

**Neutron Standards
The Evolution of Methods with Time**

**Allan D. Carlson
NIST Associate**

Presented at

The CSEWG Meeting

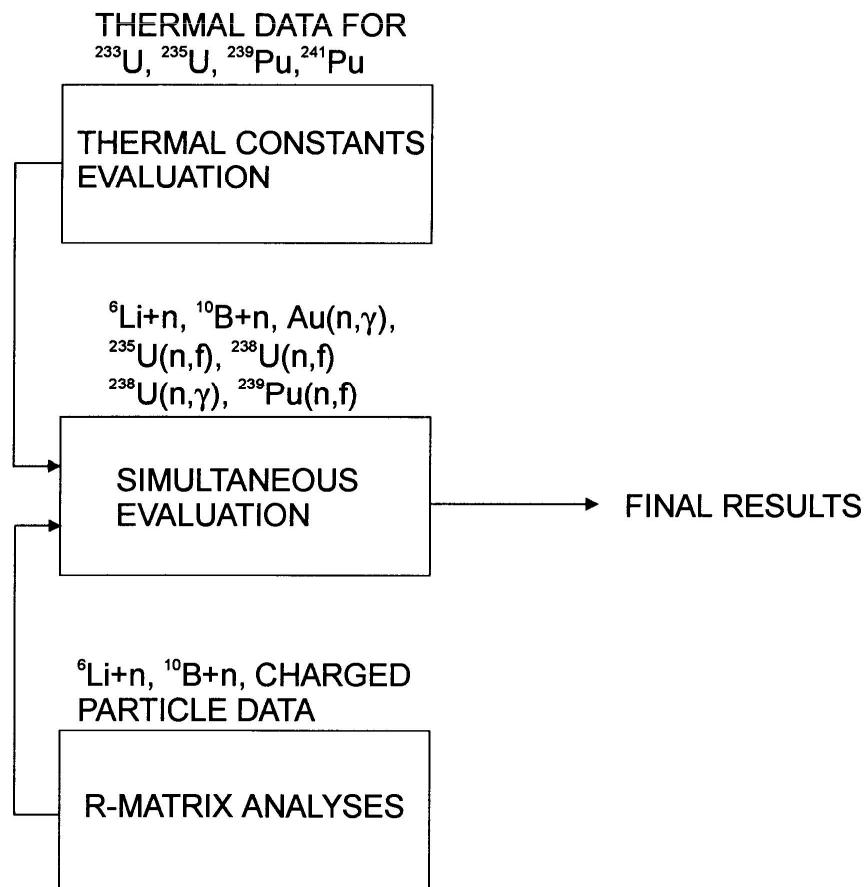
Jan. 8 2025

ENDF/B-IV

- The evaluations were done by drawing smooth curves through plots containing the measured values.
 - Uncertainties were obtained in an approximate manner
 - there was no thought of covariances.

