
Inclusive Systematics Update

S. Maple

Overview

- Inclusive measurements usually start from the reduced cross section
 - Structure functions for ep/eA: $F_{2,L}$ from xsec and model or Rosenbluth separation, double spin asymmetries from xsec in different beam polarisations
 - Focus on systematics for inclusive NC cross section for now
 - CC to come when we have someone working on the analysis
- Systematics for inclusive cross section measurements in ep were well studied at HERA
 - Where there are no MC studies that can be done to give an informed/justified value for a systematic, we can refer to previous HERA values as (hopefully pessimistic) estimates

What systematics are we concerned with?

There are many possible sources of systematic uncertainties → just look at H1/ZEUS

papers

Some contribute more than others

- Some of the most impactful ones are:
 - Electron Finding Efficiency
 - Electron Energy scale
 - Electron Polar Angle
 - Hadronic Energy scale
 - Background modelling
 - QED Radiative Corrections
- ...and of course, luminosity/polarisation measurements

Source	Region	Uncertainty	
	$z_{\rm imp} \le -150{\rm cm}$	0.5% unc. \oplus 0.3% corr.	
	$-150 < z_{\rm imp} \le -60 \rm cm$	0.3% unc. \oplus 0.3% corr.	
Electron energy scale	$-60 < z_{\rm imp} \le +20 {\rm cm}$	0.5% unc. \oplus 0.3% corr.	
	$+20 < z_{\rm imp} \le +110 {\rm cm}$	0.5% unc. \oplus 0.3% corr.	
	$z_{\rm imp} > +110{\rm cm}$	1.0% unc. $\oplus 0.3\%$ corr.	
Electron scale linearity	$E_e' < 11 \mathrm{GeV}$	0.5%	
Hadronic energy scale	LAr & Tracks	1.0% unc. \oplus 0.3% corr.	
Tradrome energy scale	SpaCal	5.0% unc. \oplus 0.3% corr.	
Polar angle	θ_e	1 mrad corr.	
Noise	y < 0.19	5% energy not in jets, corr.	
Noise	y > 0.19	20% corr.	
Trigger efficiency	high y	0.3 - 2%	
	nominal	0.3%	
Electron track and vertex efficiency	high y	1%	
	nominal	0.2 - 1%	
Electron charge ID efficiency	high y	0.5%	
Electron ID efficiency	$high \ y \ z_{imp} < 20 \ (> 20) \ cm$	0.5% (1%)	
Election ID efficiency	nominal $z_{\rm imp} < 20~(>20)~{\rm cm}$	0.2% (1%)	
Extra background suppression	$E'_e < 10 \mathrm{GeV}$	$D_{ele} > 0.80 \pm 0.04$ corr.	
High y background subtraction	high y	1.03 ± 0.08 corr.	
QED radiative corrections	$x < 0.1, 0.1 \le x < 0.3, x \ge 0.3$	0.3% , 1.0%, 2.0%	
	high y: $y < 0.8 (y > 0.8)$	1% (1.5%)	
Acceptance corrections	high y	0.5%	
Acceptance corrections	nominal	0.2%	
Luminosity		4% corr.	

https://arxiv.org/abs/1312,4821

Electron finder efficiency (increase w y) ??? Tighten and relax cuts used in e-finding → study variation in efficiency Electron energy scale 0.5-1.9% (increase w y) (1-5% on σ) ??? Take single value estimate inspired by HERA? Electron polar angle 1mrad ??? Take single value estimate inspired by HERA? Hadronic energy scale 2% (0.5-4% on σ) ??? Take single value estimate inspired by HERA? (0.5-4% on σ) Compare number of events produced by different generators that are reconstructed as DIS QED radiative corrections (increase w x,y) 1% Compare size of radiative correction in bins with two different event generators Luminosity 1.5% 1% Use 1% 1.5%? Polarisation N/A <1% ? Use 1% 1.5%?	Systematic uncertainty	Achieved at H1/ZEUS*	Expected at EIC [†]	Possible studies
			???	
Hadronic energy scale 2% (0.5-4% on σ) Photoproduction background QED radiative corrections 1.5% 2% on σ Compare number of events produced by different generators that are reconstructed as DIS Compare size of radiative correction in bins with two different event generators 1.5% Use 1% 1.5%?	Electron energy scale	(increase w y)	???	Take single value estimate inspired by HERA?
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Electron polar angle	1mrad	???	Take single value estimate inspired by HERA?
background $(0.5-3\% \text{ on } \sigma)$ generators that are reconstructed as DIS QED radiative $0.3-2\%$ (increase w x,y) Compare size of radiative correction in bins with two different event generators Luminosity 1.5% 1% Use $\frac{1}{1.5}$ %?	Hadronic energy scale	· •	???	Take single value estimate inspired by HERA?
corrections (increase w x,y) two different event generators Luminosity 1.5% 1% Use 1% 1.5%?			2% on σ	•
	•		1%	•
Polarisation N/A <1% ? Use 1% 1.5%?	Luminosity	1.5%	1%	Use 1% 1.5%?
	Polarisation	N/A	<1% ?	Use 1% 1.5%?

