Changes to Decay Data Sub-library

A.A. Sonzogni, E.A. McCutchan, T.D. Johnson National Nuclear Data Center

sonzogni@bnl.gov

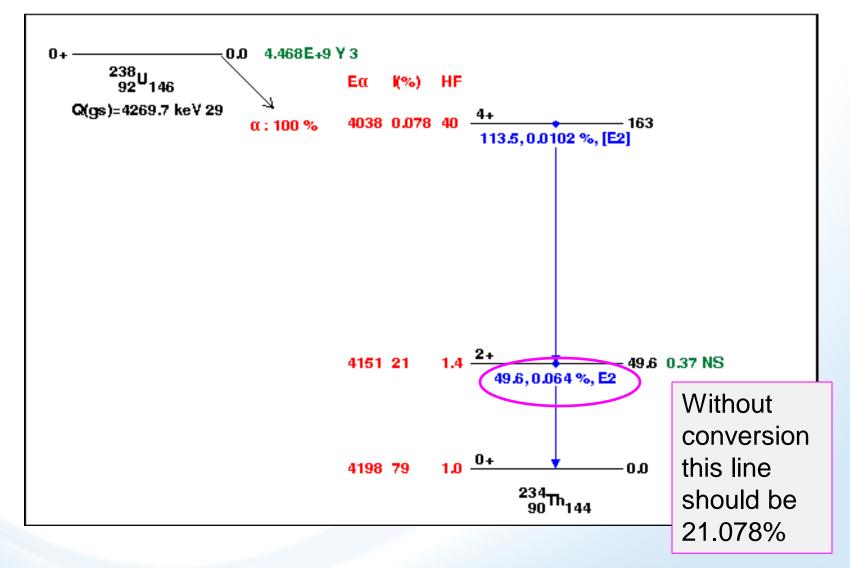
a passion for discovery

What has been done:

- Changed K X-ray energies for 60 materials with Z=88-94.
- Changed Beta intensities for some 40 fission products.
- □ Fixed a few minor issues.

Atomic Radiation

Atomic vacancies can be created following gamma emission or EC decay


Gamma emission or electron conversion

$$\begin{split} & \mathsf{E}_{\mathsf{k}} \!\!=\!\! \mathsf{E}_{\gamma} \!\!-\!\! \mathsf{B}_{\mathsf{k}}, \, \mathsf{I}_{\mathsf{k}} \!/\! \mathsf{I}_{\gamma} \!\!=\!\! \alpha_{\mathsf{k},} \, \mathsf{K} \text{ conv. coeff.} \\ & \mathsf{E}_{\mathsf{L}1} \!\!=\!\! \mathsf{E}_{\gamma} \!\!-\!\! \mathsf{B}_{\mathsf{L}1}, \, \mathsf{I}_{\mathsf{L}1} \!/\! \mathsf{I}_{\gamma} \!\!=\!\! \alpha_{\mathsf{L}1,} \, \mathsf{L}1 \text{ conv. coeff.} \\ & \mathsf{E}_{\mathsf{L}2} \!\!=\!\! \mathsf{E}_{\gamma} \!\!-\!\! \mathsf{B}_{\mathsf{L}2}, \, \mathsf{I}_{\mathsf{L}2} \!/\! \mathsf{I}_{\gamma} \!\!=\!\! \alpha_{\mathsf{L}2,} \, \mathsf{L}2 \text{ conv. coeff.} \\ & \mathsf{E}_{\mathsf{L}3} \!\!=\!\! \mathsf{E}_{\gamma} \!\!-\!\! \mathsf{B}_{\mathsf{L}3}, \, \mathsf{I}_{\mathsf{L}3} \!/\! \mathsf{I}_{\gamma} \!\!=\!\! \alpha_{\mathsf{L}3,} \, \mathsf{L}3 \text{ conv. coeff.} \\ & \mathsf{E}_{\mathsf{M}1} \!\!=\!\! \mathsf{E}_{\gamma} \!\!-\!\! \mathsf{B}_{\mathsf{M}1}, \, \mathsf{I}_{\mathsf{M}1} \!/\! \mathsf{I}_{\gamma} \!\!=\!\! \alpha_{\mathsf{M}1,} \, \mathsf{L}M \text{ conv. coeff.} \end{split}$$

Conversion coefficients increase with Z, angular momentum and decreasing gamma energy. Decrease with increasing orbital. Also, $\alpha_{\rm K} > \alpha_{\rm L} > \alpha_{\rm M}$

