimePix3 with efficiency up
to 70% for thermal neutrons)
combined with the flux! This
enables smaller beam sizes
which rectifies the distance
issues.

+ Flexibility with the setups!

+ Cryostat and furnaces for
temperature dependent
measurements.
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Transmission lessons learned: “traditional” samples

® Vanadium plate: ® High density polyethylene:
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Transmission lessons learned: metallic samples

Transmission
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® Metallic samples are not that great for validation purpose!



Transmission lessons learned: powder samples

. s ® When working with powders or

0.6 N porous materials, small angle
W

L neutron scattering becomes an
issue.

® There are three ways to correct
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for SANS:
024 / - 1. Experimental correction
o1 / N powder tickness theory | 2. Analytical correction

100 100 102 10° 10° 3. Neutronics calculation
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correction
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Transmission lessons learned: SANS experimental correction
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® Methodology proposed by Egelstaff and
Petriw.

® Measure the sample as close as possible
to the detector.

® Select the region of interest (ROI) that
corresponds to the beam size:

| 1047235 (mage 0113t 5121512 pheis: 32t 235H8

® Seems to work well with the samples
which do not have large SANS cross
section.



Transmission lessons learned: SANS experimental correction

107

L L L L
— ~—— Graphite theoretical
0.9 - Graphite near (ROI)
Graphite ROI rebinned

o
®
n
>

Total cross section per atom (barn)
5

Transmission
o
o
i
T

100
Ulu" 107 107 10! 10" 10" R
Energy (eV) 0.4+ /‘W""’" r

. Iron Transmissipn - thickness = 6.74mm

T T T T
103 1072 107t 100 10%
Incident Neutron Energy [eV]

fpor— T i

e But for the samples with the strong SANS
H cross section contribution the method is
r not enough.

Fe powder VENUS |-

Transmission

T T T T T T
1074 1072 1072 107! 10° 10t
Incident Neutron Energy [eV]

%OAK RIDGE

National Laboratory




Transmission lessons learned: SANS experimental correction
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Iron Transmission - thickness = 6.74mm
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® Measure the sample as close as possible

to the detector.

® Select the region of interest (ROI) that
corresponds to the whole detector active
area:

(15 20251003 nun_13095.08_10x1051.4900CooMngsMin 0. & — B X
10433 (mage 0111 5136513 g 3305 2358

® May need to use a smaller beam than
10x10 mm.



Transmission lessons learned: SANS analytical correction

Idea: measured transmission gives a cross section:
Oexp(E) = 0¢(E) + osans(E),

where o, is the intrinsic (no-porosity) model (TSL/NJOY/NCrystal) and osans is
removal by small-angle scattering from pores/powders.

Baseline alignment: interpolate o;,(E) onto the experimental grid using
log E-log o interpolation to preserve Bragg-edge structure on log scales.

SANS term: assume a 2-parameter porous microstructure: porosity P and pore
radius rp (Ry = +/3/5 rp). For elastic SANS, with neutron wavenumber
k = 2w /\(E),

1 2k

= ok . ql(q) dq.

sANS, tot (E)

Detector acceptance (forward cone): neutrons scattered by 0 < Oy,i, remain in
the transmitted beam:

O 1 e
Grmin = 2Ksin< mm) , 0SANSmeas(E) = 55 / q/(q) dag.
2 2 J,

min
® Methodology proposed by Petriw and Nakayama!
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Transmission lessons learned: SANS analytical correction

Total cross section [barn]

Nio_total (NCrystal, 299 K)
VENUS Ni Powder SANS subtracted (exp)
Ni powder 0.3.4.5A (exp)

—— Nipowder 0.3-4.5A (SANS fit)
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Transmission lessons learned: SANS neutronics correction

® |f one does the calculation at far distance, and adjust

® One could correct using neutronics calculation, for the SANS model until transmitted + inscattering
example OpenMC + NCrystal: transmission matches the measured data:
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Transmission lessons learned: SANS neutronics correction
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® The neutronics correction works and is possibly more useful than the analytical one.
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Summary & Conclusions

6x10% ‘ ' ' + EXFO;I 11762002
. . + EXFOR 11355002
® The path to thermal neutron transmission — wtneoretca
4 %10 - Ni Powder (VENUS exp.)
measurements at SNS was long and at o

times tedious, but it proved highly
productive and full of lessons.

2x10!
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® We can do temperature dependent
measurements in an 1-2 hours time frame. 10 s - s e

T
10
Incident Neutron Energy [meV]

® Sample choice is important, but we have

3%10 : : — e
found a way around some of the B
limitations. £
® A lot of cross sections coming from ORNL g
. w102
in the near future.
® Resonance transmission measurements Foxio
possible as well. ax10t .
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VENUS background
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