^{*} choosing the better of the values in previous publications from <u>H1</u>, <u>ZEUS</u>

† numbers from YR

Reconstructing the kinematics using the electron

$$Q^2 = -q \cdot q \qquad \qquad y = rac{p \cdot q}{p \cdot k}$$

 If we simply evaluate the four-momenta directly, we get the <u>electron method</u>

$$q^{2} = (k - k')^{2} \longrightarrow Q_{e}^{2} = 2E_{0}E_{e}(1 + \cos\theta_{e})$$

$$p \cdot q = E_p[2E_0 - E_e(1 - \cos \theta_e)] \qquad p \cdot k = 2E_p E_0$$

$$y_e = 1 - \frac{E_e(1 - \cos\theta_e)}{2E_0}$$

$$rac{\delta Q^2}{Q^2} = rac{\delta E_e}{E_e} \oplus anrac{ heta_e}{2} \cdot \delta heta_e$$

$$rac{\delta y}{y} = rac{1-y}{y} \Bigg(rac{\delta E_e}{E_e} \oplus rac{\delta heta_e}{ anrac{ heta_e}{2}}\Bigg)$$

Problem:

Resolution of y diverges at small y values

Important systematics:

 Electron energy scale, electron finding efficiency, large radiative corrections at high y, polar angle uncertainty

Double-Angle method

- The DA method reconstructs the kinematics without directly using an energy measurement
 - This makes it a powerful method if you have a poor calorimeter (or track momentum) resolution
- The DA method is defined using the angles

as
$$lpha_e= anrac{ heta_e}{2}$$
 $lpha_h= anrac{\gamma}{2}=rac{\delta_h}{p_{t,h}}$ $y_{DA}=rac{lpha_h}{lpha_e+lpha_h}$ $Q_{DA}^2=rac{4E_0^2}{lpha_e(lpha_e+lpha_h)}$

The electron energy is not used; errors associated with the HFS energy measurement largely cancel out → sensitive to polar angle uncertainty, radiative corrections, electron finding efficiency

(e-)Sigma method

- The Sigma methods, like the DA method, use a mixture of electron and HFS information to optimise the resolution across a large region
- The Sigma method is defined as

$$y_{\Sigma} = rac{\delta_h}{\delta_h + E_e(1-\cos heta_e)} \qquad Q_{\Sigma}^2 = rac{E_e^2\sin^2 heta_e}{1-y_{\Sigma}}$$

and the e-Sigma method instead uses

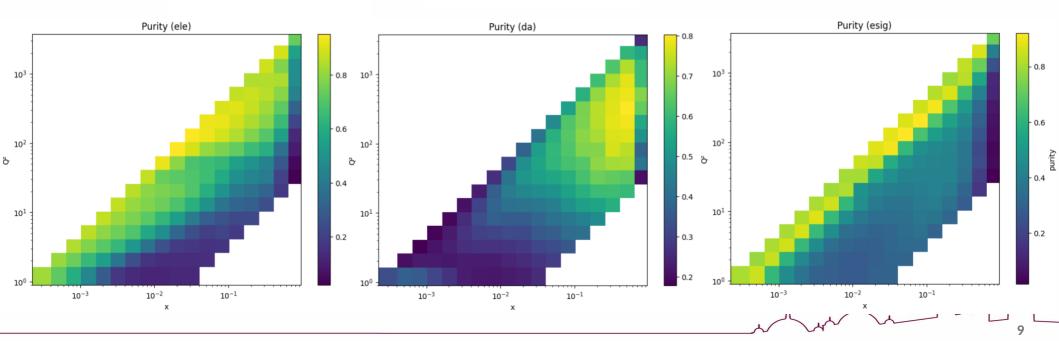
$$Q_{e\Sigma}^2=Q_e^2 \hspace{1.5cm} x_{e\Sigma}=x_{\Sigma}$$

