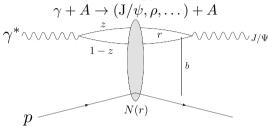


Vector meson probes of gluon saturation at the 2nd detector

Heikki Mäntysaari

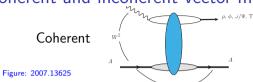
University of Jyväskylä Centre of Excellence in Quark Matter Finland

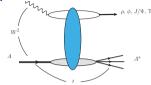

EIC 2nd detector meeting, September 18, 2025

Heikki Mäntysaari (JYU) VMs at the EIC Sept 18, 2025 1/19

Vector meson production at high energy

Lowest order in perturbation theory:


$$\mathcal{A}_{\Omega} \sim i \int \mathrm{d}^2 \mathbf{b}_{\perp} \, e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} \Psi^* \otimes \Psi_{\mathrm{J}/\psi} \otimes N_{\Omega}$$


- \bullet $\gamma^* \to q\bar{q}$: photon wave function Ψ (QED)
- **2** $qar{q}$ -target interaction: dipole amplitude N_{Ω}
- \bullet $q\bar{q} \to {\rm J}/\psi : {\rm J}/\psi$ wave function $\Psi_{{\rm J}/\psi}$ (models)

H.M, Salazar, Schenke, 2207.03712

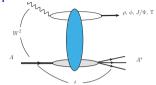
No net color charge transfer ("diffractive"), Ω =target configuration

Coherent and incoherent vector meson production

Incoherent

3/19

Coherent: target remains intact, initial state $|i\rangle=$ final state $|f\rangle.$ Good, Walker, Phys. Rev. 1960:


$$\frac{\mathrm{d}\sigma^{\mathrm{coherent}}}{\mathrm{d}t} \sim \left| \langle \mathcal{A} \rangle_{\Omega} \right|^2$$

 \Rightarrow Probe average interaction \Rightarrow average geometry

Coherent and incoherent vector meson production

Coherent w²

Figure: 2007.13625

Incoherent

3/19

Coherent: target remains intact, initial state $|i\rangle=$ final state $|f\rangle.$ Good, Walker, Phys. Rev. 1960:

$$\frac{\mathrm{d}\sigma^{\mathrm{coherent}}}{\mathrm{d}t} \sim \left| \langle \mathcal{A} \rangle_{\Omega} \right|^2$$

 \Rightarrow Probe average interaction \Rightarrow average geometry Incoherent: $|i\rangle \neq |f\rangle$: target breaks up:

$$\frac{\mathrm{d}\sigma^{\mathrm{incoh}}}{\mathrm{d}t} = \frac{\mathrm{d}\sigma^{\mathrm{total\ diff}}}{\mathrm{d}t} - \frac{\mathrm{d}\sigma^{\mathrm{coherent}}}{\mathrm{d}t} \sim \left\langle \left|\mathcal{A}\right|^{2}\right\rangle_{\Omega} - \left|\left\langle \mathcal{A}\right\rangle_{\Omega}\right|^{2}$$

Variance ⇒ access to event-by-event fluctuations in the target structure

Dipole-target scattering in CGC: $N_{\Omega}(\mathbf{x}_{\perp}, \mathbf{y}_{\perp}) = 1 - \frac{1}{N_{c}} \operatorname{Tr} \left\{ V^{\dagger}(\mathbf{x}_{\perp}) V(\mathbf{y}_{\perp}) \right\}$

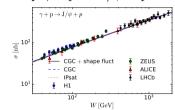
Same d.o.f. as in the IP-Glasma heavy ion initial state

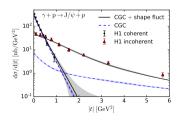
Color charge distribution at x = 0.01

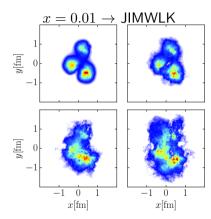
- ullet Event-by-event random color charge distribution ho^a
- MV model: $g^2\langle \rho^a(\mathbf{x}_\perp,x^-)\rho^b(\mathbf{y}_\perp,y^-)\rangle \sim \delta^{ab}\delta(\mathbf{x}_\perp-\mathbf{y}_\perp)\delta(x^--y^-)g^4\mu^2+$ an IR regulator \tilde{m}
- $g^2\mu\sim cQ_s({f b}_\perp)$ with $Q_s^2\sim T_p({f b}_\perp)$ from IPsat fit to HERA σ_r data

$$V(\mathbf{x}_{\perp}) = P \exp\left(-ig \int dx^{-} \frac{\rho(\mathbf{x}_{\perp})}{\nabla^{2} - \tilde{\mathbf{m}}^{2}}\right)$$