ENDF/B-V

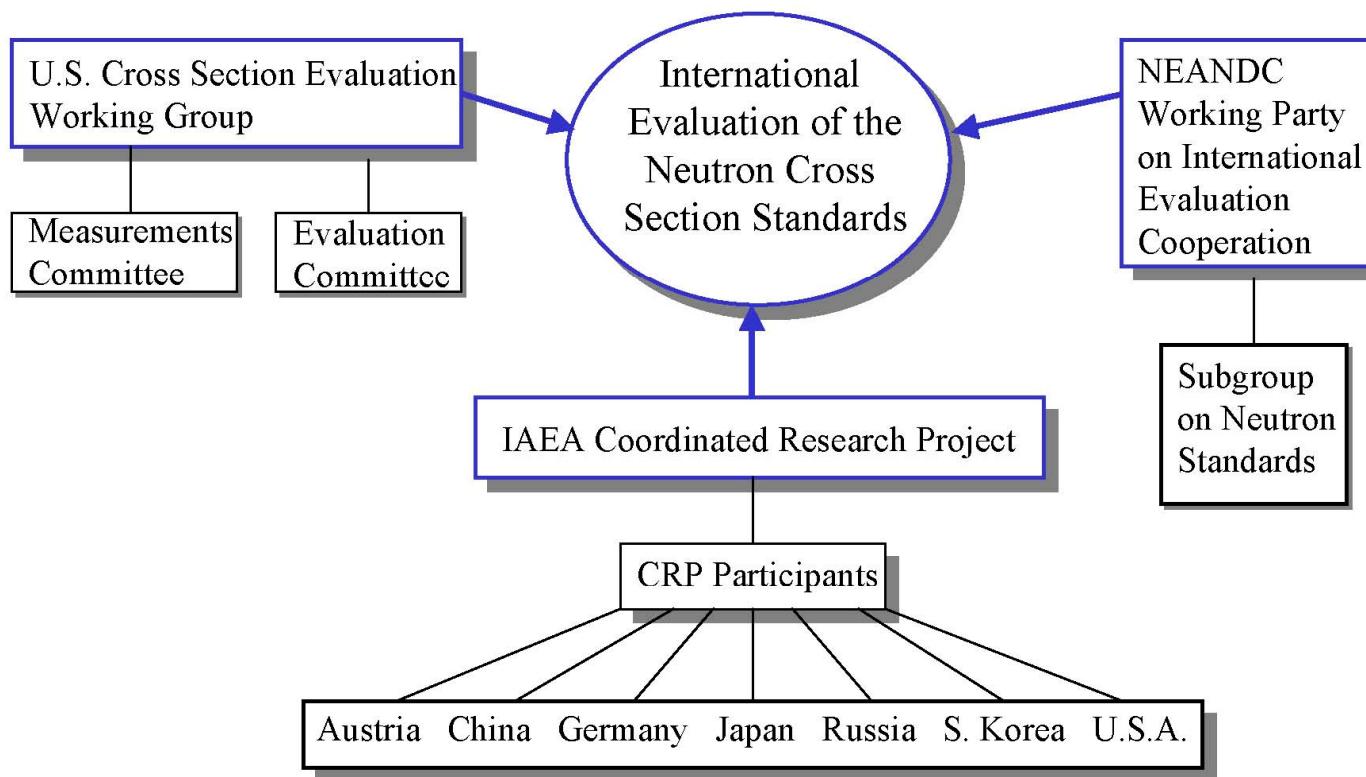
- Generalized Least Square was used for the $^{235}\text{U}(\text{n},\text{f})$ evaluation for the energy range from 100keV to 20 MeV -Poenitz


ENDF/B-VI

- The Generalized Least Square method was applied for all the standard cross section data except the $^1\text{H}(\text{n},\text{n})$ and $^3\text{He}(\text{n},\text{p})$ standard. The code used is GMA by Poenitz
 - A rather complete set of measurement types were possible.
- R-matrix evaluations were done for the ^7Li and ^{11}B compound nuclei yielding $^6\text{Li}(\text{n},\text{t})$, the $^{10}\text{B}(\text{n},\alpha)$ and $^{10}\text{B}(\text{n},\alpha_1\gamma)$ standard cross sections-Hale
- A method was established to combine the GMA and R-matrix results
- Also R-matrix evaluations were done for the $^1\text{H}(\text{n},\text{n})$, $^3\text{He}(\text{n},\text{t})$ and $\text{C}(\text{n},\text{c})$ standards

Data types used with GMA

Type	Data Type	Example
1	Absolute cross section	$\sigma_{\text{nf}}(^{235}\text{U})$
2	Cross section shape	$c * \sigma_{\text{na}}(^6\text{Li})$, c is unknown
3	Absolute cross section ratio	$\sigma_{\text{nf}}(^{238}\text{U}) / \sigma_{\text{nf}}(^{235}\text{U})$
4	Ratio shape	$c * \sigma_{\text{nf}}(^{235}\text{U}) / \sigma_{\text{na}}(^6\text{Li})$, c is unknown
5	Sum of cross sections	$\sigma_{\text{tot}}(^6\text{Li}) = \sigma_{\text{nn}}(^6\text{Li}) + \sigma_{\text{na}}(^6\text{Li})$
6	Spectrum averaged cross section	$\sigma_{\text{nf}}(^{235}\text{U})$ averaged over ^{252}Cf spontaneous fission spectrum
7	Absolute ratio of cross section/ sum of cross sections	$\sigma_{\text{nf}}(^{235}\text{U}) / \sigma_{\text{na}}(^{10}\text{B})$, where $\sigma_{\text{na}}(^{10}\text{B}) = \sigma_{\text{na}_0}(^{10}\text{B}) + \sigma_{\text{na}_1}(^{10}\text{B})$
8	Shape of Type 5 data	
9	Shape of Type 7 data	