- In these methods, the electron beam energy (E_0) is not used (except in Q^2 for e-Σ)
 - This makes these methods resistant to the effect of initial state QED radiation
 - Still impacted by Electron/Hadron energy scale, electron polar angle, etc

gle, etc

My setup for these studies

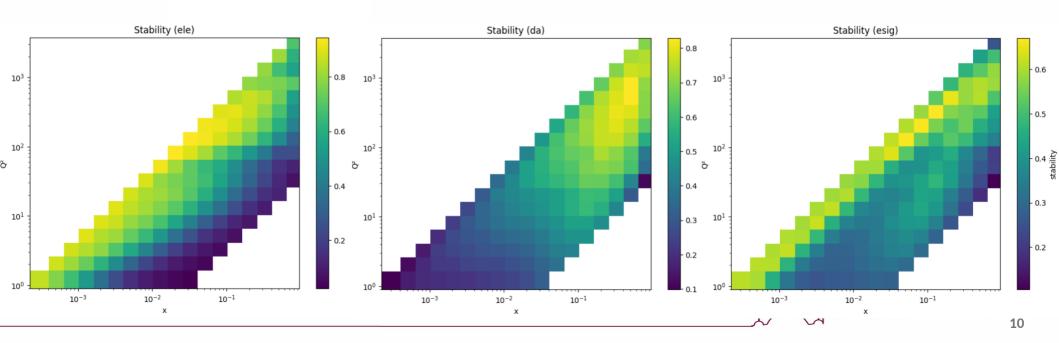
- Consider pythia6 10x130 ep DIS only sample, passed through simulation+EICrecon, scaled to 1fb⁻¹
- Default electron reconstruction (track momentum for energy, truth-based eID)
- Since this sample is pure signal, $N_{b/g} = 0$ and the fractional difference in N gives the fractional difference in $\sigma \rightarrow$ this is used to evaluate the systematics here, but a full cross section extraction will be necessary for samples with backgrounds

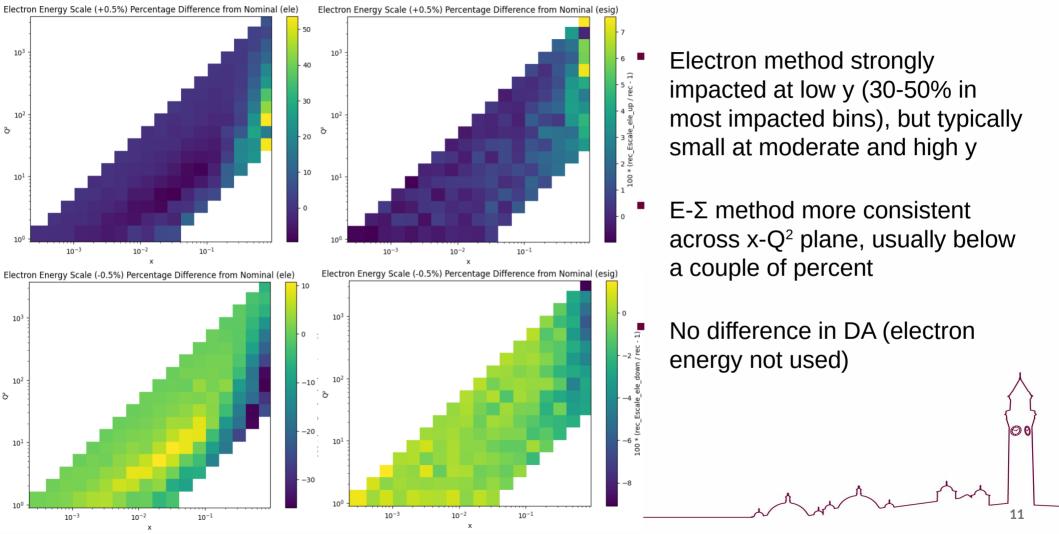

$$\sigma = \frac{N_{obs} - N_{b/g}}{L \cdot \epsilon \cdot A_{cc}}$$

- Compare yields in x-Q² bins for 7 scenarios:
 - Basic scenario with no systematic shifts
 - Electron energies all shifted by 0.5% up, and 0.5% down
 - HFS total energy shifted by 1% up, and 1% down
 - Electron polar angle shifted by 1mrad up, and 1mrad down

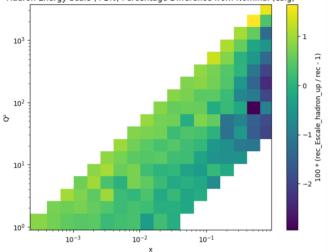
Purity and Stability

- Bin migration can be understood by considering the purity and stability of each bin
 - These depend on the binning scheme, where here is chosen to be 5 bins per decade in x and Q^2

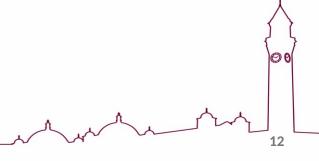

$$Purity = \frac{N_{rec\&gen}}{N_{rec}} \qquad Stability = \frac{N_{rec\&gen}}{N_{gen}}$$