Small-x evolution

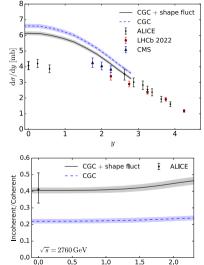

• Perturbative JIMWLK evolution (event-by-event), gluon emission kernel regulated in IR: $K_{\mathbf{x}_{\perp}} = \frac{x^{i}}{\mathbf{x}_{\perp}^{2}} \to m_{\mathrm{JIMWLK}} |\mathbf{x}_{\perp}| K_{1} (m_{\mathrm{JIMWLK}} |\mathbf{x}_{\perp}|) \frac{x^{i}}{\mathbf{x}_{\perp}^{2}}$


Nucleus: sample nucleon positions from e.g. Woods-Saxon, sum $T_i(\mathbf{b}_\perp)$ – no free parameters


Heikki Mäntysaari (JYU) VMs at the EIC Sept 18, 2025 4/19

Initial condition + perturbative evolution

Dipole: MV model + JIMWLK evolution constrained by $\gamma + p \rightarrow J/\psi + p$ data



Large e-b-e fluctuations in proton geometry.

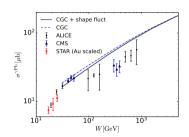
H.M. Schenke, 1806,06783, H.M. Salazar, Schenke, 2207,03712

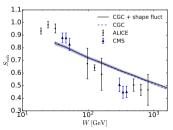
UPC data comparison: $A + A \rightarrow J/\psi + A + A$

1.0

Two setups

- "CGC+shape fluct": include nucleon substructure
 - Slightly stronger suppresssion
- "CGC": spherical nucleons
 - Much less fluctuations, smaller $\sigma^{\text{incoherent}}$


Lessons from UPC (before QM2025 – more soon)


- Midrapidity LHC data ($W \sim 125\,\mathrm{GeV}$) overstimated ⇒ surprisingly strong suppression
- Forward data (sensitive to low-W) well described
- Some model uncertainties (e.g. non-perturbative meson wave function) partially cancel in ratios

H.M, F. Salazar, B. Schenke, 2207.03712

6/19

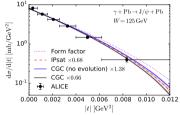
Saturation in coherent production: $\gamma + Pb \rightarrow J/\psi + Pb$

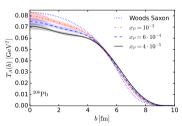
- ullet Challenging to describe the W dependence of $\sigma^{\gamma \mathrm{Pb}}$
 - lacktriangle LHC data well reproduced at moderate $W\lesssim 100~{
 m GeV}$
- Nuclear suppression factor

$$S_{\mathrm{coh}} = \sqrt{\frac{\sigma^{\gamma \mathrm{Pb}}}{\sigma_{\mathrm{IA}}}}, \quad \sigma_{\mathrm{IA}} = \left. \frac{\mathrm{d}\sigma^{\gamma p}}{\mathrm{d}t} \right|_{t=0} \int \mathrm{d}t \, |F(t)|^2$$

- General trend captured...
- lacktriangleright . . . but data would prefer a stronger W dependence

No free parameters when moving $p \to A$: genuine prediction


EIC wishlist

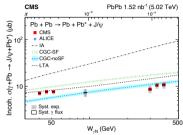

- ullet W-dependent cross section for differet A,Q^2
- No uncertainties from two-fold ambiguity

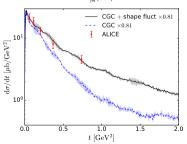
Heikki Mäntysaari (JYU) VMs at the EIC Sept 18, 2025 7/19

Saturation effect on nuclear geometry: $A + A \rightarrow A + A + J/\psi$

 $\gamma + \mathrm{Pb}$ at the LHC: very high density, saturation can modify the nuclear geometry

UPC data from LHC: $x=6\cdot 10^{-4}$


- Coherent $\gamma + \mathrm{Pb} \to \mathrm{J}/\psi + \mathrm{Pb}$
- No saturation: geometry = Woods-Saxon
 ⇒ not compatible with ALICE data
- Saturation: nucleus ≈ black disc at the center
 ⇒ modifies nuclear geometry

