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ePIC Detector

o Our "normal” picture of ePIC is something like this
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ePIC Detector

o But, this is just the central detector...
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ePIC Detector

o Far forward (FF) and far backward (FB) detectors too!
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ePIC Detector

o Lots of UK involvement in the FB region!
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Far Backward Region

o Relatively simple, but very
important, set of detectors systems

in this region
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Far Backward Region

o Relatively simple, but very
important, set of detectors systems

in this region
o Luminosity monitors
o Low Q7 tagger

Top view
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Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023
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Far Backward - Luminosity Monitors
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Far Backward - Luminosity Monitors
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Far Backward - Luminosity Monitors

o Luminosity — normalisation for all physics studies
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Far Backward - Luminosity Monitors

o Luminosity — normalisation for all physics studies
o Absolute cross sections
o Combining run periods
o Asymmetry measurements
o Relative luminosity of different bunch crossings
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Luminosity Requirements and Systematics

o Yellow Report Requirements

o ~1% uncertainty for absolute luminosity
o Less than 107* for relative luminosity

Stephen JD Kay University of York 09/12/25



Luminosity Requirements and Systematics

o Yellow Report Requirements
o ~1% uncertainty for absolute luminosity
o Less than 107* for relative luminosity

o Learn lessons from Zeus lumi systematics

Cause Uncertainty contribution
Vertical alignment and v measurement 05-1%

Photon conversion rate 05-1%

Pile-up 0.0-0.2%

Deadtime measurement 0.5 % [kept same as ZEUS]
Theoretical Bethe-Heitler cross-section 0.5 % [kept same as ZEUS]
Total (quadratic sum) 1.0-1.6%
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Luminosity Requirements and Systematics

o Yellow Report Requirements

o ~1% uncertainty for absolute luminosity
o Less than 107* for relative luminosity

o Learn lessons from Zeus lumi systematics

Cause Uncertainty contribution
Vertical alignment and v measurement 05-1%

Photon conversion rate 05-1%

Pile-up 0.0-0.2%

Deadtime measurement 0.5 % [kept same as ZEUS]
Theoretical Bethe-Heitler cross-section 0.5 % [kept same as ZEUS]
Total (quadratic sum) 1.0-1.6%

o With reductions, ~1% absolute lumi precision within reach
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Luminosity Monitors - Measurements

o Use bremsstrahlung process to
measure luminosity
etp—e+p+y

e+A—>e+A+7y
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Luminosity Monitors - Measurements

o Use bremsstrahlung process to

measure luminosity
etp—e+p+y

e+A—>e+A+7y

o o known precisely from QED
o L=0"1R
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Luminosity Monitors - Measurements

o Use bremsstrahlung process to

measure luminosity
etp—e+p+y

e+A—>e+A+7y
o o known precisely from QED
o L=0c"1R
o If o is known, then if we measure
R we can determine £

Figures - EIC Yellow Report - Section 11.7.1, p575
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Luminosity Monitors - Measurements

o Use bremsstrahlung process to

measure luminosity
etp—e+p+y

e+A—>e+A+7y
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Figures - EIC Yellow Report - Section 11.7.1, p575
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Luminosity Monitors - Measurements

o Use bremsstrahlung process to
measure luminosity
etp—e+p+y

e+A—>e+A+7y

o o known precisely from QED
o L=0"1R
o If o is known, then if we measure
R we can determine L
o ~y peaked in e~ beam direction

o Beam divergence has a large
effect - ~200urad at IP6!
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Luminosity Monitors - Measurements

o Use bremsstrahlung process to
measure luminosity

T T T T T T T T T T

Events

e + p — e + p + 'y 105; — Bethe-Heitler parametrization

-=Angular divergence applied

e+A—>e+A+7y

o o known precisely from QED ok
o L=0"'R g
102
o If o is known, then if we measure
R we can determine £ "’
o ~y peaked in e~ beam direction £

o Beam divergence has a large R e e

6, (rad)

effect - ~200urad at IP6!
o Two luminosity monitor systems

o Direct Photon Detector
o Pair Spectrometer
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Luminosity Monitoring - Counting Photons

o In principle, direct bremmstrahlung v measurement easy
o Simply count photons above some energy cutoff
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Luminosity Monitoring - Counting Photons

o

In principle, direct bremmstrahlung v measurement easy
Simply count photons above some energy cutoff
o Only possible at low luminosities

