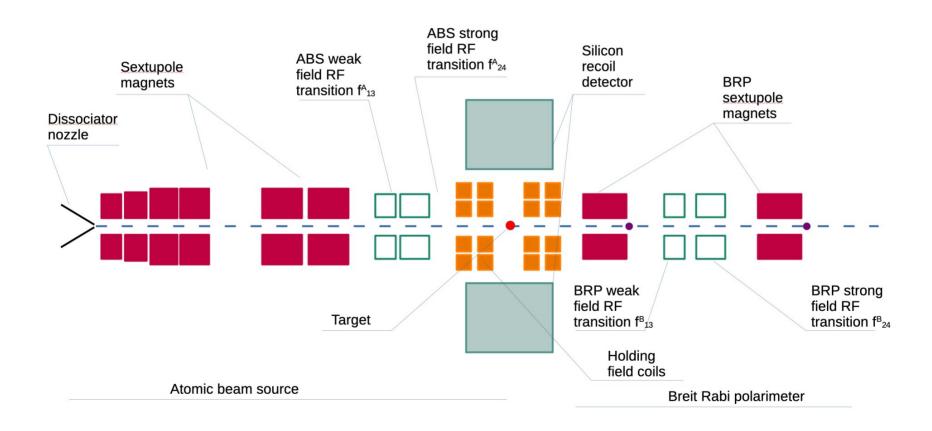
Nuclear polarization measurement of the hydrogen jet target using the Breit-Rabi polarimeter

Vera Shmakova, Frank Rathmann, Zhengqiao Zheng

H-JET schematic view



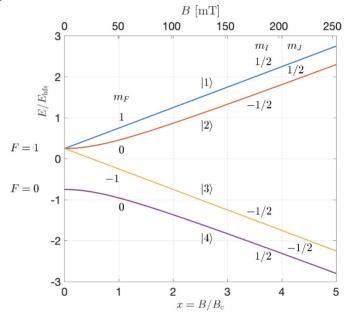
Nuclear polarization determination using data of BRP

- Ultimate goal of atomic beam system produce a hydrogen jet with controlled polarization in interaction region
- Nuclear polarization depends on hyperfine state composition and magnetic holding field
- In the magnetic holding field B₀ at IP, each hyperfine state has a specific polarization:

$$Q_1(B_0)$$
 = nuclear polarization of state $|1\rangle$
 $Q_2(B_0)$ = nuclear polarization of state $|2\rangle$
 $Q_3(B_0)$ = nuclear polarization of state $|3\rangle$
 $Q_4(B_0)$ = nuclear polarization of state $|4\rangle$

Overall nuclear polarization of H-Jet:

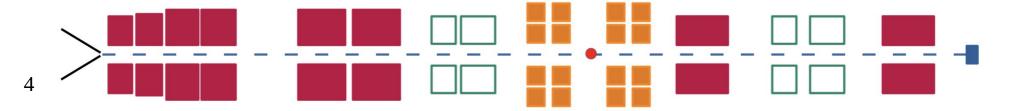
$$Q = \frac{\sum_{i=1}^{4} n_i \cdot Q_i(B_0)}{\sum_{i=1}^{4} n_i}$$



Nuclear polarization determination

- Initially equally populated states exiting the nozzle with n_i , i=1...4.
- The populations pass the ABS sextupole focusing system, transmitted efficiency σ_i^A , focusing states 1,2 and defocusing states 3,4.

$$\begin{pmatrix} n \\ n \\ n \\ n \end{pmatrix} \xrightarrow{\text{transmission A}} \begin{pmatrix} n \, \sigma_1^A \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix}$$



