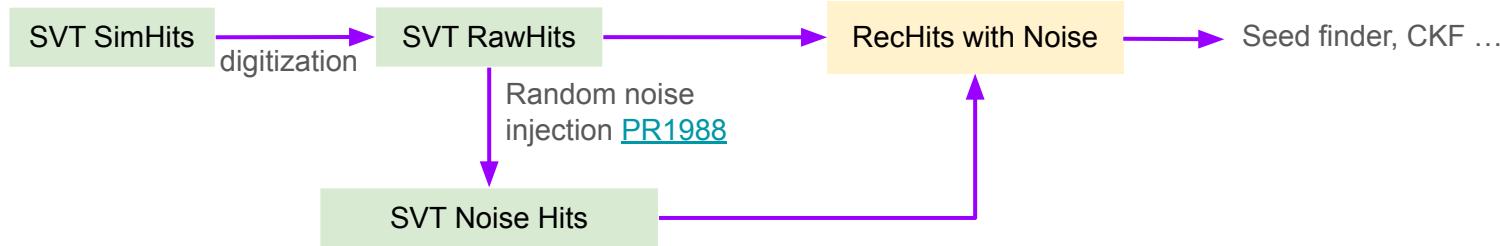
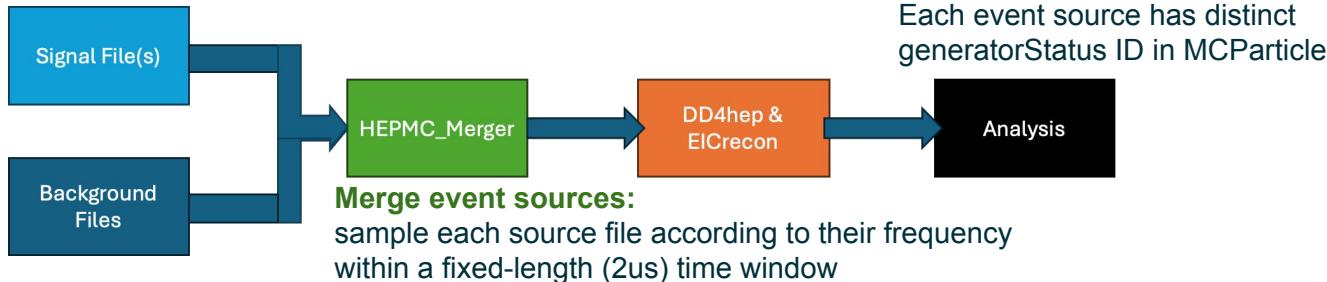


Data Model for Background and Noise Study


Shujie Li, Barak Schmookler

ePIC Reconstruction WG meeting


Aug 25, 2025

SVT Pixel Noise and Beam Background in simulation

- Noise injection: (See Minjung's [talk](#))

- Signal + background merge:

One event = one collision

→
merged

One event = one 2us time slice that contains ("forced DIS")

- one $Q^2 > 1$ GeV^2 NC DIS events
- Beam background at calculated freq. (SR, electron Bremsstrahlung, Coulomb, Touschek, proton beam gas)

Noise and Background Hit Rate

of hits are shown in per 2us slice

Detector name	Barrel layers	# of noise hits FHR = $5e-7/\text{pixel}/2\text{us}$	# of bkgrd hits (18x275)
VertexBarrel	L0	76	371
	L1	102	220
	L2	254	113
SagittaSiBarrel	L3	1,145	43
OuterSiBarrel	L4	2,639	10