©

©

At EIC luminosity, expect large number of photons

At £ ~ 103*cm 257!, expect about 23 hard photons
per bunch crossing

©
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Luminosity Monitoring - Counting Photons

o

©

©

©

In principle, direct bremmstrahlung v measurement easy
Simply count photons above some energy cutoff

o Only possible at low luminosities
At EIC luminosity, expect large number of photons
At £ ~ 103*cm 257!, expect about 23 hard photons
per bunch crossing
Two separate Direct Photon Detectors proposed
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Luminosity Monitoring - Counting Photons

In principle, direct bremmstrahlung v measurement easy

o

Simply count photons above some energy cutoff
o Only possible at low luminosities

©

©

At EIC luminosity, expect large number of photons
At £ ~ 103*cm 257!, expect about 23 hard photons
per bunch crossing

o Two separate Direct Photon Detectors proposed
o One used only for special luminosity runs at low £

©

o One capable of withstanding > 1 GHz rates, used for
monitoring during nominal running at high £
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Luminosity Monitoring - Counting Photons

o

In principle, direct bremmstrahlung v measurement easy
Simply count photons above some energy cutoff
o Only possible at low luminosities

©

At EIC luminosity, expect large number of photons

At £ ~ 103*cm 257!, expect about 23 hard photons
per bunch crossing
Two separate Direct Photon Detectors proposed
o One used only for special luminosity runs at low £
o Use same calorimeter design as pair spectrometer!

o One capable of withstanding > 1 GHz rates, used for
monitoring during nominal running at high £

©

©

©

o Use a complementary Pair Spectrometer too
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Luminosity Monitoring Region

Photon path before
lumi exit window

Photon path after
lumi exit window

Beam pipe walls should not intrude
iNtO the 5%, cone.
Cone radius = 2 cm at exit window

Nothing should be placed
within the 5. cone.

Very Important to keep the
&= photon conical region free of obstacles!




Luminosity Monitoring Region

o Conversions in air before vacuum pipe, negligible effect
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Luminosity Monitoring Region

o Conversions in air before vacuum pipe, negligible effect

o < 0.02% contribution to systematics

Photon path before
lumi exit window

Photon path after
lumi exit window

N,

Nothing should be placed
within the 5. cone.

Beam pipe walls should not intrude
iNtO the 5%, cone.
Cone radius = 2 cm at exit window

Very Important to keep the
&= photon conical region free of obstacles!




Luminosity Monitoring Region

o Conversion foil within vacuum pipe, between magnets
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Figures - D. Gangadharan, University of Houston
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Direct Photon Detector
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Figure - J. Nam, Temple University, ePIC Collaboration meeting January 2023
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https://doi.org/10.48550/arXiv.2510.05259

Direct Photon Detector
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Figure - J. Nam, Temple University, ePIC Collaboration meeting January 2023
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https://doi.org/10.48550/arXiv.2510.05259

Direct Photon Detector

o Latest high rate design, quartz fiber based calorimeter
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https://doi.org/10.48550/arXiv.2510.05259

Direct Photon Detector

o Latest high rate design, quartz fiber based calorimeter
o Needs to be very rad hard ,~7 MGy from 100 fb~*
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https://doi.org/10.48550/arXiv.2510.05259

Direct Photon Detector

o Latest high rate design, quartz fiber based calorimeter
o Needs to be very rad hard ,~7 MGy from 100 fb~*

o For 18 GeV e™, graphite absorbers to absorb synchrotron
radiation

o Recent paper on simulation of detector demonstrates
performance at high photon multiplicities

https://doi.org/10.48550/arXiv.2510.05259
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Direct Photon Detector - Details

o High rate design is a quartz fiber spaghetti calorimeter
o Detect Cherenkov radiation from EM shower along fibers

5 degree

Figures - Yasir Ali, AGH UST, Krakow (modified)
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Direct Photon Detector - Details

o High rate design is a quartz fiber spaghetti calorimeter
o Detect Cherenkov radiation from EM shower along fibers
o Inclined to prevent channelling

5 degree
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Pair Spectrometer Overview

o Pair spectrometer outside of main synchrotron radiation fan
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Pair Spectrometer Overview

o Pair spectrometer outside of main synchrotron radiation fan
o 5o gap
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Pair Spectrometer Overview

o Pair spectrometer outside of main synchrotron radiation fan
o bo gap
o Bremmstrahlung photons converted to eTe™ pairs