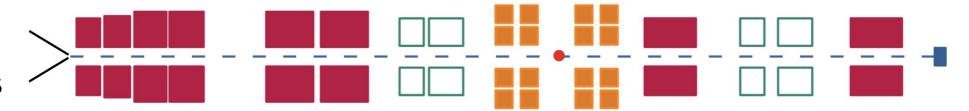
Nuclear polarization determination

• Selective RF transition units in ABS operate with efficiencies ϵ_{ij}^A , creating desired hyperfine state combinations

$$\begin{pmatrix}
n \, \sigma_1^A \\
n \, \sigma_2^A \\
n \, \sigma_3^A \\
n \, \sigma_4^A
\end{pmatrix} \xrightarrow{\text{transition } f_{24}^A} \begin{pmatrix}
n \, \sigma_1^A \\
n \, (\sigma_2^A \, \varepsilon_{24}^A + \sigma_4^A (1 - \varepsilon_{24}^A)) \\
n \, \sigma_3^A \\
n \, (\sigma_4^A \, \varepsilon_{24}^A + \sigma_2^A (1 - \varepsilon_{24}^A))
\end{pmatrix} \qquad
\begin{pmatrix}
n \, \sigma_1^A \\
n \, \sigma_2^A \\
n \, \sigma_3^A \\
n \, \sigma_4^A
\end{pmatrix} \xrightarrow{\text{transition } f_{13}^A} \begin{pmatrix}
n \, (\sigma_1^A \, \varepsilon_{13}^A + \sigma_3^A (1 - \varepsilon_{13}^A)) \\
n \, \sigma_2^A \\
n \, \sigma_3^A \\
n \, \sigma_4^A
\end{pmatrix}$$

$$Q_{+1}^{A} = \frac{\sigma_{1}^{A} \cdot Q_{1}(B_{0}) + (\sigma_{2}^{A} \varepsilon_{24}^{A} + \sigma_{4}^{A}(1 - \varepsilon_{24})) \cdot Q_{2}(B_{0}) + \sigma_{3}^{A} \cdot Q_{3}(B_{0}) + (\sigma_{2}^{A}(1 - \varepsilon_{24}^{A}) + \sigma_{4}^{A} \varepsilon_{24}) \cdot Q_{4}(B_{0})}{\sigma_{1}^{A} + \sigma_{2}^{A} + \sigma_{3}^{A} + \sigma_{4}^{A}}$$

$$Q_{-1}^{A} = \frac{(\sigma_{1}^{A}\varepsilon_{13}^{A} + \sigma_{3}^{A}(1 - \varepsilon_{13}^{A})) \cdot Q_{1}(B_{0}) + \sigma_{2}^{A} \cdot Q_{2}(B_{0}) + (\sigma_{1}^{A}(1 - \varepsilon_{13}^{A}) + \sigma_{3}^{A}\varepsilon_{13}^{A}) \cdot Q_{3}(B_{0}) + \sigma_{4}^{A} \cdot Q_{4}(B_{0})}{\sigma_{1}^{A} + \sigma_{2}^{A} + \sigma_{3}^{A} + \sigma_{4}^{A}}$$



Signal in Breit Rabi polarimeter

- Both transition efficiencies ϵ_{ij}^{A} and sextupole transmissions σ_{i}^{A} need to be known to determine nuclear polarization at the target.
- Way to extract this information from signal measured in BRP of 16 combinations of states.
- 4 possible combinations at the target:

$$\begin{pmatrix} n \\ n \\ n \\ n \end{pmatrix} \xrightarrow{\text{transitions in ABS off}} \begin{pmatrix} n \, \sigma_1^A \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix}$$

$$\begin{pmatrix} n \, \sigma_1^A \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix} \xrightarrow{\text{transition } f_{24}^A} \begin{pmatrix} n \, \sigma_1^A \\ n \, (\sigma_2^A \, \varepsilon_{24}^A + \sigma_4^A (1 - \varepsilon_{24}^A)) \\ n \, \sigma_3^A \\ n \, (\sigma_4^A \, \varepsilon_{24}^A + \sigma_2^A (1 - \varepsilon_{24}^A)) \end{pmatrix}$$

