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Goal: Assess the effect of ENDF/B cross section libraries on nuclides
relevant to inventory validation for spent nuclear fuel applications

Quantify the effect of the nuclear data library on
the C/E nuclide concentration ratio for selected
actinides and fission products

Use as basis measured nuclide concentrations from radiochemical
assay (RCA) experiments performed at ORNL, for four PWR spent

fuel samples with burnups in range 30-70 GWd/MTU

Cross section libraries considered:
ENDF/B-VII.1, ENDF/B-VIII.0, ENDF/B-VIII.1

This is a follow-up on “Germina llas and Jesse Brown, Nuclide Inventory Validation: Effect of Nuclear Data Libraries,
Proc. of Int. Conf. on the Physics of Reactor (PHYSOR 2024), p. 1122-1130, San Francisco, CA (2024).
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https://www.osti.gov/biblio/2397461

Why do we need radiochemical assay (RCA) data ?

Provide a reliable basis = Understand applicability of depletion

for validating calculated = codes and associated nuclear data in
nuclide inventories in lattice and full-core physics safety-related
irradiated nuclear fuel analyses, and in spent fuel transportation,
and other materials storage, and disposal applications

Adress challenges in any area = Impact goes well beyond reactor
where simulating nuclide physics and the nuclear fuel cycle,
transmutation and decay in e.g., isotope production, national
nuclear fuel and other security, and nonproliferation
materials during and post applications

irradiation is critical

Determine bias and Adequately cover the changing fuel
uncertainty in calculated = characteristics space and fill in existing

nuclide inventories gaps - higher enrichments and burnups,
ensure safety and security of soon to be
deployed new reactor technologies
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What are the current RCA data resources ?

SFCOMPO is the largest international

[ SFCompo

database of open experimental assay data
for spent nuclear fuel

F. Michel-Sendis et al, “SFCOMPO-2.0: An OECD NEA database of spent nuclear fuel isotopic
assays, reactor design specifications, and operating data”, Annals of Nuclear Energy, vol. 110 (2017)

https:/doi.org/10.1016/j.anucene.2017.07.022
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» Hosted/maintained by OECD/NEA and managed
by the SFCOMPO Technical Review Group

« Contains assay data for 750 samples from fuel
irradiated in 44 reactors of 8 types

« SFCOMPO is publicly available and can be
downloaded from the NEA website

» Currently under modernization, to migrate to
GitLab for improving access, development and
QA, providing APlIs, enabling better user
collaboration.
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https://www.oecd-nea.org/jcms/pl_21515/sfcompo-2-0-spent-fuel-isotopic-composition
https://www.oecd-nea.org/jcms/pl_21515/sfcompo-2-0-spent-fuel-isotopic-composition
https://doi.org/10.1016/j.anucene.2017.07.022

Challenges in applying existing RCA experiment data to reliably
estimate bias and uncertainty and improve code predictions

Experiments are To ensure adequate Majority of existing data How to account for
expensive and coverage over space comes from experimental ' underreported or
require specialized of fuel characteristics, programs prior to 2000s, ' unknown

facilities, equipment, we need to make the different than the current | experimental
instruments, and most of what we have state-of-the-art uncertainties ?
expertise available experimental capabilities

Measured fuel Important modeling data  How to how to
characteristics are How to extrapolate are missing or have address important
IEE L ol knowledge to modern large reported unimown

current, modern fuel 2 uncertainties, important  information ?
fuels burnups, . nuclear data may have

design and large or no uncertainties
peration
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Effect of the nuclear data library on calculated nuclide inventory and
validation results was estimated for 4 PWR measured fuel samples

Measurement data for ORNL-measured PWR spent fuel samples in 2020-2021, with available high-
precision RCA and adequate fuel design and irradiation history data (less sensitive to limitations in the
input data available f or modeling)

Fuel Sample # Sample ID Exp. Burnup Enrichment Cooling time
GWd/MTU wi 7% 235U r
4.0 27

37.5 :
43.5 4.0 27

64.2 4.2 21
64.9 4.2 21

Ref: G. Procop, B. Bevard, J. Giaquinto (2025). Extending the Nuclide Inventory Validation Basis for

High-Burnup Fuel with New Radiochemical Assay Data”, Nuclear Science and Engineering
https://doi.org/10.1080/00295639.2025.2527491
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https://doi.org/10.1080/00295639.2025.2527491

SCALE/TRITON was used for nuclide inventory validation
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Ref. for flowchart: Oak Ridge National Laboratory. n.d. “Depletion
%O AK RIDGE TRITON flowchart MG mode Calculations with.” SCALE 6.3. Accessed Jan 2,2026.
National Laboratory https://www.oml.gov/content/scale-63.


https://www.ornl.gov/content/scale-63
https://www.ornl.gov/content/scale-63
https://www.ornl.gov/content/scale-63
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Comparison of calculated and
experimental nuclide inventories




C/E vs burnup for 23°U: Significant underestimation relative to measurement

is observed for ENDF/B-VIII.0 (6% at high burnup)
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Error bars reflect only the reported measurement uncertainties (20).