Bremstrahlung Sweeper Spectrometer

Magnet Magnet
photon beam o g Trackers
diamond window ~lmm seeeessmeeeenns h\
: : B field Bfield; o CA
@ ® /H

AN\
NN AVAYA "NANN\NNNASNNAN NN
NAVAVAYAYAY AVAVAYAYA
ANNNNNNNANANN
vacuum

air f Thin converter
Unavoidably thick """ N\, ¢

exit window Sweeper magnet Idea from
Krzysztof Piotrzkowski

Figure - D. Gangadharan, University of Houston
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Pair Spectrometer - General Requirements

o Exit window and conversion foils
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Pair Spectrometer - General Requirements

o Exit window and conversion foils
o Well known composition and thickness
o Exit window and foil need to withstand heat load!
o Before accelerator magnet re-design, > 100 Wmm ™2 on exit
window!
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Pair Spectrometer - General Requirements

o Exit window and conversion foils
o Well known composition and thickness
o Exit window and foil need to withstand heat load!
o Before accelerator magnet re-design, > 100 Wmm ™2 on exit
window!

o Sweeper and analyser magnets
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Pair Spectrometer - General Requirements

o Exit window and conversion foils
o Well known composition and thickness
o Exit window and foil need to withstand heat load!
o Before accelerator magnet re-design, > 100 Wmm ™2 on exit
window!
o Sweeper and analyser magnets
o BdL ~ 1 Tm, compact system, ~ 15 cm bore diameter
o Allows placement far from central region
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o Before accelerator magnet re-design, > 100 Wmm ™2 on exit
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o BdL ~ 1 Tm, compact system, ~ 15 cm bore diameter
o Allows placement far from central region
o Small fringe fields
o Good vacuum for minimal air conversions
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Pair Spectrometer - General Requirements

o Exit window and conversion foils
o Well known composition and thickness
o Exit window and foil need to withstand heat load!
o Before accelerator magnet re-design, > 100 Wmm ™2 on exit
window!
o Sweeper and analyser magnets
o BdL ~ 1 Tm, compact system, ~ 15 cm bore diameter
o Allows placement far from central region
o Small fringe fields
o Good vacuum for minimal air conversions
o Calorimeter
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Pair Spectrometer - General Requirements

o Exit window and conversion foils
o Well known composition and thickness
o Exit window and foil need to withstand heat load!
o Before accelerator magnet re-design, > 100 Wmm ™2 on exit
window!
o Sweeper and analyser magnets
o BdL ~ 1 Tm, compact system, ~ 15 cm bore diameter
o Allows placement far from central region
o Small fringe fields
o Good vacuum for minimal air conversions
o Calorimeter
o 17%/+/E energy resolution sufficient
o Based upon ZEUS experience
o Achieve ~ 10%/+E and ~ 2 mm position resolution with
latest design
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Pair Spectrometer - General Requirements

o Exit window and conversion foils
o Well known composition and thickness
o Exit window and foil need to withstand heat load!
o Before accelerator magnet re-design, > 100 Wmm ™2 on exit
window!
o Sweeper and analyser magnets
o BdL ~ 1 Tm, compact system, ~ 15 cm bore diameter
o Allows placement far from central region
o Small fringe fields
o Good vacuum for minimal air conversions
o Calorimeter
o 17%/+/E energy resolution sufficient
o Based upon ZEUS experience
o Achieve ~ 10%/+E and ~ 2 mm position resolution with
latest design
o Segmented readout, disentangle pileup
o ~ ns timing resolution, bunch-by bunch £
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Pair Spectrometer - Magnet Design and Positioning

o Based upon recent feedback from magnet designers, 1 Tm
fields and 15 cm bore diameter possible
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Pair Spectrometer - Magnet Design and Positioning

o Based upon recent feedback from magnet designers, 1 Tm
fields and 15 cm bore diameter possible

o New baseline design with sweeper magnet ~ 55 m from IP

Conversion foil inside

CAL and trackers
vacuum vessel

Analyzer Magnet Sweeper Magnet
20cm - / -
B*dL=1Tm Vacuum chamber / BrdL=1Tm
5em @ Z=-48m /
8cm@Z=-73m I Lo |
| | 1 | |
v —
1 cm thick 1 cm thick
Exit ca — Entrance ca|
p Am p
] 8m

