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Evaluating fission product yield energy resolution for accurate nuclide
inventory predictions

Nuclear data libraries, including the US ENDF/B library, provide fission productyields (FPY) at few energy points: for
example, 0.0253 eV, 500 keV, 2 MeV, 14 MeV

Depletion codes may interpolate FPY to a problem-dependent average energy of fission

Validation of SCALE depletion calculations using these FPY resulted in good agreement between calculation and
measurement for spent nuclear fuel inventory of BWRs and PWRs

Questions to answer:
1. Is FPY interpolation between such coarse energy points adequate?
2. Would additional FPY energy points improve code validation results?
3. Do we have enough measured data that can validate FPY data?

This work:
* Investigate of the relative impact of FPY energy resolution on nuclide inventory predictions

 Deplete small representative reactor models using GEFY FPY data with additional energy points in the fast energy
range
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Small test models allow investigation of nuclide inventory across
various reactor concepts

Moderator Fuel enrichment Depletion time [years] Discharge burnup [GWd/tHM]
PWR uo, Water 5.0 wt% U-235 ~4.3 SR
HTGR uo, Graphite 17.0 wt% U-235 ~3.3 80.0
MSR LiF-BeF,-UF,  Graphite 2.29 wt% U-235 4 74.6
SFR U/TRU-10Zr -/- 16.5 wt% TRU ~4 94.4
SFR U-10Zr -/- 16.5 wt% U-235 ~8.9 149.6
MCFR NaCl-UClL -/- 12.5 wt% U-235 7 9.7

PWR unit cell HTGR pebble MSR unit cell SFR unit cell MCFR unit cell

Each modelis a smallunit cell that is the smallest, self-contained piece of geometry that represents a repeating portion of the
%OAK RIDGE corresponding reactor. Reflective boundary conditions on all sides create an infinite lattice of these unit cells. The neutron
Nadonal Laboratory o actryym conditions are similar to those of the full reactor so that depletion calculations result in representative nuclide inventory.



Depletion calculations used GEFY FPY libraries with different energy
resolution

Available energy points for

Fissionyield library: GEFY (GEF-based fission-fragment yield library in fissionyields in GEFY [eV]

ENDF format)

2.53E-02 6.00E+06 1.60E+07
Selected actinides: U235, Pu239, Pu241 L) S R Pl S B Iy
2.00E+05 7.00E+06 1.70E+07
: . . . . 3.00E+05 7.50E+06  1.75E+07
Energy pointsin 2 test libraries based on GEFY: GGEE  BGOE6E | SiEnE
1. FPY for 4 energies to represent the current ENDF/B resolution: 5.00E+05 8.50E+06 1.85E+07
6.00E+05 9.00E+06 1.90E+07
14 MeV, 2 MeV, 500 keV, 0.0253 eV - OOE+05  ©.50E+06 1.95E+07
2. FPY for all energies available in GEFY: g-ggi*gg ]-825*8; ;-?gi*g;
. . . + . + . +
0.0253¢V, fine resolution between 10 keV and 30 MeV T e B
1.50E+06  1.15E+07 2.30E+07
2.00E+06  1.20E+07  2.40E+0Q7
2.50E+06 1.25E+07 2.50E+07
3.00E+06  1.30E+07 2.60E+07
3.50E+06  1.35E+07  2.70E+07
4.00E+06  1.40E+07 2.80E+07
4.50E+06  1.45E+07 2.90E+07
5.00E+06  1.50E+07 3.00E+07
5.50E+06 _ 1.55E+07

%QAK RIDGE GEFY: https://www.khschmidts-nuclear-web.eu/GEFY.html

National Laboratory



https://www.khschmidts-nuclear-web.eu/GEFY.html
https://www.khschmidts-nuclear-web.eu/GEFY.html
https://www.khschmidts-nuclear-web.eu/GEFY.html
https://www.khschmidts-nuclear-web.eu/GEFY.html
https://www.khschmidts-nuclear-web.eu/GEFY.html

Depletion calculations were performed with SCALE and Serpent

Neutron transport code Neutron transport method Cross section library

MG (252 groups for thermal systems, 302

SCALE 7beta/TRITON: XSDRN+ORIGEN 1D deterministic
groups for fast systems)

SCALE 7beta/TRITON: Shift+ORIGEN 3D Monte Carlo CE

Serpent 2.2.1 3D Monte Carlo CE

Monte Carlo settings: 50,000 neutrons per generation; 200 active and 100 inactive generations

Cross section and decay data library: ENDF/B-VII.1
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Fission yields are interpolated differently between ORIGEN and Serpent