Scale with
sensitive area

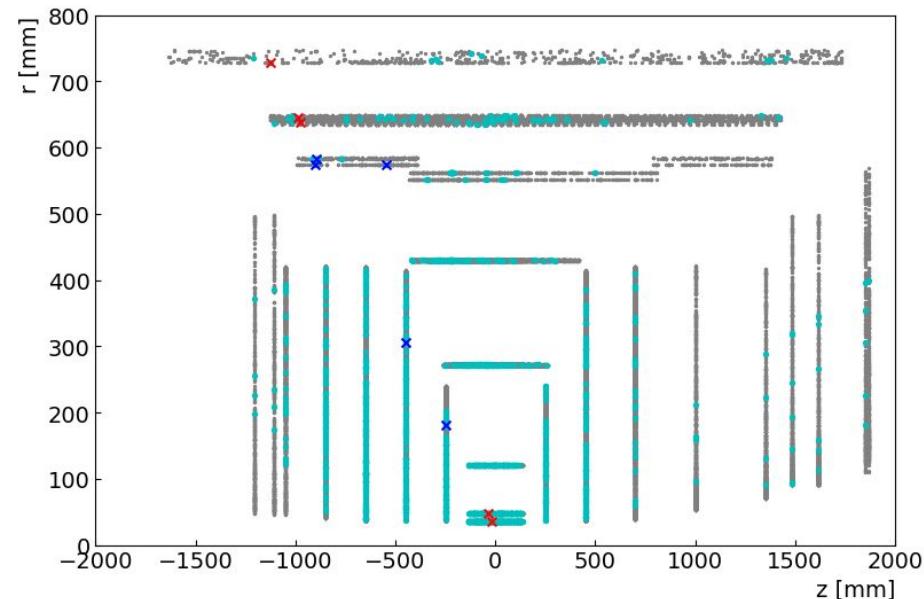
Higher rate when
closer to beampipe

Detector name	Disks	# of noise hits	# of bkgrd hits (18x275)
InnerTrackerEndcapN	E-Disk0	405	99
	E-Disk1	1,442	175
	E-Disk2	1,442	169
	E-Disk3	1,440	112
	E-Disk4	1,435	17
	H-Disk0	405	93
MiddleTrackerEndcapN	H-Disk1	1,442	115
OuterTrackerEndcapN	H-Disk2	1,441	34
	H-Disk3	1,429	9
	H-Disk4	1,414	8

Noise and Background Impact on Tracking

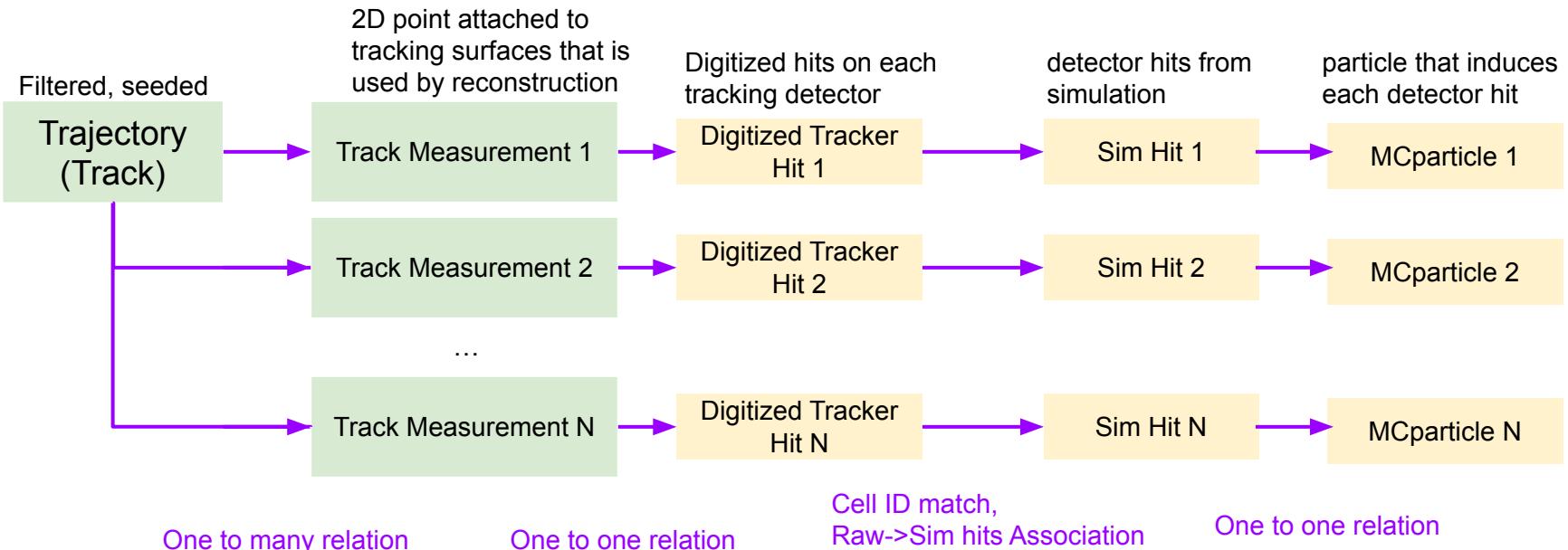
- **Simulation:**
Noise hits / Background particle → contamination hits
- **Impact:**
 - **For seed finder:**
 - More potential triplets
 - Slower performance
 - **For track finding:**
 - Low purity (mix hits from signal and contamination)
 - Ghost track (track assembled from contamination hits)
 - **For track fitting:**
 - Worse resolutions
 - Low efficiency (if fit quality too bad)

Example:


Hit map from one 2us slice of signal+background

Grey: all hits from 1000 events

Cyan: all hits from a given event


Red: good measurements used in tracking

Blue: outliers (didn't pass chi2 cut)

Hit-based Tracking Study Workflow

- Match trajectory, detector hits, and simulated particles

Efficiency: fraction of primary particles that are associated with tracks.

Purity: for a given track, fraction of hits from one particle.