Figure - D. Gangadharan, University of Houston
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Pair Spectrometer - Trackers

o Trackers enable easy calibration of calorimeters
o Trackers could be used to obtain ~ 1% energy resolution
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Pair Spectrometer - Trackers

o Trackers enable easy calibration of calorimeters
o Trackers could be used to obtain ~ 1% energy resolution
o Resolution strongly affected by end cap thickness and material

£ = With 1 cm Al N
P Exitca i - Without =013 Cay/
. P o, =027Gev for frrl |05, =013Gev
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Pair Spectrometer - Trackers

o Trackers enable easy calibration of calorimeters
o Trackers could be used to obtain ~ 1% energy resolution
o Resolution strongly affected by end cap thickness and material
o Excellent tracking possible
o Excellent energy resolution
o Excellent pointing resolution

E 3 . En : 245 E E Ened 2210
£ With Tem Al 5 ] o Without =, o]
3= Exitcap =027GeV i w- . Ogaus = 0.13 GeV
$.E gaus — M- i F Exitcap gy
E n:
E -3
150+
w— 100 |
15 I 17 \'I 1% 20 21 5 & 17 l‘ﬂ 1% 20 21
E.. (GeV) E.. (GeV)
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Pair Spectrometer - Trackers

o
Q
o
o

Trackers enable easy calibration of calorimeters
Trackers could be used to obtain ~ 1% energy resolution
Resolution strongly affected by end cap thickness and material
Excellent tracking possible

o Excellent energy resolution

o Excellent pointing resolution

o AC-LGAD pixel detector
o Synergy with other systems using this technology
£ = With 1 cm Al N
30 Skl ¢ without _ (g g
E,; Exit cap gans = 0.27 GeV Em; Exit cap Ogaus = 0.13 GeV
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Pair Spectrometer - Calorimeters, WSciFi

o Updated design - tungsten scintillating
fiber calorimeter (WSciFi)
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Pair Spectrometer - Calorimeters, WSciFi

o Updated design - tungsten scintillating
fiber calorimeter (WSciFi)

o Fiber grid embedded within W
powder/epoxy
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Pair Spectrometer - Calorimeters, WSciFi

o Updated design - tungsten scintillating
fiber calorimeter (WSciFi)
o Fiber grid embedded within W
powder/epoxy
o Tweak volumetric ratio between
W/SciFi to adjust many parameters
o Radiation length

Moliére radius
Sampling fraction
Energy resolution

—

© 0 ©o
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Pair Spectrometer - Calorimeters, WSciFi

o Updated design - tungsten scintillating

fiber calorimeter (WSciFi)

o Fiber grid embedded within W
powder/epoxy

o Tweak volumetric ratio between

W/SciFi to adjust many parameters

o Radiation length

© 0 ©o

Moliére radius
Sampling fraction
Energy resolution

o XY orientated fiber design

—

Stephen JD Kay

University of York
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Pair Spectrometer - Calorimeters, WSciFi

o Updated design - tungsten scintillating

fiber calorimeter (WSciFi)

o Fiber grid embedded within W
powder/epoxy

o Tweak volumetric ratio between

W/SciFi to adjust many parameters

o Radiation length

© 0 ©o

Moliére radius
Sampling fraction
Energy resolution

o XY orientated fiber design

o 3D shower profile possible
o Potential Al/ML applications

Stephen JD Kay

University of York

09/12/25
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Pair Spectrometer - Sampling Fraction

o Sampling fraction strongly depends upon W:SciFi ratio
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Pair Spectrometer - Sampling Fraction

o Sampling fraction strongly depends upon W:SciFi ratio
o 4 :1 W:SciFi ratio in
current design

0 ~18cmx18 cmx18 cm
detector
Q ~ 23X0

o Xg ~ 8 mm

Stephen JD Kay University of York 09/12/25
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Pair Spectrometer - Sampling Fraction

o Sampling fraction strongly depends upon W:SciFi ratio

o 4 :1 W:SciFi ratio in -
Simu campaign: 06/2025
current design 0026:— ePIC Performance o Data
~F e guninfront of calorimeter Fit
L —Fi
0 ~18cmx18 cmx18 cm oo
detector £l
o ~ 23Xg g Em—
5 0023—
o Xg ~8mm BoE
0.022— FitModel: SF(E)=mxE+c
. 0 F Slope = -4.819¢-06 + 8.54e-07
o Yields ~ 23% oon— Intercept = 002371+ 8:87e-06
sampling fraction L
0 2 4 6 8 10 12 14 16 18

Generated electron energy [GeV]
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Pair Spectrometer Calorimeter - Prototyping

o Preliminary design and prototyping guided by work on
sPHENIX and ePIC FEMC calorimeters
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Pair Spectrometer Calorimeter - Prototyping

o Preliminary design and prototyping guided by work on
sPHENIX and ePIC FEMC calorimeters

o Construction technique previously developed and utilised by
O.Tsai et al.