SCALE/ORIGEN:

* Foreach actinidej, an average energy of fission is calculated

Zg EY O-qu P9 E9 average group energy (simple midpoint)
Eavg,j = Z O'g-’qbg afcfj multigroup fission XS of actinide j
9°fJ ¢9 fluxin energy group g

* The FPY of actinidejresultingin FP i is then calculated by
linearly interpolating the FPYs at this average energy

Eqgpg — E
)’ij(Eavg) =y (Ep) + (#) : (Vij(Ez) - Vij(E1))

with E; < Egyg < E3, and E; and E; the respective adjacent energy points

* Thenthe production rate Ry ; of FPjis:

Rf,i = Z )’ij(Eavg,j) Of, [0) N] N; nuclide density of actinide j
J

National Laboratory

Serpent:

* The production rate of FP iis the sum of partial rates

corresponding to the available FPY energies Ej,

Rp; = ZZYij(Ek) 'R}f,j
%

J

Partial fission rates: When the fission event occurs at
neutron energy E, the corresponding fission rate
contribution is distributed between the two adjacent
E}, thereby incrementing the associated partial fission
rates according to linear interpolation weights:

E,— E ) E —E;
=—E _E Rf,](E) Rf,] +=—Rf,](E)
2 1

E; — Ey

1
Rs; +



Additional FPY energy points are located in the fast energy range

Neutron flux
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Additional FPY energy points are located in the fast energy range (cont.)

Reaction rate per lethargy
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Variation in GEFY FPY at high energies are most relevant for fast systems

Fission reaction rate - U-235 Fission reaction rate - Pu-239
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Difference [%]

The use of GEFY data with all energies has visible impact on nuclide
inventory at EOL for fast systems

10.0 SFR-U-TRU EOL: all vs. 4 energies
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SCALE and Serpent show different trends due to different approaches of using the available FPY.
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The impact of using FPY at all energies vs. the traditional 4 energy points is clearly visible, with up to ~8% for
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The use of GEFY data with all energies has visible impact on nuclide
inventory across the entire irradiation history for fast systems
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The impact of using FPY at all energies vs. the traditional 4 energy

National Laboratory

points can be higher over the course of depletion compared to EOL

The boxes representthe interquartile range (IQR), from the 25th
percentile to the 75th percentile; the horizontal line presents the

median (50th percentile); the error bars go to the most extreme
data points within 1.5%IQR; and the dots are outliers.




Summary and Conclusions

Use of additional FPY data points in fast energy range in GEFY impacts prediction of fission product inventory:
* Several % difference at EOL for fast spectrum systems; negligible impact for thermal spectrum systems
* Varying magnitude of differences at specific times during depletion compared to EOL
* Varying magnitude of differences between SCALE and Serpent due to different FPY interpolation schemes
* Visible impact despite only few additional energy points in relevant energy range
We need:
* Additional FPY energy points in thermal and intermediate range
* FPY interpolation based on appropriate weighting with fission reaction rate

* Analysis of the impact with respect to validation data

* Destructive radiochemical assay data for 76 BWR fuel samples and 129 PWR fuel samples is used in SCALE’s nuclide
inventory validation

This work was supported by the US Department of Energy, Office of Science, Nuclear Data Program.
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Reactor models covering thermal and fast neutron spectral conditions

EALF: Energy of average lethargy of fission

Model EALF (eV)

PWR 0.98 eV
HTGR 0.21 eV
MSR 0.23 eV
SFR U/TRU 262 keV
SFR HALEU 206 keV
MCFR 86 keV
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SCALE/ORIGEN average energy of fission

| Model | EALFatBOL | EALFatEOL | Actinide | E,,[keVlatBOL | E,, [keV]atBOL

%

PWR

MSR

SFR U/TRU

SFR HALEU

MCFR
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0.98 eV

0.23 eV

262 keV

206 keV

86 keV

1.73 eV

0.96 eV

252 keV

215 keV

87 keV

U-235
Pu-239
Pu-241
U-235
Pu-239
Pu-241
U-235
Pu-239
Pu-241
U-235
Pu-239
Pu-241
U-235
Pu-239
Pu-241

28.9
16.0
13.9
g
1.2
12
371.2
484.3
367.7
387.8
495.8
383.4
2594
370.6
261.9

35.1
23.0
18.3
14.4
7.9
7.2
348.6
458.9
345.9
342.3
449.3
339.8
257.7
369.0
260.3

Difference in E, , between calculations
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EOL FPY used by SCALE/ORIGEN
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