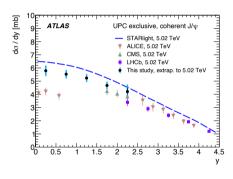

EIC wishlist

- ullet t spectra for different $A,Q^2,x_{\mathbb{P}}$
 - Preferably with good coh-incoh separation
- ullet Photon- k_T under better control than in UPCs

H.M, Schenke, Salazar, PRD106 (2022), ALICE: PLB817 (2021)

Saturation in incoherent production: $\gamma + Pb \rightarrow J/\psi + Pb^*$

- Proton e-b-e fluctuating geometry tuned to HERA data
- Smoother proton at small- $x \Rightarrow$ reduced fluctuations, incoherent cross section suppressed
- Access $x_{\mathbb{P}}$ dependent geometry fluctuations (recall: $t \sim 1/$ distance scale)
- ullet High-W incoherent cross section overestimated
- ALICE t spectra: compatible with no modification to nucleon substructure in nuclei at $x_{\mathbb{P}} \sim 10^{-3}$

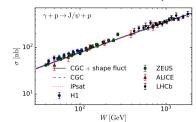

EIC wishlist

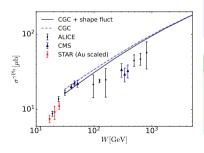
Coherent-incoherent separation & *t*-spectra

CMS, 2503.08903; H.M, Salazar, Schenke, 2312.04194

9/19

Exclusivity is tricky – status after QM2025


ATLAS, 2509,04135

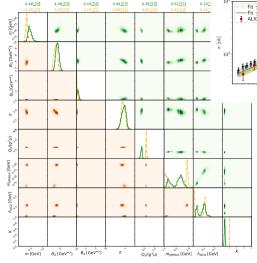

- ATLAS also measured exclusive ${\rm J}/\psi$ around $u\sim 0$
- Large tension between ATLAS and ALICE
- P. Steinberg, IS2025:
 - ALICE mid-rapidity data requires veto on forward counters (V0 and AD, both in regions well beyond ATLAS acceptance)
 - ALICE publications raise concern that simultaneous forward e+e- pairs (assumed to be pileup) could lead to self-veto
 - Correct for pileup using veto rate measured in an <u>unbiased</u> beam-crossing trigger
 - ALICE forward results do not apply this selection

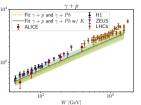
EIC wishlist

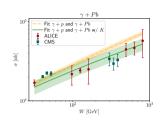
• Lessons to be learnt: ensure exclusivity?

Simultaneous description of $\gamma + p$ and $\gamma + Pb$?

Global analysis

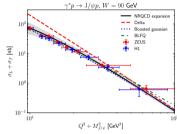

- This talk so far: fix parameters to $\gamma + p$, predict $\gamma + \mathrm{Pb}$
- \bullet Next: global Bayesian analysis including $\gamma+p$ and $\gamma+{\rm Pb}$ data
- \bullet Parameters: proton geometry at x=0.01 , coordinate space α_s scale, IR regulators
- ullet + normalization factor (K), parametrize e.g. missing higher order or VM wave function uncertainty

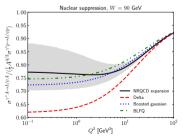

Data


- W dependent $\gamma + p \rightarrow J/\psi + p$ (HERA+LHC)
- W dependent $\gamma + \mathrm{Pb} \to \mathrm{J}/\psi + \mathrm{Pb}$
- $d\sigma/dt(\gamma + p \rightarrow J/\psi + p$, coh+incoh, $W = 75 \,\text{GeV}$)

Heikki Mäntysaari (JYU) VMs at the EIC Sept 18, 2025 11/19

Globan analysis result




- With $\gamma + \mathrm{Pb}$ data: same conclusion, $\gamma + \mathrm{Pb}$ prefers slower W-dependence
- ullet Fit with K a free parameter:
 - $K \sim 0.3$ preferred
 - ▶ Large $Q_s^2 \Rightarrow$ slower evolution with Pb (large saturation effect)
- Possible to describe world data, theory developments needed

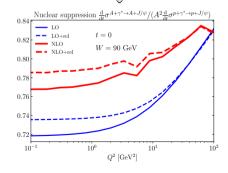
H.M, Roch, Salazar, Schenke, Shen, Zhao, 2507.14087