Stephen JD Kay University of York 09/12/25
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Pair Spectrometer Calorimeter - Prototyping

o Preliminary design and prototyping guided by work on
sPHENIX and ePIC FEMC calorimeters
o Construction technique previously developed and utilised by

O.Tsai et al.
o Acquired materials for a small production batch of prototype
modules at York
o Produced ~10 blocks in late 2024 to early 2025

o

Stephen J Kay University of York
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Pair Spectrometer Calorimeter - Prototyping

o Preliminary design and prototyping guided by work on
sPHENIX and ePIC FEMC calorimeters
o Construction technique previously developed and utilised by
O.Tsai et al.
o Acquired materials for a small production batch of prototype
modules at York
o Produced ~10 blocks in late 2024 to early 2025
o Used prototypes in two beam tests
o December 2024
o July 2025

s
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Pair Spectrometer Calorimeter - Prototype Construction

o Basic sketch of construction process...
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Pair Spectrometer Calorimeter - Prototype Construction

o Populate stack of meshes with fibers

o Now use a dedicated fiber holder/dropper
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Pair Spectrometer Calorimeter - Prototype Construction

o Separate meshes (Alex’s favourite part)

o Must be done extremely carefully
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Pair Spectrometer Calorimeter - Prototype Construction
o Insert meshes into slots in mould

o Lesson Learned - Seal the ends
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Pair Spectrometer Calorimeter - Prototype Construction

o Pour tungsten powder over fiber array
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Pair Spectrometer Calorimeter - Prototype Construction

o Mix and pour epoxy over tungsten/fiber array

o Pour in 25 ml batches, use a vibrating table
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Pair Spectrometer Calorimeter - Prototype Construction

o Cure epoxy for ~2 hours at 50 — 60°C, remove from mould

o Lesson learned - Place under vacuum before curing
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PSCal - Prototype Testing at Mainz

o Beam tests at the Mainz Microtron, MAMI, in Mainz Germany
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PSCal - Prototype Testing at Mainz

o Series of microtrons deliver up to ~ 1.6 GeV e~ beam
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PSCal - Prototype Testing at Mainz

o Beam tests in A2 hall

nnnnnnnn

=

m

= G
°
e

10m
7 Y
RIM2 S== 7 i
- e L
nﬂ.-!___ - ' RIM}T":/ £k \ \
=X _

RIMI | & T K
Injector Therm. Source — =

Linac + Pol. Source

Spectrometer : =/
Hall Y

MAINZER MIKROTRON

Stephen JD Kay University of York 09/12/25




PSCal - Prototype Testing at Mainz

o e~ beam on radiator — real 7 beam (tagger detects e™')
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PSCal - Prototype Testing at Mainz

o Two options, place along tagger FP (e™), 1, or in v beam, 2
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PSCal - Mainz December 2024 Tests

o Dedicated beamtime for testing, free reign to position
detector and vary beam current as needed
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PSCal - Mainz December 2024 Tests
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detector and vary beam current as needed
o Position 1, at tagger in e~ beam
o Know energy of incident e~ quite well
o Intensity relatively high
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PSCal - Mainz December 2024 Tests

o Dedicated beamtime for testing, free reign to position
detector and vary beam current as needed
o Position 1, at tagger in e~ beam
o Know energy of incident e~ quite well
o Intensity relatively high
o Position 2, in v beam
o Lower intensity

o Unknown energy of incident v (not linked to tagger DAQ)
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PSCal - Mainz December 2024 Tests

o Dedicated beamtime for testing, free reign to position
detector and vary beam current as needed
o Position 1, at tagger in e~ beam
o Know energy of incident e~ quite well
o Intensity relatively high
o Position 2, in v beam

o Lower intensity
o Unknown energy of incident v (not linked to tagger DAQ)

o Ran at both positions in variety of configurations

'vllll‘lll‘rmrg

o Hampered by readout... but, saw clear rate dependent signal
University of York 09/12/25 19 /23