$$\begin{pmatrix} n \\ n \\ n \\ n \end{pmatrix} \xrightarrow{\text{transitions in ABS off}} \begin{pmatrix} n \, \sigma_1^A \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix} \qquad \begin{pmatrix} n \, \sigma_1^A \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix} \xrightarrow{\text{transition } f_{13}^A} \begin{pmatrix} n \, (\sigma_1^A \, \varepsilon_{13}^A + \sigma_3^A (1 - \varepsilon_{13}^A)) \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix}$$

$$\begin{pmatrix} n \, \sigma_1^A \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix} \xrightarrow{\text{transition } f_{24}^A} \begin{pmatrix} n \, \sigma_1^A \\ n \, (\sigma_2^A \, \varepsilon_{24}^A + \sigma_4^A (1 - \varepsilon_{24}^A)) \\ n \, \sigma_3^A \\ n \, (\sigma_4^A \, \varepsilon_{24}^A + \sigma_2^A (1 - \varepsilon_{24}^A)) \end{pmatrix} \begin{pmatrix} n \, \sigma_1^A \\ n \, \sigma_2^A \\ n \, \sigma_3^A \\ n \, \sigma_4^A \end{pmatrix} \xrightarrow{\text{transition } f_{24}^A, f_{13}^A} \begin{pmatrix} n \, (\sigma_1^A \, \varepsilon_{13}^A + \sigma_3^A (1 - \varepsilon_{13}^A)) \\ n \, (\sigma_2^A \, \varepsilon_{24}^A + \sigma_4^A (1 - \varepsilon_{24}^A)) \\ n \, (\sigma_3^A \, \varepsilon_{13}^A + \sigma_1^A (1 - \varepsilon_{13}^A)) \\ n \, (\sigma_4^A \, \varepsilon_{24}^A + \sigma_2^A (1 - \varepsilon_{24}^A)) \end{pmatrix}$$

Each of these combinations passing through BRP weak and straong transitions units split into 4 more combinations.

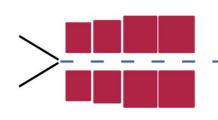
Signal in Breit Rabi polarimeter

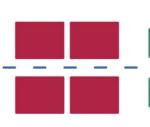
$$\begin{pmatrix} n \, \sigma_{1}^{A} \\ n \, \sigma_{2}^{A} \\ n \, \sigma_{3}^{A} \\ n \, \sigma_{4}^{A} \end{pmatrix} \xrightarrow{\text{transition in BRP off}} \begin{pmatrix} n \, \sigma_{1}^{A} \, \sigma_{1}^{B1} \, \sigma_{1}^{B2} \\ n \, \sigma_{2}^{A} \, \sigma_{2}^{B1} \, \sigma_{2}^{B2} \\ n \, \sigma_{3}^{A} \, \sigma_{3}^{B1} \, \sigma_{3}^{B2} \\ n \, \sigma_{4}^{A} \, \sigma_{4}^{B1} \, \sigma_{4}^{B2} \end{pmatrix}$$

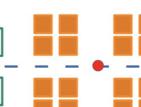
$$\begin{pmatrix} n \, \sigma_{1}^{A} \\ n \, \sigma_{2}^{A} \\ n \, \sigma_{3}^{A} \\ n \, \sigma_{4}^{A} \end{pmatrix} \xrightarrow{\text{transition } f_{24}^{B}} \begin{pmatrix} n \, \sigma_{1}^{A} \, \sigma_{1}^{B1} \, \sigma_{1}^{B2} \\ n \, (\sigma_{2}^{A} \, \sigma_{2}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B})) \sigma_{2}^{B2} \\ n \, (\sigma_{3}^{A} \, \sigma_{3}^{B1} \, \sigma_{3}^{B2} \\ n \, (\sigma_{4}^{A} \, \sigma_{4}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{2}^{A} \, \sigma_{2}^{B1} \, (1 - \varepsilon_{24}^{B})) \sigma_{4}^{B2} \end{pmatrix}$$