Evaluation Procedure

ENDF/B-VII – the 2006 Standards Evaluation

- ENDF/B-VII evaluation was done realizing it was important to have **international involvement** to provide improved evaluations.
 - To make this happen, an IAEA Data Development Project was initiated focused on the maintenance of the neutron cross section standards. This project should provide a method for obtaining standards evaluations that are up-to-date whenever they are needed by any nuclear data evaluation project, not just the ENDF/B files.
 - The IAEA provided a Coordinated Research Project with participants from several countries
 - We obtained mostly experimental support from the NEANDC WPEC.
 - Subgroup on Neutron Standards
 - The CSEWG supported the effort
 - Measurements Committee
 - Evaluation Committee
- The IAEA support was very important in actually producing the ENDF/B-VII standards evaluations.
- The methodology was very similar to that used for the ENDF/B-VI evaluations but two independent R-matrix codes were used.

International Collaboration for the Standards Evaluation

ENDF/B-VII – the 2006 Standards Evaluation (cont.)

- For this evaluation (ENDF/B-VII), many comparisons of codes were made to show consistency.
 - For the two codes used for the R-matrix analyses, EDA and RAC, the results for a simple ${}^6\text{Li} + \text{n}$ database were in agreement. The SAMMY code was instrumental in making some comparisons.
 - For the full database, the R-matrix codes gave slightly different results due to different forms of chi-square expression
- For the ENDF/B-VI evaluations there were problems with unusual results combining inconsistent data that were highly correlated. In that case uncertainties were increased to remove the problem.
 - For ENDF/B-VII, the problem of inconsistent data that were highly correlated was looked at in detail leading to studies of different ways of treating the PPP effect.
 - It was decided to accept the Chiba-Smith method to minimize the effect (using percentage uncertainties)
- This evaluation process produced results for all the standards except ${}^1\text{H}(\text{n},\text{n})$ which was an evaluation by Hale, and ${}^3\text{He}(\text{n},\text{p})$ and $\text{C}(\text{n},\text{n})$ that were not evaluated (but brought over from the previous evaluation).

ENDF/B-VIII (the 2017 Standards Evaluation)

- The methodology was very similar to that used for the ENDF/B-VI evaluations.
- New evaluations were obtained for all the standards except ${}^3\text{He}(\text{n},\text{p})$ which was carried over from the last evaluation.
- It was noted that the 30 keV Maxwellian average cross section from this evaluation differed from the value used by the astrophysics community.
 - This led to an investigation that showed there were problems with the Ratyuski and Kaeppler measurement that was the basis of the astrophysics result.
 - The astrophysics community now has accepted a value consistent with that obtained from our work.
- The 30 keV $\text{Au}(\text{n},\gamma)$ MACS of our data is now a neutron cross section standard
- Work was done on reference cross sections, that are not known as well as the standards but measurements can be made relative to them.
 - High energy reference fission cross section-up to 1 GeV
 - ${}^{235}\text{U}(\text{n},\text{f})$, ${}^{238}\text{U}(\text{n},\text{f})$ and ${}^{239}\text{Pu}(\text{n},\text{f})$
 - Prompt gamma -ray production reference cross sections
 - ${}^{10}\text{B}(\text{n},\alpha,\gamma)$ thermal to 1 MeV
 - ${}^7\text{Li}(\text{n},\text{n}'\gamma)$ 0.8 MeV to 8 MeV
 - ${}^{48}\text{Ti}(\text{n},\text{n}'\gamma)$ 3 to 16 MeV

ENDF/B-VIII (the 2017 Standards) (cont.)