Heikki Mäntysaari (JYU) VMs at the EIC Sept 18, 2025 12 / 19

Wave function uncertainty

- J/ψ wave function non-perturbative, need to be modelled
- ${\rm J}/\psi$ photoproduction in $\gamma+p$: up to $\sim 50\%$ uncertainty
- Wave function uncertainty does not cancel in ${\rm Pb}/p$ ratio
- Systematic approach based on NRQCD: Lappi, H.M, Penttala, 2006.02830

EIC/theory wishlist


- x, Q^2, A, t dependence from EIC/HERA/LHC
- Include wave function uncertainty in global analyses with VM production and other observables

What about NLO?

$$e + A \rightarrow M_X + A$$

$$\uparrow^* \qquad \qquad \downarrow^V$$

$$A$$

NLO calculations exist

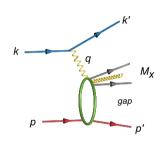
- Heavy meson in non-relativistic limit
- Light meson at high- Q^2

H.M, Penttala, 2104.02349, 2204.14031, 2203.16911

First NLO calculations

Lappi, H.M, Penttala, 2106.12825:

- Slightly less suppression at NLO
 - NLO corrections mostly cancel in A/p ratio


However, still large uncertainties (resummation scheme in evolution, initial condition, here *b*-indep evolution)

14 / 19

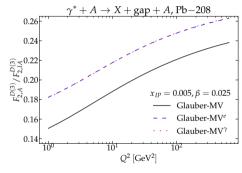
T. Lappi, H.M, Penttala, 2106.12825

Other relevant probes: diffractive structure function

Potentially more powerful than vector meson production

FIC WP

Why diffraction


- No net color transfer ⇒ at least 2 gluons ⇒ sensitivity
- IR-safe, no dependence on e.g. jet algorithm or fragmentation function
- Genuine saturation prediction:

$$\frac{\sigma_{\mathrm{diffractive}}}{\sigma_{\mathrm{total}}} o \frac{1}{2}$$

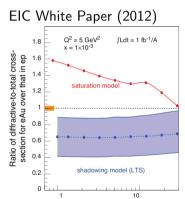
for large Q_s^2 , i.e. large A and/or small-x

- A and x dependencies dynamical, i.e. computable from CGC
- Same degrees of freedom as e.g. inclusive DIS

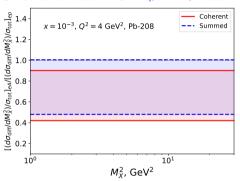
CGC predictions for F_2^D

Dung Le, H.M. Lappi, 2307,16486

- \sim total diffractive cross section
- ullet Predicted nuclear modification factor ~ 0.2
- Impulse approximation $F_{2,IA}^{D}$:
 - $ightharpoonup \gamma + p$ scaled to nuclei
 - Use nuclear form factor
 - ▶ Neglect saturation: $F_2^D = F_{2,IA}^D$


EIC wishlist

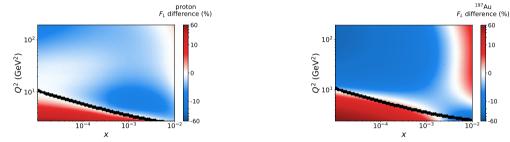
Similar to VM production


- Coherent-incoherent separation
- Diffractive vs. non-diffractive
- Systematics: $A, Q^2, x_{\mathbb{P}}, t$

Most promising(?) "smoking gun" for saturation effects: diffractive DIS

If I have to pick one, although there may not be any State-of-the-art LTS Guzey, Strikman, 2403.08342

M² (GeV²)


Qualitative difference (suppression vs enhancement) EIC: A, x, Q^2, M_Y^2 dependence

Note: Not a genuine DGLAP prediction, diffractive PDFs can fit data with enhancement!

Heikki Mäntysaari (JYU) Sept 18, 2025 17 / 19

Baseline matters – look for deviations and tensions

Example: total DIS cross section, compare linear (DGLAP) and non-linear (BK) evolution Tevio et al, 2203.05846: DGLAP and BK match at $Q^2 = 10Q_s(x)^2$ & quantify differences

 $\frac{{
m BK-DGLAP}}{{
m DGLAP}}$ for $F_{2,L} \Rightarrow$ measurable differences especially for F_L and heavy-A

Also Marquet et al, 1702.00839

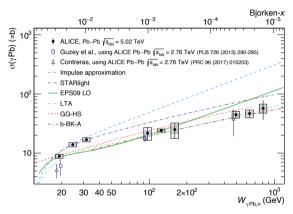
EIC wishlist

Precision

Conclusions and outlook

- Vector meson data from UPCs: strong saturation signals
 - Even stronger than predicted...
- Experimental challenges
 - What is an exlcusive event?
 - Coherent-incoherent separation
 - t from vector meson p_T (coherent: $t \lesssim 1/R_A^2$)
- My favourite EIC observables: vector meson production & diffractive structure functions
- Need precision and $A, Q^2, x_{\mathbb{P}}, t$ systematics for various observables from the EIC

