

Testing JEFF-3.3T3 in ICSBEP Benchmarks

O. Cabellos and F. Michel-Sendis
OECD Nuclear Energy Agency
Data Bank

JEFF Meetings - Session B&V April 24 - 27, 2017 Paris, France

I. Benchmarking and Validation Activities

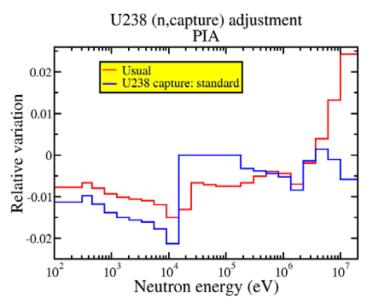
□ Paper in ND2016

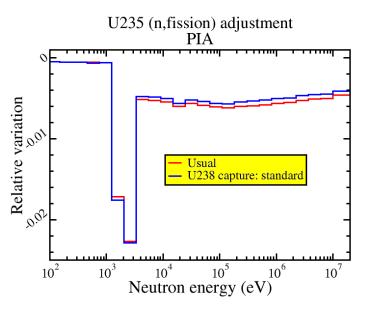
Benchmarking and Validation Activities within JEFF Project

O. Cabellos^{1,*}, F. Alvarez-Velarde², M. Angelone³, C.J. Diez¹, J. Dyrda¹, L. Fiorito⁴, U. Fischer⁵, M. Fleming⁶, W. Haeck⁷, I. Hill¹, R. Ichou⁷, D. H. Kim⁸, A. Klix⁵, I. Kodeli⁹, P. Leconte¹⁰, F. Michel-Sendis¹, E. Nunnenmann⁵, M. Pecchia¹¹, Y. Peneliau¹⁰, A. Plompen¹², D. Rochman¹¹, P. Romojaro¹³, A. Stankovskiy⁴, J.Ch Sublet⁶, P. Tamagno¹⁰, S. van der Marck¹⁴

- ¹ NEA, OECD, Paris, France
- ² CIEMAT, Madrid, Spain
- 3 ENEA, Frascati, Italy
- ⁴ SCK CEN, Mol, Belgium
- ⁵ KIT, Eggenstein-Leopoldshafen, Germany
- ⁶UKAEA, Abingdon, Oxfordshire, United Kingdom
- ⁷ IRSN, Paris, France
- ⁸ KAERI, Daejeon, South Korea
- ⁹ JSI, Ljubljana, Slovenia
- ¹⁰ CEA, DEN, DER, SPRC, Cadarache, France
- ¹¹PSI, Villigen, Switzerland
- ¹² JRC, Geel, Belgium
- 13 UPM, Madrid, Spain
- ¹⁴ NRG, Petten, The Netherlands

■ 14 Institutions !!!


Abstract. The challenge for any nuclear data evaluation project is to periodically release a revised, fully consistent and complete library, with all needed data and covariances, and ensure that it is robust and reliable for a variety of applications. Within an evaluation effort, benchmarking activities play an important role in validating proposed libraries. The Joint Evaluated Fission and Fusion (JEFF) Project aims to provide such a nuclear data library, and thus, requires a coherent and efficient benchmarking process. The aim of this paper is to present the activities carried out by the new JEFF Benchmarking and Validation Working Group, and to describe the role of the NEA Data Bank in this context. The paper will also review the status of preliminary benchmarking for the next JEFF-3.3 candidate cross-section files.



I. Recent discussions on U235-U238

- Arjan PLOMPEN's presentation in WPEC/SG39 meeting (December 2016)
- See Sandro PELONI's work in WPEC/SG39 (May 2017): "The idea is that the 238U capture cross-section is a standard data set in the unresolved energy region between 20keV and 149keV"
 - current uncertainty of the order of only 2% => put the standard deviation to zero
 - cross correlations available in COMMARA-2.0