C/E vs burnup for 23°Pu: General agreement is observed among results
obtained with different libraries
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How well are major actinides generally predicted with ENDF/B-VII.1?
C/E results obtained for 129 PWR spent fuel samples
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The 4 samples used as basis here are part of the North Anna 9 samples data set (cyan color).

Ref: G. Procop, R. Elzohery, B. Hiscox, U. Mertyurek, “SCALE 6.3 Validation: Spent Nuclear Fuel”,
ORNL/TM-2023/2884/v3, Oak Ridge National Laboratory (2025). https://doi.org/10.2172/2587031
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https://doi.org/10.2172/2587031

Actinides: comparison calculation-experiment for sample #3 (64 GWd/MTU )
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Most of these actinides are important for Key long-term contributors Largest contributor to neutron
reactivity (crit safety with burnup-credit) to decay heat source for LWR spent fuel
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Fission products: comparison calculation-experiment for sample #3 (64 GWd/t )
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Most of these are key absorbers 13/Cs is key nuclide for decay Important for reactor operation:
relevant to for reactivity heat and shielding applications, strong neutron absorbers such
(crit safety with burnup-credit) burnup monitor as 19Gd and Sm isotopes
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Uncertainties in calculated nuclide
inventories that result from uncertainties

in cross section (XS) and
fission product yield (FPY) data

For sample #3, burnup 64 GWd/MTU
Covariance data ENDF/B + BLO




ENDF/B-VII.1 : Effect of uncertainty in XS and FPY data on
calculated actinides inventories
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Relative uncertainty > 5%
238Pu' 241 Am, 243Am, 244Cm

Cross section uncertainties are major drivers for uncertainties of calculated actinide concentrations, no
significant impact of fission yield uncertainties.
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ENDF/B-VII.1 : Effect of uncertainty in XS and FPY nuclear data on
calculated FP inventories

I cross sections
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Cross section uncertainties are major drivers for uncertainties of calculated fission products
concentrations, generally no significant impact of fission yield uncertainties.
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ENDF/B-VII.1 vs ENDF/B-VIII.1: Effect of XS data uncertainty on
uncertainties in calculated actinides inventories
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Differences in uncertainty estimates between ENDF/B-VIII.1 and ENDF/B-VII.1 are:
o > 1% for238Pu (-1.01%)

o 0.5% - 1% for 234U, 236U, 237"Np

o <0.4% for the other nuclides shown
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ENDF/B-VII.1 vs ENDF/B-VIII.1: Effect of XS data uncertainty on
uncertainties in calculated fission products inventories
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Differences in uncertainty estimates between ENDF/B-VIII.1 and ENDF/B-VII.1 are:

o > 1% for 1%5Gd (+1.4%) and 1%4Sm (-1.2%)
o 0.5% - 1% for 1%°Eu (+0.8%)
o <0.4% for the other nuclides shown
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Large differences among ENDF/B libraries for Eu-155(n,g) uncertainty
may be confusing to and are impactful for the end users of the data

155Eu Neutron Capture Uncertainty

10%4 __ LowFi-BLO o ENDF/B-VII.1 library had covariance data from
{ — Mark williams the LowFi project; SCALE used Mark Williams’s
{ =7~ ENDF/BVILO "special” E7.1 file instead
= o ENDF/B-VIII.0 data looks similar, though is not
= the same, with Mark Williams’s evaluation
<
e o ENDF/B-VIII.1 provides zero covariance
105 10 107!  10'  10° 105 10’
Energy [eV]
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155Gd is only one example emphasizing the importance of reliable
uncertainty data for thermal reactor safety and back-end of fuel cycle

Gd is a cornerstone
of advanced fuel
design and
operation

Gd use can be
critical to LWRs and
advanced reactors
operation
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155Gd is one of the most
effective neutron
absorbers used to
control reactivity during
operation

Enables passive and self-
regulating reactivity
control, longer fuel
cycles, simplified
operational strategies

Gd consideration
goes well beyond
LWR/UO, fuel

Effective use of Gd
requires effective
computational tools
and associated
nuclear data

Accident tolerant fuel,
(ATF), improved TRISO-
based fuel, high-density
fuel

Well-validated depletion
tools for accurate
tracking of '5°Gd and
157Gd, validated cross
section data with well-
understood uncertainty




Significance/impact of findings from an end-user perspective

Change inthe cross-
section library has an
important effect on

calculated nuclide
inventory. Which
library should | use?

XS uncertainty data
can vary significantly
from library to library.

Which one should |
trust?

OAK RIDGE

National Laboratory

%

(C/E-1)%

& & L B o 0 s @ =

=

U-234
235

U-236
U238 |
Pu-238 |

1 — Lowri

—— Mark Williams
=== ENDF/B-VIIL.O

10°¢ 102

10°

XS-induced uncertainty
in calculated nuclides
contents can be greater

than that resulting from
modeling data. How
could | reduce it?

Small differences in ND
and uncertainties might
seem non-impactful. For

user applications and
regulatory purposes, the
ultimate effect may be
consequential.
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How could we
better embed the
user experience
in ND generation,
evaluation, and
validation?
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Questions ?

Indian Summer in Smoky Mtns, Dec 2025, Mount LeConte
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