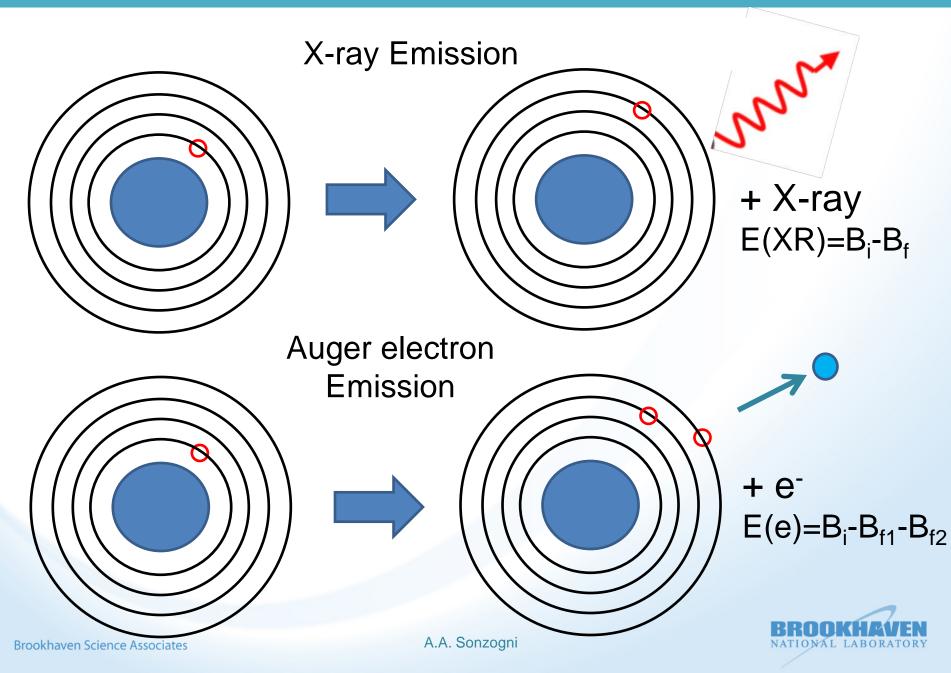
Obtained from theoretical calculations using the BRICC code

Example, ²³⁸U alpha decay

Electron Capture

For proton rich nuclides, the following weak interaction decay is possible:

 $p + e^{-} \rightarrow n + v$


Electron capture creates atomic vacancies, Capture coefficients are given for each orbital, C_k , C_{L1} , etc.

If the energy available is larger than 1.022 MeV, it competes with positron emission:

$$p \rightarrow n + v + e^+$$

How vacancies are filled

Atomic Radiation in ENDF/B-VII.1

We used the EADL library to obtain energies and intensities of the X-rays. For instance for ²³⁵U:

	Energy	∆Energy	Intensity	∆Intensity	
M XR	3065.349	396.5345	0.04553829	0.005930909	
LαXR	12960.11	1325.288	0.1184198	0.01204844	
other L XR	13197.49	820.5491	0.01522813	9.74183E-4	
Lβ	16125.43	1434.188	0.1308145	0.01150638	
Ļγ	19185.05	1697.594	0.02883229	0.002554897	
K-L2 (Κ _{α2})	90330.0	903.3	0.03289313	0.003518737	
K-L3 $(K_{\alpha 1})$	93795.0	937.95	0.05631759	0.006024565	
K-M2 $(K_{\beta3})$	105278.0	1052.78	0.006747349	7.217965E-4	
K-M3 (K _{β1})	106074.0	1060.74	0.01324711	0.001417108	
K-M4 (Κ ^{ΙΙ} _{β5})	106608.0	1066.08	2.274561E-4	2.433208E-5	
K-M5 (Κ ^Ι _{β5})	106771.0	1067.71	2.62765E-4	2.810925E-5	
K-N2 (Κ ^{ΙΙ} _{β2})	108948.0	1089.48	0.001690858	1.808793E-4	
K-N3 (ΚΙ _{β2})	109154.0	1091.54	0.003397445	3.634411E-4	
K-N4 (Κ ^{ΙΙ΄} _{β4})	109395.0	1093.95	6.575589E-5	7.034225E-6	
K-N5 (ΚΙ _{β4})	109433.0	1094.33	7.612251E-5	8.143193E-6	

We were aware that the K binding energies in EADL was affecting the K X-rays energies, shifting up by 0.2-0.4 keV.