Tracking Study Workflow

- Existing Track → Particle association

```
edm4eic::MCRecoTrackParticleAssociation:  
  Description: "Association between a Track and a MCParticle"  
  Author : "S. Joosten"  
  Members:  
    - uint32_t      simID          // Index of corresponding MCParticle (position in MCParticles array)  
    - uint32_t      recID          // Index of corresponding Track (position in Tracks array)  
    - float         weight         // weight of this association  
  OneToOneRelations:  
    - edm4eic::Track    rec          // reference to the track  
    - edm4hep::MCParticle sim         // reference to the Monte-Carlo particle
```

- Existing code in [Acts2Tracks.cc](#)

```
for (const auto& hit : meas2D.getHits()) {  
    auto raw_hit = hit.getRawHit();  
    for (const auto raw_hit_assoc : *raw_hit_assocs) {  
        if (raw_hit_assoc.getRawHit() == raw_hit) {  
            auto sim_hit = raw_hit_assoc.getSimHit();  
            if (BUILD_VERSION >= EDM4HEP_VERSION(0, 99, 0))  
                auto mc_particle = sim_hit.getParticle();  
  
                auto mc_particle = sim_hit.getMCParticle();  
  
                mcparticle_weight_by_hit_count[mc_particle]++;
```

```
        double total_weight = std::accumulate(  
            mcparticle_weight_by_hit_count.begin(), mcparticle_weight_by_hit_count.end(), 0,  
            [] (const double sum, const auto& i) { return sum + i.second; });  
        for (const auto& [mcparticle, weight] : mcparticle_weight_by_hit_count) {  
            auto track_assoc = tracks_assoc->create();  
            track_assoc.setRec(track);  
            track_assoc.setSim(mcparticle);  
            double normalized_weight = weight / total_weight;  
            track_assoc.setWeight(normalized_weight);  
        }  
    }  
}
```

purity

Tracking Study Workflow

Propose to add (1): track-based relation to hits

```
edm4eic::MCRecoTrackParticleAssociation:  
  Description: "Association between a Track and a MCParticle"  
  Author : "S. Joosten"  
  Members:  
    - uint32_t      simID          // Index of corresponding MCParticle (position in MCParticles array)  
    - uint32_t      recID          // Index of corresponding Track (position in Tracks array)  
    - float         weight         // weight of this association  
  OneToOneRelations:  
    - edm4eic::Track    rec          // reference to the track  
    - edm4hep::MCParticle sim         // reference to the Monte-Carlo particle  
  OneToManyRelations:  
    - edm4eic::RawTrackerHit rawHits  
  
for (const auto& hit : meas2D.getHits()) {  
  auto raw_hit = hit.getRawHit();  
  for (const auto raw_hit_assoc : *raw_hit_assocs) {  
    if (raw_hit_assoc.getRawHit() == raw_hit) {  
      auto sim_hit = raw_hit_assoc.getSimHit();  
      BUILD_VERSION >= EDM4HEP_VERSION(0, 99, 0)  
      auto mc_particle = sim_hit.getParticle();  
  
      Add a check for noise, update the weight/purity calculation  
      auto mc_particle = sim_hit.getMCParticle();  
  
      mcparticle_weight_by_hit_count[mc_particle]++;  
    }  
  }  
}
```

Suggestion from the meeting:

- Association can only be one2one
- Convert the code to methods, so that the user can use them to analyze eicrecon rootfiles within eic-container environment.

Rawhits already accessible,
need to save into the data
model

Example output:

MCParticle ID	Track ID	weight	rawHits
12	1	0.67	[VertexBarrel #1, MPGDDisk #3]
22	1	0.33	[SiDisk #1]

- Provides clear connection from track to the source of majority or contamination hits
- Allows various detector/physics WGs to estimate the detector- or physics-specific impact from contamination in a consistent way

Tracking Study Workflow

Propose to add (2): particle-based relation to hits Inspired by [this example](#) from STAR

edm4eic::MCParticleSimHitsAssociation:

Description: "Association between SimHits and a MCParticle"

Members:

- uint32_t particleID // Index of corresponding MCParticle
- uint32_t nhits // number of sim hits associated with this particle

OneToOneRelations:

- edm4eic::SimTrackerHit simHit // reference to SimHits
- edm4hep::MCParticle particle // reference to the Monte-Carlo particle

Example output:

MCParticle ID	nhits	simHits
12	10	[VertexBarrel #1, VertexBarrel #3, SiBarrel #1, MPGDDisk #1, ...]
22	8	[Vertex Barrel #2, SiDisk #1, SiDisk #2, ...]

- Identify source of detector hits in a noise+background sample
- Combine (1) and (2) for a comprehensive tracking analysis, e.g.:
 - Particle #12 left 10 hits through ePIC detector system, among which 2 hits are used to reconstruct track #1, 5 are used for track #2, 3 hits are not used in tracking (all in xx detector)
 - Track #3 has 4 hits from 2 particles and one noise hit, it's a ghost track that should be removed from efficiency calculation.