$$\begin{pmatrix} n \, \sigma_{1}^{A} \\ n \, \sigma_{2}^{A} \\ n \, \sigma_{3}^{A} \\ n \, \sigma_{4}^{A} \end{pmatrix} \xrightarrow{\text{transition } f_{13}^{B}} \begin{pmatrix} n \, (\sigma_{1}^{A} \, \sigma_{1}^{B1} \, \varepsilon_{13}^{B} + \sigma_{3}^{A} \, \sigma_{3}^{B1} \, (1 - \varepsilon_{13}^{B})) \sigma_{1}^{B2} \\ n \, (\sigma_{3}^{A} \, \sigma_{3}^{B1} \, \varepsilon_{13}^{B2} + \sigma_{1}^{A} \, \sigma_{1}^{B1} \, (1 - \varepsilon_{13}^{B})) \sigma_{3}^{B2} \\ n \, (\sigma_{3}^{A} \, \sigma_{3}^{B1} \, \varepsilon_{13}^{B2} + \sigma_{1}^{A} \, \sigma_{1}^{B1} \, (1 - \varepsilon_{13}^{B})) \sigma_{3}^{B2} \end{pmatrix}$$

$$\begin{pmatrix} n \, \sigma_{1}^{A} \\ n \, \sigma_{2}^{A} \\ n \, \sigma_{3}^{A} \\ n \, \sigma_{4}^{A} \end{pmatrix} \xrightarrow{\text{transition } f_{13}^{B}, f_{24}^{B}} \\ \begin{pmatrix} n \, (\sigma_{1}^{A} \, \sigma_{1}^{B1} \, \varepsilon_{13}^{B2} + \sigma_{1}^{A} \, \sigma_{1}^{B1} \, (1 - \varepsilon_{13}^{B})) \sigma_{3}^{B2} \\ n \, (\sigma_{2}^{A} \, \sigma_{2}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B})) \sigma_{3}^{B2} \\ n \, (\sigma_{2}^{A} \, \sigma_{2}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B})) \sigma_{3}^{B2} \\ n \, (\sigma_{2}^{A} \, \sigma_{2}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B3})) \sigma_{3}^{B2} \\ n \, (\sigma_{3}^{A} \, \sigma_{3}^{B1} \, \varepsilon_{13}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B3})) \sigma_{3}^{B2} \\ n \, (\sigma_{4}^{A} \, \sigma_{4}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B3})) \sigma_{3}^{B2} \\ n \, (\sigma_{4}^{A} \, \sigma_{4}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B3})) \sigma_{3}^{B2} \\ n \, (\sigma_{4}^{A} \, \sigma_{4}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 - \varepsilon_{24}^{B3})) \sigma_{3}^{B2} \\ n \, (\sigma_{4}^{A} \, \sigma_{4}^{B1} \, \varepsilon_{24}^{B2} + \sigma_{4}^{A} \, \sigma_{4}^{B1} \, (1 -$$







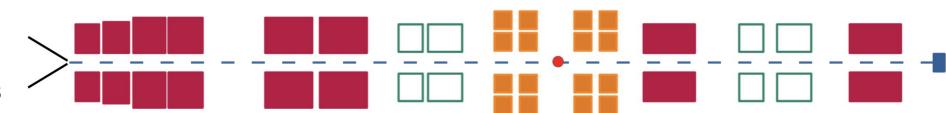
Signal in Breit Rabi polarimeter

• Combinations after ABS strong transition field transitions:

$$\begin{pmatrix}
n \sigma_{1}^{A} \\
n (\sigma_{2}^{A} \varepsilon_{24}^{A} + \sigma_{4}^{A} (1 - \varepsilon_{24}^{A})) \\
n \sigma_{3}^{A} \\
n (\sigma_{4}^{A} \varepsilon_{24}^{A} + \sigma_{2}^{A} (1 - \varepsilon_{24}^{A}))
\end{pmatrix}
\xrightarrow{\text{transition in BRP off}}
\begin{pmatrix}
n \sigma_{1}^{A} \sigma_{1}^{B1} \sigma_{1}^{B2} \\
n (\sigma_{2}^{A} \varepsilon_{24}^{A} + \sigma_{4}^{A} (1 - \varepsilon_{24}^{A}))\sigma_{2}^{B1} \sigma_{2}^{B2} \\
n \sigma_{3}^{A} \sigma_{3}^{B1} \sigma_{3}^{B2} \\
n (\sigma_{4}^{A} \varepsilon_{24}^{A} + \sigma_{2}^{A} (1 - \varepsilon_{24}^{A}))\sigma_{4}^{B1} \sigma_{4}^{B2}
\end{pmatrix}$$

$$\begin{pmatrix} n \, \sigma_1^A \\ n \, (\sigma_2^A \, \varepsilon_{24}^A + \sigma_4^A (1 - \varepsilon_{24}^A)) \\ n \, \sigma_3^A \\ n \, (\sigma_4^A \, \varepsilon_{24}^A + \sigma_2^A (1 - \varepsilon_{24}^A)) \end{pmatrix} \xrightarrow{\text{transition } f_{24}^B}$$

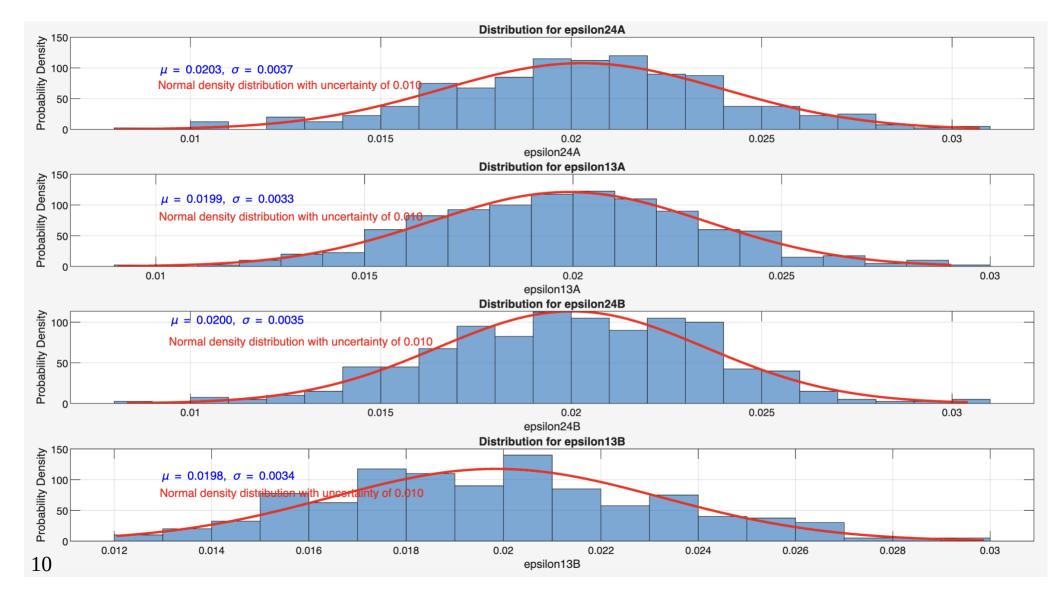
$$\xrightarrow{\text{transition } f_{24}^{\text{B}}} \begin{pmatrix} n \, \sigma_{1}^{A} \, \sigma_{1}^{B1} \, \sigma_{1}^{B2} \\ n \, ((\sigma_{2}^{A} \, \varepsilon_{24}^{A} + \sigma_{4}^{A} (1 - \varepsilon_{24}^{A})) \sigma_{2}^{B1} \varepsilon_{24}^{B} + (\sigma_{4}^{A} \, \varepsilon_{24}^{A} + \sigma_{2}^{A} (1 - \varepsilon_{24}^{A})) \sigma_{4}^{B1} (1 - \varepsilon_{24}^{B})) \sigma_{2}^{B2} \\ n \, \sigma_{3}^{A} \, \sigma_{3}^{B1} \, \sigma_{3}^{B2} \\ n \, ((\sigma_{4}^{A} \, \varepsilon_{24}^{A} + \sigma_{2}^{A} (1 - \varepsilon_{24}^{A})) \sigma_{4}^{B1} \varepsilon_{24}^{B} + (\sigma_{2}^{A} \, \varepsilon_{24}^{A} + \sigma_{4}^{A} (1 - \varepsilon_{24}^{A})) \sigma_{2}^{B1} (1 - \varepsilon_{24}^{B})) \sigma_{4}^{B2} \end{pmatrix}$$