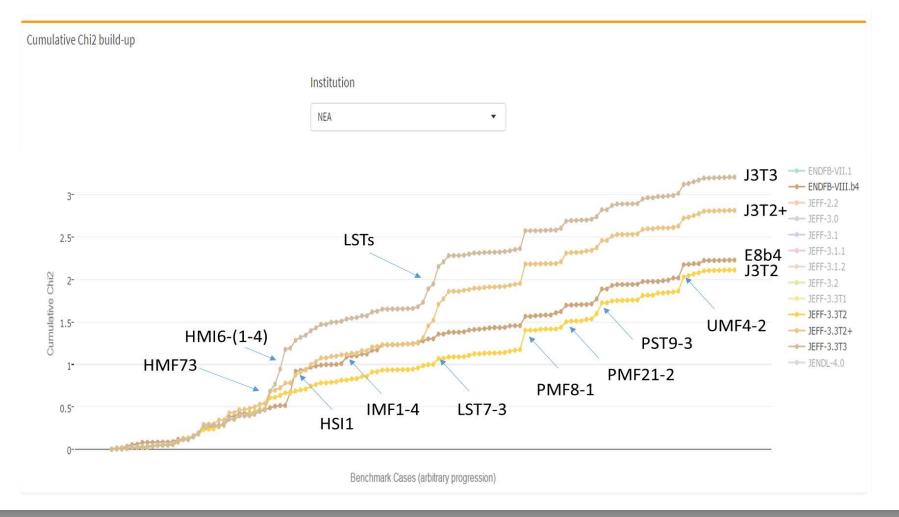
See Luiz LEAL's presentation: "Testing of the RR+UR of the JEFF-3.3T library" in JEFF-April 2017
 See Bor KOS's presentation: "Analysis of recent U-235 and U-238 evaluations using the BigTen and LMT-006 benchmarks" in JEFF/April 2017

I. Some ideas.... before results

- Nuclear Data Evaluation needs a closer collaboration between experimentalist, evaluators and validation experts
 - Tracking changes in evaluated files are needed NDTracker is coming soon!
- □ Processing & Verification + Benchmarking & Validation activities are required for this task
 - Automatizing procedures ... NDEC works!
 - Sharing experiences in processing ... New NJOY open versions! NEA Tutorials!
 - Extended validation suites ... New WPEC-SG45 VaNDAL project
 - Criticality (ICSBEP, IRPhEP,...) ... DICE
 - Shielding,SINBAD ...New Tool
 - 0
- New tools in generation of future evaluated libraries
 - Sensitivities and covariances play an essential work ... NDaST tool
 - Assessing trends on nuclear data...SENDIS tool
 - How to build new files? It requires expertise on evaluation, processing and familiarity with ND format.

II. Results of criticality benchmarking using ICSBEP

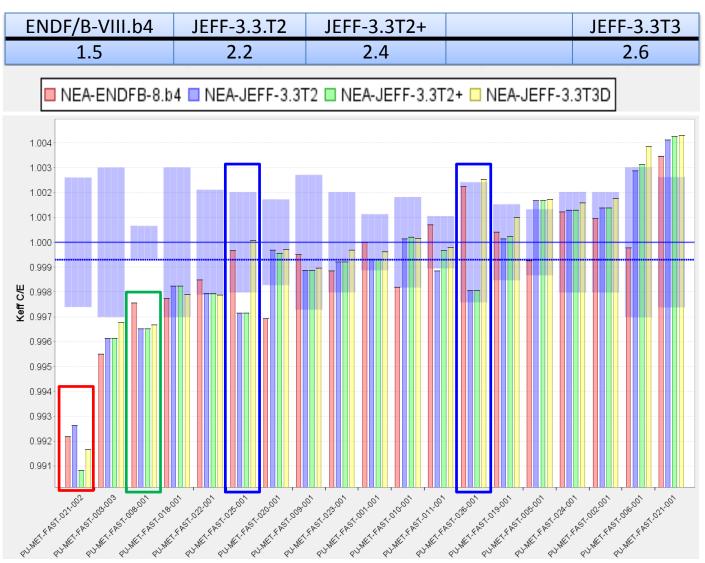
Table 1. Evaluation of general performance for extended validation suites. Values are "*reduced*" Chi-squared, <u>number of cases in brackets</u>