Auger electrons are given for groups.

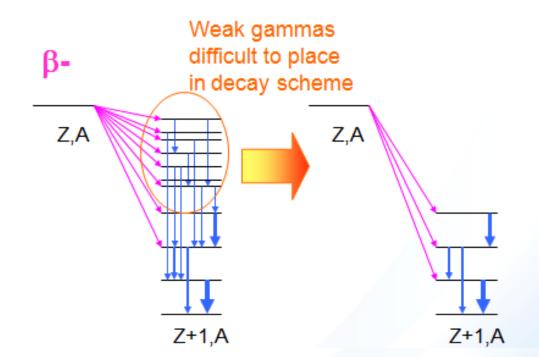
CK MMX CK LLX Auger MXY Auger LMN Auger LMX Auger LXY Auger KLL Auger KLX Auger KXY

	Energy	∆Energy	Intensity	∆Intensity
	493.7612	21.27332	0.3203093	0.01292212
	1524.159	73.38183	0.08857388	0.005513789
Y	2387.489	75.4484	0.822061	0.02509419
Μ	5799.095	50.0081	8.009999E-5	2.673895E-5
Χ.	12963.23	352.2304	0.09721805	0.002724669
Y	16119.98	450.9654	0.01158554	3.35071E-4
_	71370.5	200.0004	0.003003	3.089302E-4
X	87216.23	3775.481	0.001399327	6.131373E-5
Y	102582.3	4312.696	2.045445E-4	8.71038E-6

Atomic Radiation in ENDF/B-VIII.0

We are using NIST K X-rays for Z=88-94, about 60 materials.

The rest of the atomic radiation is not modified.


L X-rays and Auger electrons are not affected by EADL binding energies. K Augers are.

For the next major release of the decay data sublibrary, we will use more precise binding energies for all materials.

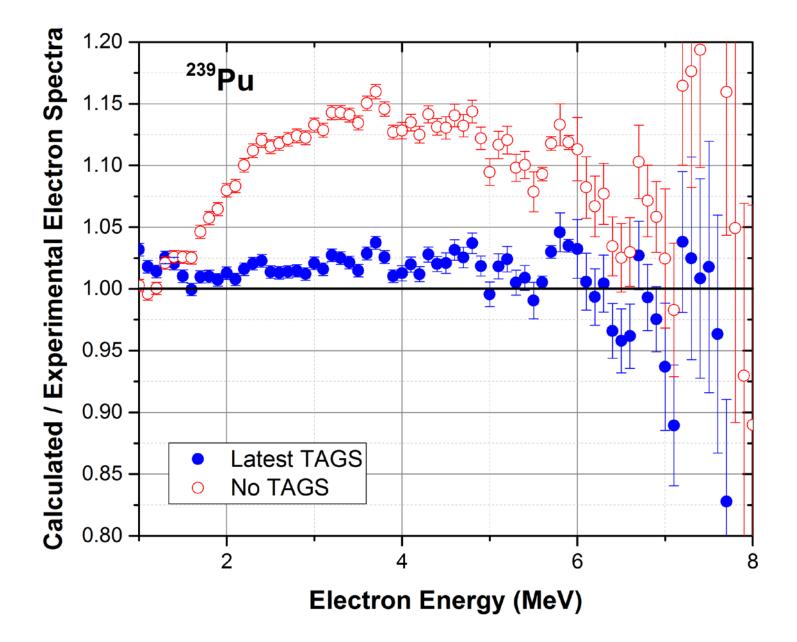
Beta intensities in ENDF/B-VIII.0

Ge gamma spectroscopy data can lead to an oversimplification of decay schemes.

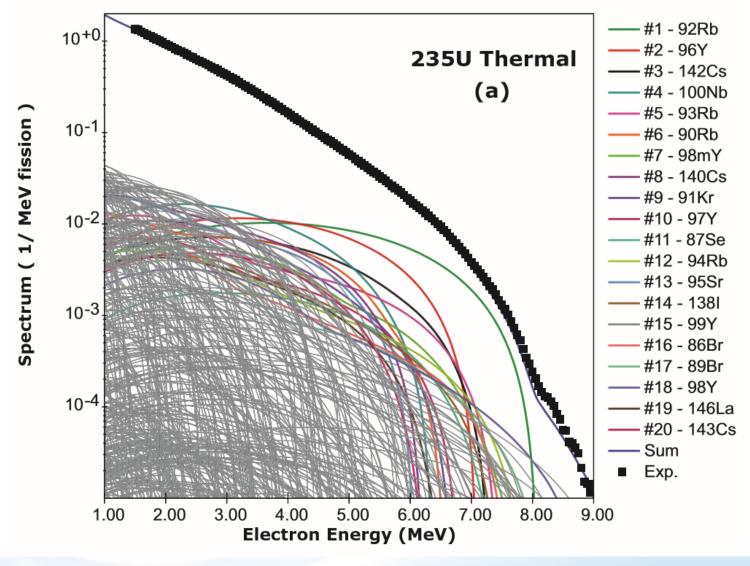
As a result the beta spectrum will be overestimated. A possible solution is to use TAGS data.