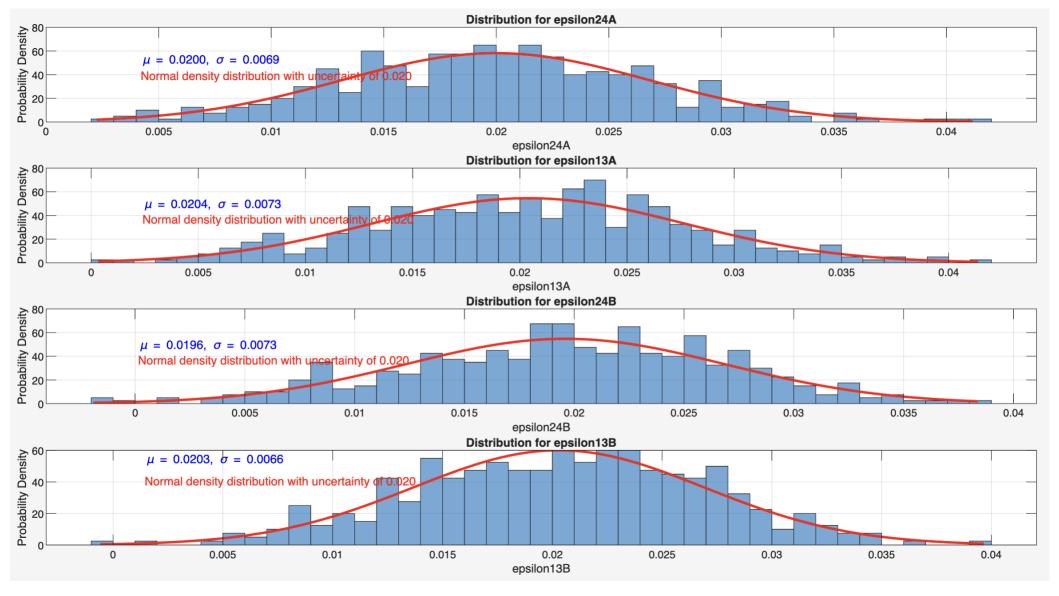


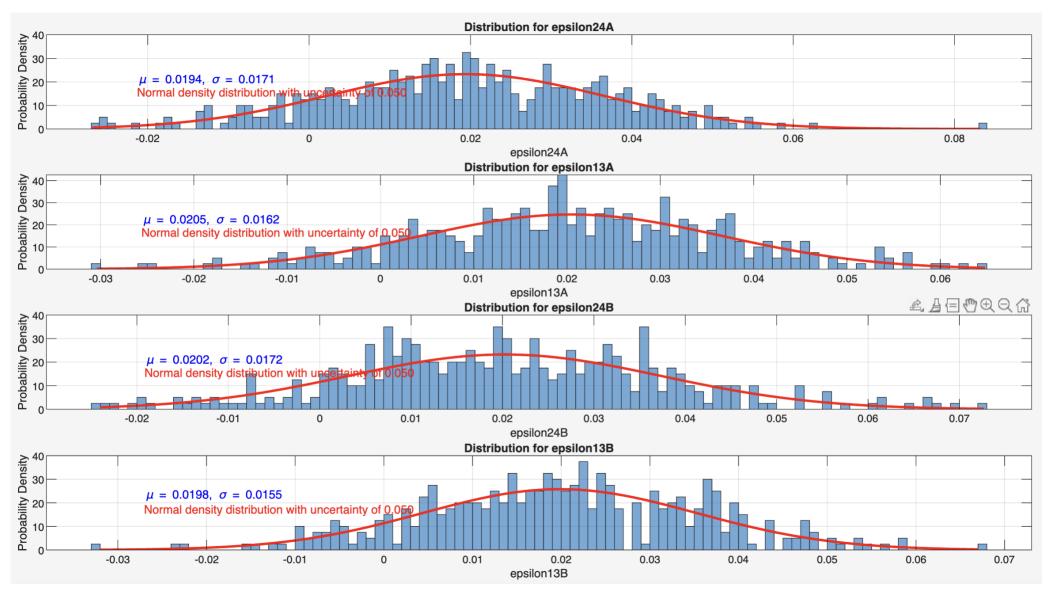
Solution of system of 16 overdetermined equations