	NEA										
	ENDF/B-VII.1 ENDF/B-VIIIb4 JEFF-3.1.1 JEFF-3.2 JEFF-3.3.T2 JEFF-3.3T2+										
PU	4.2	2.2	2.9	3.6	2.8	2.4	2.4				
PU	(29)	(29)	(29)	(29)	(29)	(29)	(29)				
HEU	6.1	4.1	5.3	11.8	2.2	3.5	3.9				
ПЕО	(42)	(42)	(42)	(42)	(42)	(42)	(42)				
IEU	5.0	1.9	11.3	4.9	2.7	2.1	2.2				
ILU	(12)	(12)	(12)	(12)	(12)	(12)	(12)				
LEU	0.9	1.4	1.4	0.9	1.8	3.7	4.0				
LEO	(13)	(13)	(13)	(13)	(13)	(13)	(13)				
U233	1.7	2.1	9.5	1.2	1.7	1.9	1.7				
0233	(18)	(18)	(18)	(18)	(18)	(18)	(18)				
MIX	0.7	1.0	1.2	0.9	0.9	1.0	0.8				
IVIIA	(8)	(8)	(8)	(8)	(8)	(8)	(8)				
SPEC	0.99249	0.99338	0.98719	0.98847	0.99142	0.99145	0.99118				
(C/E)	(1)	(1)	(1)	(1)	(1)	(1)	(1)				
Total	3.7	2.22	6.5	5.6	2.02	2.9	3.1				
Total	(123)	(123)	(123)	(123)	(123)	(123)	(123)				

II. Results of criticality benchmarking using ICSBEP

Figure 1. Cumulative Chi-2 build-up (SENDIS output)

II. Main changes in JEFF-3.3 beta for criticality


Table 2. Main changes in JEFF3.3 beta files for criticality

	JEFF-3.3T2	JEFF-3.3T2P	JEFF-3.3T3	T4 ?
Pu239	JEFF-3.3T2	JEFF-3.3T2	JEFF-3.3T2	
U235	JEFF-3.3T2	JEFF-3.3T2	JEFF-3.3T2	
U238	JEFF-3.3T2	JEFF-3.3T2+RR/JRC	JEFF-3.3T2+RR-JRC	
016	ENDF/B-VII.1	O16-Luiz	O16-Luiz	
TSLs	JEFF-3.1	H2O Bariloche D2OBariloche	H2O Bariloche D2OBariloche	H2O – ENDF/B-VIIIb4 D2O – ENDF/B-VIIIb4
Cu	ENDF/B-VII.1+RR/JRC	ENDF/B-VII.1+RR/JRC	KIT-revised + RR/Sobes&Luiz	
Zr	TENDL-2015	JEFF-3.3T2=TENDL-2015	KIT	
Fe54/56	JEFF-3.2	JEFF-3.2	ENDF/B-VIIIb4	
W	JEFF-3.2	JEFF-3.2	JEFF-3.2	
Ве	JEFF-3.2	JEFF-3.2	JEFF-3.2	
С	JEFF-3.2	JEFF-3.2	JEFF-3.2	
Ni	JEFF-3.2	JEFF-3.2	JEFF-3.2	
Al	JEFF-3.2	JEFF-3.2	JEFF-3.2	
Th232	JEFF-3.2	JEFF-3.2	JEFF-3.2	

II.1 PU-FAST

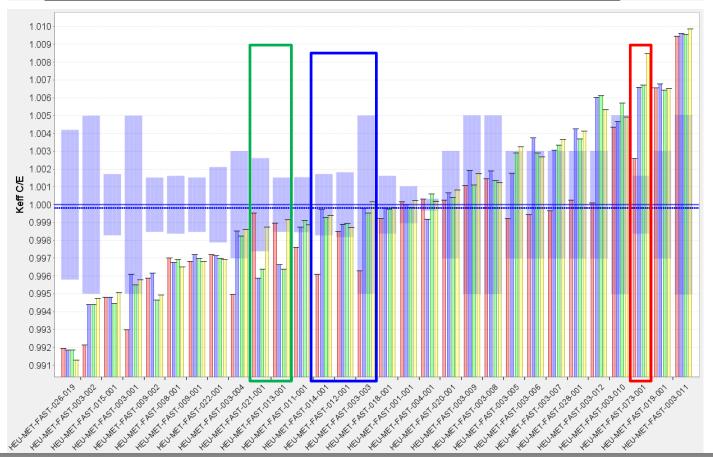
- ☐ Case with highest contribution in Chi-2
- > PMF8-1
- o PMF21-2
- ☐ JEFFvsENDFB8b4
- o PMF8-1 (Th232)
- PMF26-1 and PMF25-1(Fe)
- □ JEFF
- o PMF21-2 (O16)