Beta intensities in ENDF/B-VIII.0

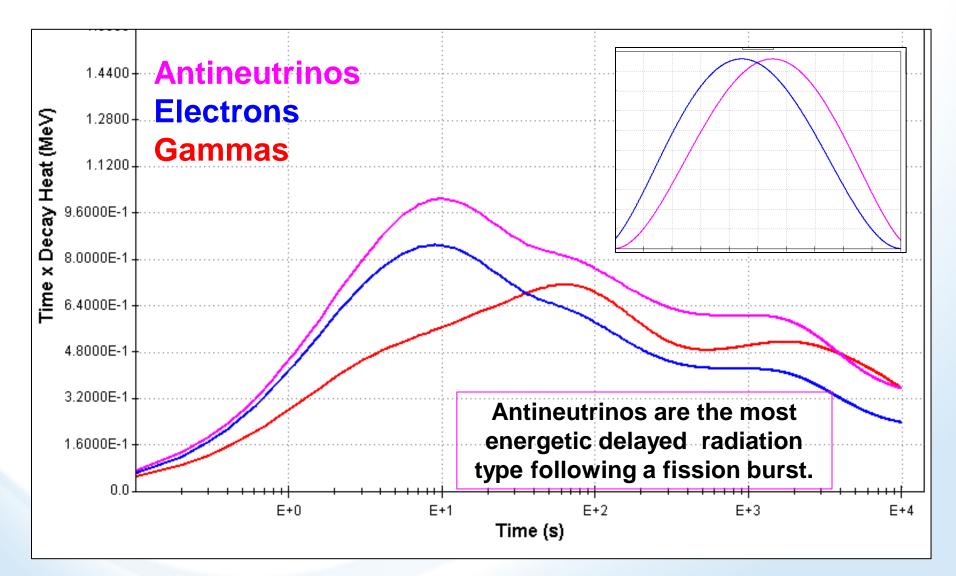
ENDF/B-VII.1 included TAGS data in the mean gamma and beta energies to calculate decay heat.


ENDF/B-VIII.0 will have TAGS beta intensities to improve the calculation of antineutrino spectra.

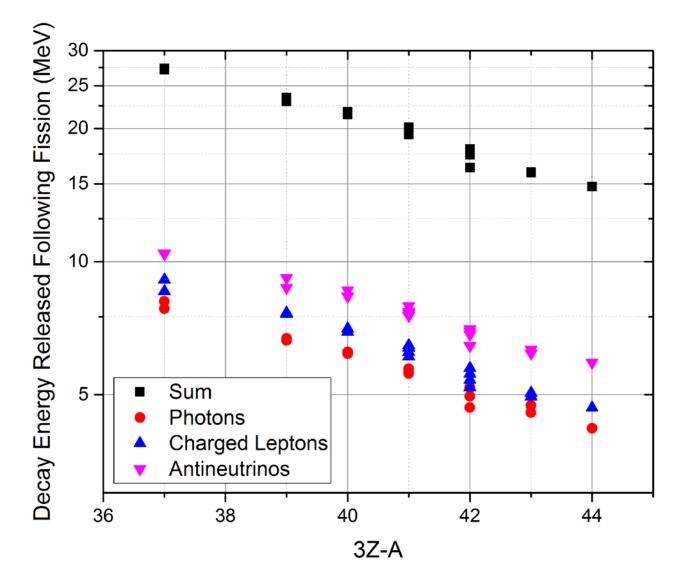
As a benchmark, we will use the electron spectra for ^{235,238}U(n,fission) and ^{239,241}Pu(n,fission) were measured in ILL and Munich.


The electrons are produced by the beta-minus decay of the neutron rich fission products.

TAGS effects



Calculation of antineutrino spectra



'Decay Heat' for 3 radiation types

Decay Energy Systematics