- 16 equations
- For now assume σ_i^A , σ_i^{B1} , σ_i^{B2} and ϵ_{ij}^A , $\epsilon_{ij}^B = 0.02$
- Randomize 16 signals with normal distribution with standard deviation of 0.10, 0.05, 0.02, 0.01
- Minimize sum of squared residuals

sigma1A	0.950
sigma2A	0.940
sigma3A	0.010
sigma4A	0.015
sigma1B1	0.930
sigma2B1	0.920
sigma3B1	0.009
sigma4B1	0.012
sigma1B2	0.900
sigma2B2	0.880
sigma3B2	0.011
sigma4B2	0.016



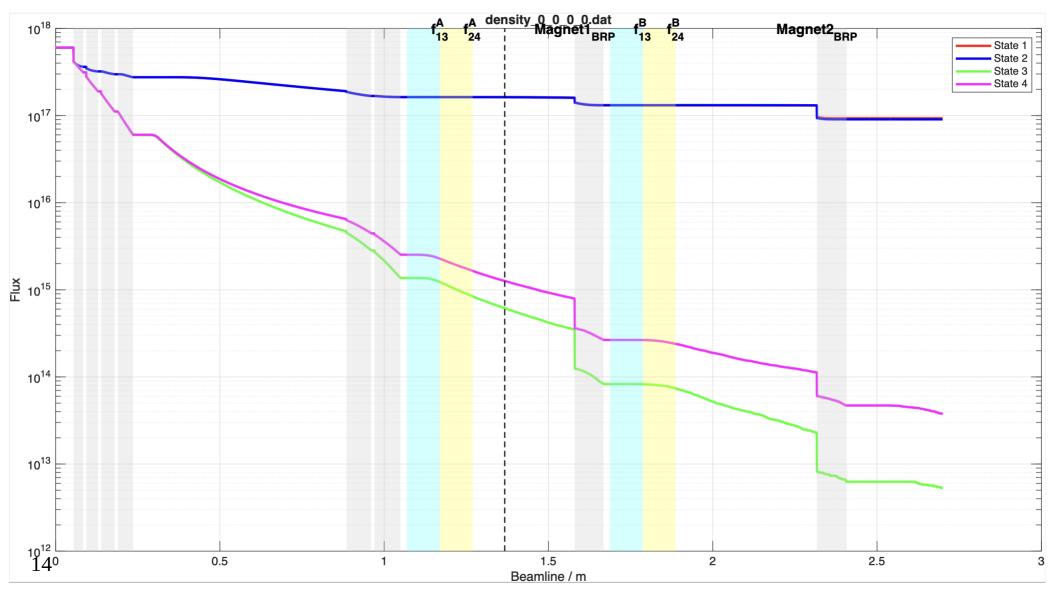


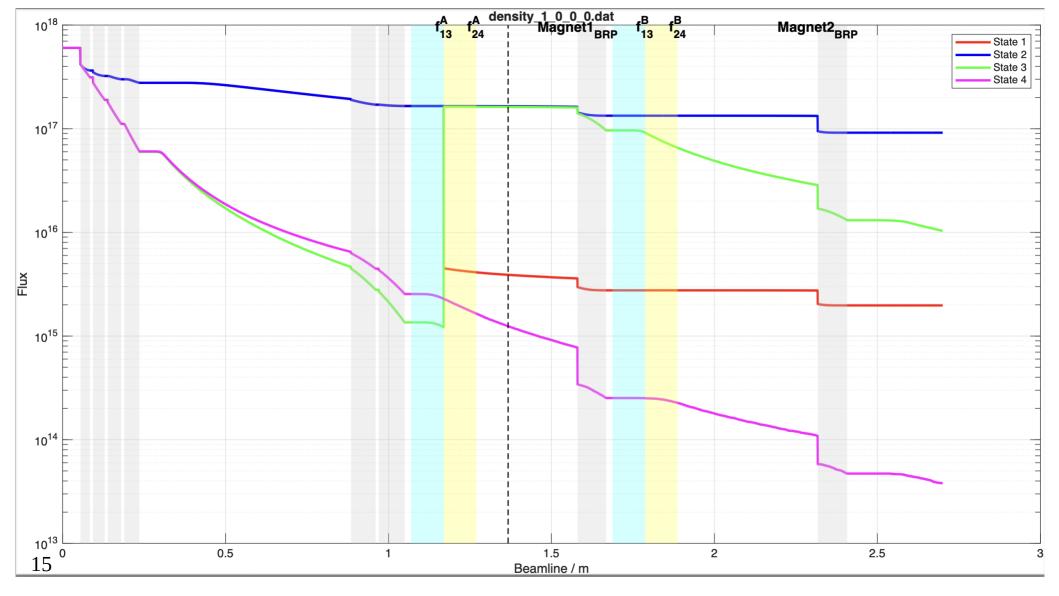


Comparison to simulated data

- Simulations by Zhengqiao
- σ_i^A , σ_i^{B1} , σ_i^{B2} are taken from simulated data
- Calculated signals assume known efficiencies ϵ_{ij}^{A} , $\epsilon_{ij}^{A} = 0.02$
- Calculated signals are always smaller than simulated (?)

				Calculated/Simulated	ABS		BRP	
	Signals calculated	Signals from simula	ation		1-3	2-4	1-3	2-4
n1	0.0762	0.0762	*2.409853e+18	1.000	0	0	0	0