- Fission Neutron Spectra
 - $^{235}\text{U}(n_{th},f)$ PFNS, an evaluation was produced
 - $^{252}\text{Cf}(sf)$ PFNS several measurements were investigated but no changes were suggested to the Mannhart evaluation.
 - Initial work on unrecognized systematic uncertainty (unidentified systematic uncertainty) was done (USU)
 - Assumed no energy dependence (ok for Nu bar ^{252}Cf)
- New thermal constants evaluation using only microscopic data except a Maxwellian experiment by Lounsbury.
- A new C(n,n) cross section evaluation by Hale was used
- A new $^1\text{H}(n,n)$ cross section evaluation by Hale that extends to 20 MeV
- The $^3\text{He}(n,p)$ cross section evaluation was carried over from the previous evaluation.

Work Leading to a New Standards Evaluation

- Important work was done so that ratios of SACS, that are known very well, could be used
 - GMAP can not use that data
 - Georg Schnabel has produced a Python based code that is in agreement with GMAP but can use ratios of SACS. It is GMAPy.
 - A number of different GMAPY minimization procedures are being examined with this code
 - Maximum Likelihood Estimation (MLE) and Markov Chain Monte Carlo (MCMC) have been investigated.
 - They are both valid and sound statistical approaches. The differences between them may provide as an estimate of the uncertainty due to the evaluation methods.
 - GMAPy will be investigated for possible estimates of energy dependent USU as well as the cross section evaluations
 - With GMAPy it was possible to determine the accuracy of the PPP correction used for the 2017 standards.
 - Note it was understood that the correction was minimized, not determined exactly, for previous standards evaluations.
 - The difference is in almost all cases less than 0.4%

Work Leading to a New Standards Evaluation (cont.)

- Denise Neudecker may discuss the AIACHNE collaboration work on the evaluation of the $^{252}\text{Cf}(\text{sf})$ PFNS, I will only emphasize the importance of having that standard updated, agreeing with the Mannhart result and in a form that can conveniently updated in the future.
- An updated evaluation of the thermal constants (TNC) is underway.
 - Noguere has made improvements to the TNC database established by Axton, including new measurements.
 - The present TNC database supports all quantity types and correlations that were in Axton's work.
 - The TNC evaluation will use GMAPY with the TNC database and the existing GMAPY database.
 - This should lead to consistent results for ^{235}U and ^{239}Pu cross sections over a wide range of neutron energies.
 - Previously, rather than including the entire TNC database, the results of evaluations with the associated variance-covariance data, were used as a second independent data input subset to the analysis.
 - There are still concerns about whether high energy cross sections should impact the TNC.
 - The status of the TNC results is still under discussion.

Work Leading to a New Standards Evaluation (cont.)

- An R-matrix analysis is underway for the hydrogen standard, that has been limited to 20 MeV.
 - A database being developed by Paris and Hale at LANL will allow an evaluation with an extended energy range to be produced.
 - The present results are up to 100 MeV with the objective of extending the evaluation to 250 MeV.
 - Consideration must be given to a possible hydrogen “composite evaluation” that will allow data to as high as 1 GeV for use by experimenters.
- Work continues on an R-matrix analysis for the ${}^6\text{Li}(\text{n},\text{t})$ standard
 - Paris and Hale did an evaluation for ENDF/B-VIII.1 that extended beyond the standards energy region.
 - In the standards energy region, It agreed with the standard.
 - Initial efforts for an independent ${}^6\text{Li}(\text{n},\text{t})$ evaluation at LLNL by Thompson are underway.
 - It is hoped that the ${}^6\text{Li}(\text{n},\text{t})$ standard can be extended to above 1 MeV, the present maximum energy.
 - Additional R-matrix work is being considered.

Work Leading to a New Standards Evaluation (cont.)

- An evaluation of the standards will be done by combining the results of R-matrix and GMAPY analyses.
- A new R-matrix evaluation of the boron standards will not be done.
 - Some changes in that cross section may come from ratio data in the GMAPy fit
- This will be the first time we will use the IAEA Data Development Project focused on the maintenance of the neutron cross section standards.
 - There will not be an ENDF/B-IX evaluation immediately associated with this evaluation.
 - Use of the standards from this evaluation requires associating the resulting cross sections with this process.