Purity and Stability

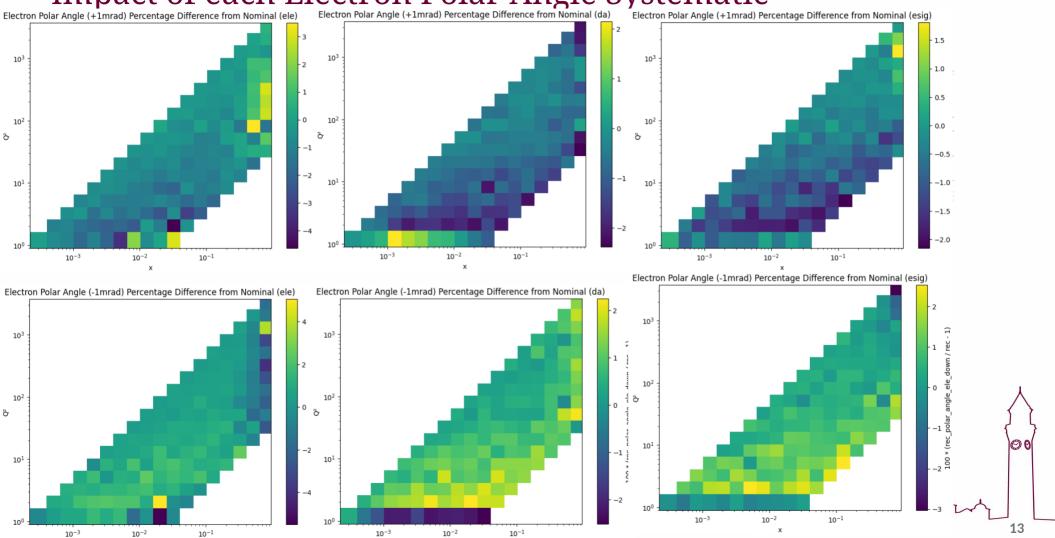
- Bin migration can be understood by considering the purity and stability of each bin
 - These depend on the binning scheme, where here is chosen to be 5 bins per decade in x and Q^2

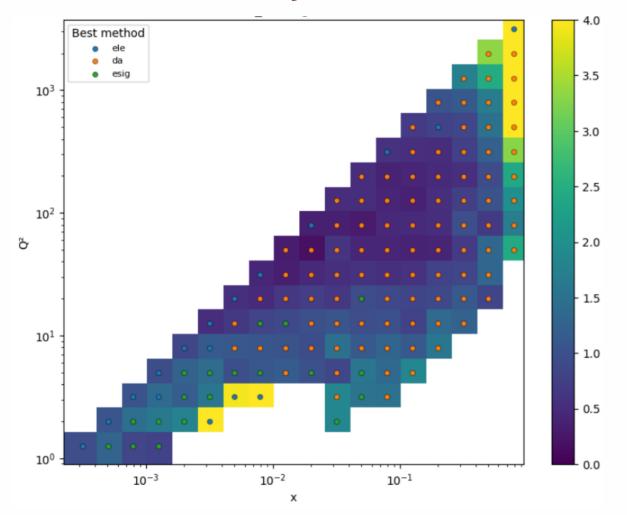

$$Purity = \frac{N_{rec\&gen}}{N_{rec}} \qquad Stability = \frac{N_{rec\&gen}}{N_{gen}}$$

Impact of each Electron Energy Scale Systematic



Impact of each Hadron Energy Scale Systematic Hadron Energy Scale (+1%) Percentage Difference from Nominal (esig)




- HFS not used in electron method → no impact
- HFS angle calculated as $\delta_h/p_{t,h}$ → HFS energy cancels out → no impact on DA
- E- Σ method impacted mostly at large x-Q², at most a couple of percent

Impact of each Electron Polar Angle Systematic
Electron Polar Angle (+1mrad) Percentage Difference from Nominal (ele)
Electron Polar Angle (+1mrad) Percentage Difference from Nominal (da)
Electron Polar Angle (+1mrad) Percentage Difference from Nominal (da)
Electron Polar Angle (+1mrad) Percentage Difference from Nominal (da)

Total Uncertainty from these 3 sources

- Total uncertainty taken from sum in quadrature of statistical uncertainty (1fb⁻¹) and the average uncertainty from each systematic (0.5*(|+ve| + |-ve|))
- Plot the total uncertainty from the method that gives the best value
 - Require purity & stability > 30%
- Important: only considering 3 sources here, of which only 1 impacts the DA method → this spread will change with inclusion of more systematics

Summary

- Estimated impact of three possible systematic uncertainties on NC σ_{red} measurement
- Impact of a given systematic changes between reconstruction methods
- From the three uncertainties, vast majority of bins have <3% total uncertainty
 - Will have to see how this changes as more systematics are evaluated and included

Next Steps

- Need to understand impact of beam and physics backgrounds
 - Djangoh samples, photoproduction samples need to be generated and passed through sim/recon/analysis
 - Must use electron finder in these studies