n2	0.0479	0.0563		0.851	0	0	0	1
n3	0.0418	0.0566		0.739	0	0	1	0
n4	0.0135	0.0357		0.378	0	0	1	1
n5	0.0413	0.0442		0.934	0	1	0	0
n6	0.0454	0.0458		0.991	0	1	0	1
n7	0.0161	0.0234		0.688	0	1	1	0
n8	0.0110	0.0259		0.425	0	1	1	1
n9	0.0389	0.0431		0.903	1	0	0	0
n10	0.0106	0.0222		0.477	1	0	0	1
n11	0.0407	0.0445		0.915	1	0	1	0
n12	0.0124	0.0244		0.508	1	0	1	1
n13	0.0040	0.0102		0.392	1	1	0	0
n14	0.0081	0.0122		0.664	1	1	0	1
n15	0.0059	0.0120		0.492	1	1	1	0
n16	0.0100	0.0143		0.699	1	1	1	1





Particle density and flux

•
$$\dot{N}$$
 $\frac{atoms}{s}$

- Area m^2
- Flux $\Gamma = \frac{\dot{N}}{A} = \frac{atoms}{m^2 s}$

- Depending on area included results would change.
- Density depends on velocity distribution $n = \frac{\Gamma}{\langle v_z \rangle} = \frac{atoms}{m^3}$
- Beam size need to be considered
- Could explain discrepancy between calculations and simulations