 ${\sf Backups}$

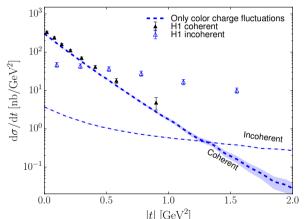

20 / 19

Recent development: extract individual $\gamma + A \rightarrow J/\psi + A$ contributions

$$\begin{split} \frac{\mathrm{d}\sigma_{AA}^{\{b_1\}}}{\mathrm{d}y} &= n_{\gamma}(y,\{b\}_1)\sigma_{\gamma A}(y) \\ &+ n_{\gamma}(-y,\{b\}_1)\sigma_{\gamma A}(-y) \end{split}$$

$$egin{aligned} rac{\mathrm{d}\sigma_{AA}^{\{b_2\}}}{\mathrm{d}y} &= n_{\gamma}(y,\{b\}_2)\sigma_{\gamma A}(y) \\ &+ n_{\gamma}(-y,\{b\}_2)\sigma_{\gamma A}(-y) \end{aligned}$$

Forward neutron classes \Rightarrow impact parmeter range $\{b_i\}$ \Rightarrow different flux n_{γ} \Rightarrow solve for $\sigma_{\gamma A}$ Method: Guzey et al, 1312.6486 See previous talk



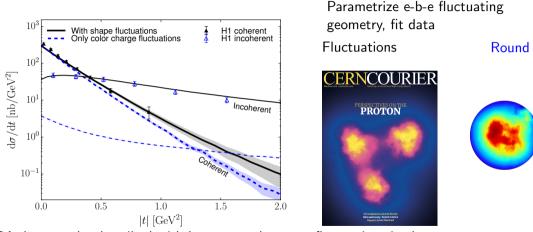
Access VM production at very small \boldsymbol{x} Confront CGC calculations with this data!

ALICE, 2305,19060

Example with protons: proton shape from $\gamma + p \rightarrow J/\Psi + p$

Comparison to HERA data including color charge fluctuations ($x \sim 10^{-3}$)

H.M. B. Schenke, PRL 117, 052301 (2016), PRD 94, 034042, H1; EPJC73, 2466


Round proton:

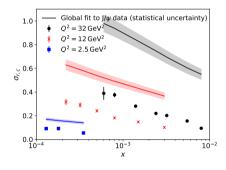
Fit proton size: (gluonic) radius $r_p \sim 0.6~{\rm fm}$ Note EM radius $0.88~{\rm fm}$

Average geometry (coherent) ✓
Fluctuations (incoherent) ✗

Constraining proton fluctuations: $\gamma + p \rightarrow J/\Psi + p$

HERA data can be described with large event-by-event fluctuations in the proton geometry

H.M. B. Schenke, PRL 117, 052301 (2016), PRD 94, 034042, H1; EPJC73, 2466


STAR suppression factor data

H.M, Salazar, Schenke, 2312.04194:

Channel	STAR	$CGC + shape \ fluct$	CGC
S_{coh}	0.846 ± 0.063	0.89	0.90
S_{incoh}	$0.36^{+0.06}_{-0.07}$	0.58	0.32

Table: Nuclear modification factors for J/ψ photoproduction in $\gamma+Au$ collisions. The CGC predictions are calculated at $x_{\mathbb{P}}=0.01$ and the STAR measurements are performed at $x_{\mathbb{P}}=0.015$. The coherent suppression factors $S_{\rm coh}$ obtained with and without nucleon substructure fluctuations are compatible with each other within the numerical accuracy.

Structure function data

H.M, Roch, Salazar, Schenke, Shen, Zhao, 2507.14087

- Parameters fit to J/ψ photoproduction data: Charm production overestimated
- Similar conclusion as H.M, Schenke, 1806.06783
- IPsat-parmaterization based fits manage to describe all data
 - ► E.g. Rezaeian et al, 1212.2974
 - ▶ But with $\sim 1.5 \times 1.1$ skewedenss&real part corrections for VM production not included here
 - ▶ Would get smaller Q_s , weaker suppression
- Note: as we fit ${\rm J}/\psi$ data, the wave function uncertainty affects these results strongly