Stephen JD Kay



PSCal - Mainz July 2025 Tests

o Parasitic test, only position 1, at tagger in e~ beam possible

o Establish energy dependence, see shower profile
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PSCal - Mainz July 2025 Tests

o Parasitic test, only position 1, at tagger in e~ beam possible

©

Establish energy dependence, see shower profile

(®

More blocks available, more readout channels

o

Range of arrangements and readout schemes
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PSCal - Mainz July 2025 Tests

o Parasitic test, only position 1, at tagger in e~ beam possible
o Establish energy dependence, see shower profile
o More blocks available, more readout channels

o Range of arrangements and readout schemes

Run Number,
Tagger26: 288.5-300 MeV
Tagger18: 410-425 MeV
Taggeri2: 520-540 MeV
Tagger10: 545-563.5 MeV

Normalised Counts
o
@

Y y =
A 7 \ P - 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
[ A AL 55 \ ;
DA Ne< Pl ADC Energy

o From testing at various tagger positions (different energy),
established clear energy dependence in signal
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PSCal - Mainz July 2025 Tests

o Parasitic test, only position 1, at tagger in e~ beam possible
o Establish energy dependence, see shower profile
o More blocks available, more readout channels

o Range of arrangements and readout schemes

Run Number,
Tagger26: 288.5-300 MeV
Tagger18: 410-425 MeV
Taggeri2: 520-540 MeV
Tagger10: 545-563.5 MeV

Normalised Counts
o
@

£ =
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
ADC Energy

o From testing at various tagger positions (different energy),
established clear energy dependence in signal

o Need for more advanced readout clear
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PSCal - Prototyping Lessons

o So, what did we learn from the prototyping process?
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limitations
o Can't get to required tolerances without machining
o Need to automate fibre cutting process
o Various tweaks and adjustments to the whole procedure
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o Mainz can be utilised straightforwardly

Stephen JD Kay University of York 09/12/25 21 /23



PSCal - Prototyping Lessons

o So, what did we learn from the prototyping process?

o Preliminary construction procedure worked, but with
limitations

o Can't get to required tolerances without machining
o Need to automate fibre cutting process
o Various tweaks and adjustments to the whole procedure

o From testing, clear that readout was limiting factor, need
further refinement here

o Lab based testing at York not particularly useful (e.g. cosmics)
o Mainz can be utilised straightforwardly

o Apply lessons to plans going forward
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PSCal - Next Steps

o Two big tasks come next which can be tackled in parallel
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o Two big tasks come next which can be tackled in parallel
o Finalise production process, establish protocol
o Establish and test more realistic readout scheme
o Establish new protocol — use any new blocks produced in a
beam test at JLab
o Working and co-ordinating with JLab colleagues, develop
readout electronics for this test
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PSCal - Next Steps

o Two big tasks come next which can be tackled in parallel
o Finalise production process, establish protocol
o Establish and test more realistic readout scheme
o Establish new protocol — use any new blocks produced in a
beam test at JLab

o Working and co-ordinating with JLab colleagues, develop
readout electronics for this test
o Plan to run tests in Hall D, ~ late spring 2026
o ~1-6 GeV e~ at pair spectrometer station

Photon Tagger Pair Spectrometer
K Triplet Polarimeter F,X’ ,,,,,,,,,,,,,,,
/ North LINAC F""’"l"" y H
4 | 3 m Photon
\ Hd ]:\\ - Bl Beam Dump
Diamond Radiator  Electron Collimator Gluex
East ARC Beam Dump select @ <25 ur  Spectrometer

polarized photons
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Summary

o Far backward detectors vital for luminosity monitoring and for
unique physics measurements
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o ePIC luminosity systems in advanced stage of development

o Prototype design and construction process finished
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Summary

o Far backward detectors vital for luminosity monitoring and for
unique physics measurements
o Direct photon detector design crystallising
o Detailed radiation studies published recently
o ePIC luminosity systems in advanced stage of development
o Prototype design and construction process finished
o Utilised prototypes in two beam tests
o Applying lessons learned from prototyping phase to develop
full production protocol and procedure
o On track for a further beam test next year and full production
following this — Potentially 180+ modules to make!
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Thanks for listening, any questions?
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Pair Spectrometer - Expected Rates

o Expected signal rates using nominal £, accounting for -

o 1 cm conversion at exit
window, (9% conversion
probability, swept away

* single .

« coincidence

N/ bunch xing
3

o 37 m air, 9% conversion, i
swept away

107

o 1 cm Al vacuum chamber
entrance cap, 9%
conversion, swept away

i -
Y T P T
P 2515 x5 0crg” 10es * H1xs S 110, 4 110,40 110, 15

o 1 mm Al conversion foil,
1%, detected in pair spec
o At most, ~ 0.2 electrons per bunch crossing on average
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Pair Spectrometer - Radiation Dose

o Using DD4HEP simulation, evaluated dose
o In highest rate config, max fiber dose ~ 1 MGy/100 fb~!
o Dose is predominantly along a strip in middle of detector

Dose per day (Gy/day) per 0.9 cm x 0.9 cm x 18 cm element, Top Det

-100 -80 -60 -40 -20
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Low @2 Tagger - Quasi Real Photoproduction

o Clean photoproduction signal over a limited region
0 1073 < Q% <107t (GeV/c?)
o Large background from Bethe-Heitler bremsstrahlung

o High event rates
o Mitigate with good tracking and Q2 resolution

3
Er T T T T T 102

s T
8 — Bremsstrahlung Tagger 2
€ . .[ - Quasireal photoproduction — Bremsstrahlung
o F —Pythias L] — Quasi-real
34 S 0 Pythia6
<
g
[
e
H
310 L
2 i
3 st
107 8 2
®
£ 10 ot ik
5
102k 2 d b
€
3
103k © 10 jrlrr H

T T P P O PO O P S
2 4 6 8 10 12 14 16 18 20 22 -9 -8 -7 -6 -5 -4 -3 -2
Electron energy E, (GeV) Reconstructed l0g10(Q?) (GeV?)
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Low @2 Tagger - @? Reconstruction

o Two different ML
algorithms give

B
similar results S
o Reconstruct tracks |4
with €’ kinematics S po—
o Q2 from €' energy 8 10
and 0 9
o Compare to truth info e B '
in taggers and central log Q2 truth
detector

Figure - J. Adam, CTU Prague, ePIC Collaboration meeting July
2023
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Low Q2 Tagger - Calorimeter

o For ePIC, calorimeter still in baseline design
o Being costed
o Some open questions/challenges
o Needs to handle very high rates
o Taggers already provide very high resolution
o Could degrade if exit windows too thick.

Exit window (2 mm Be,
45° relative to beam)

Outgoing e- beam

=

Tracking planes (15x15 cm,
\\ 30 cm spacing)

Calorimeter
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Far Backwards - Physics, Spectroscopy Distributions

X production Enires. T ¥ production Speciroscopy Sum | Entries 2ems

¥ production Enisies

5 6 s 6
E [GeV) E[GeV]

Figures - D. Glazier, University of Glasgow
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Detector 2 - Low Q2 Tagger - Ideas/Options

o Include the low Q2 tagger calorimeter

o “Distinctive” if ePIC drops the low Q? tagger calorimeters

o Need to decide if this is “worth” doing or not in either case
Decision between in/out of vacuum is a big one

o Det2 could deliberately go the other way
Try to bridge the acceptance gap in €’ energy and Q? reach
between central detector and low Q? tagger

o More on this in the next talk!
Acceptance gap is consequence of the magnet configuration
and arrangement

o Low energy e~ are bent into the dipoles

o Low(ish) Q% e~ go into the beampipe
Broad solutions to this include

o A "B0" equivalent, a detectors inside the magnet

o A beampipe with a significantly larger radius

o Neither option is straightforward

(®

©

o
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Detector 2 - Low Q2 Tagger - Ideas/Options

o To improve high energy acceptance, get detectors as close to
the beam as possible
o Challenging! Radiation environment, vacuum, detector access
concerns...
o If this is worked in early, more likely
o Integrated active/passive radiation monitoring critical

o For some physics channels, filling the acceptance gap between
Q? 0.1 and 0.01 is very important

o For others channels, getting lots of events with energies as
close to the beam energy is more crucial

o Lots of events near threshold

o These events have zero energy

o This would again, likely mean detectors within the beamline
vacuum
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