II.2 PU- INTER & THERM

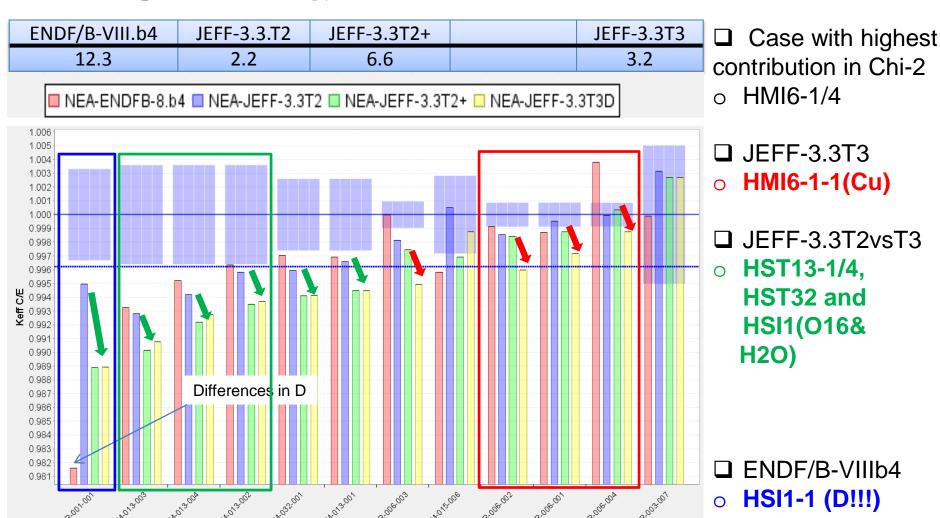
ENDF/B-VIII.b4	JEFF-3.3.T2	JEFF-3.3T2+	JEFF-3.3T3
3.4	2.9	3.3	3.1

■ NEA-ENDFB-8.b4 ■ NEA-JEFF-3.3T2 ■ NEA-JEFF-3.3T2+ ■ NEA-JEFF-3.3T3D

- ☐ Case with highest contribution in Chi-2
- o PST9-3
- ☐ JEFF-3.3T2vsT3
- PSTs(O16& H2O)

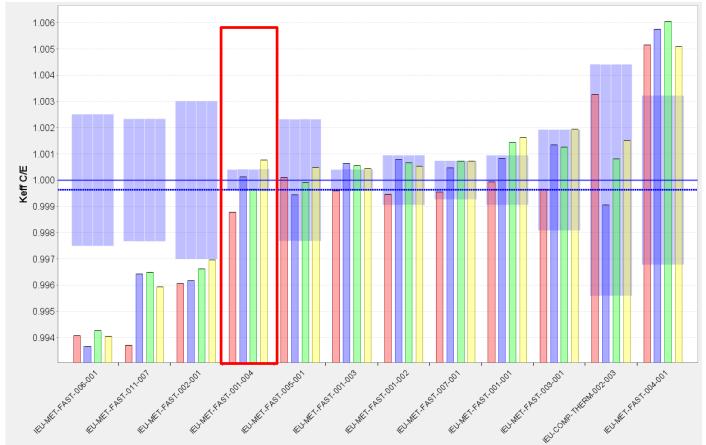


II.3 HEU - FAST



- ☐ Case with highest contribution in Chi-2
- > HMF73-1
- ☐ JEFF T3vs T2
- HMF73-1 (Cu?)
- HMF13-1 (Fe?)
- HMF21-1 (Fe?)
- ☐ ENDF/B-VIIIb4
 Lower values
- HMF3
- HMF11
- HMF14
- o HMF73-1

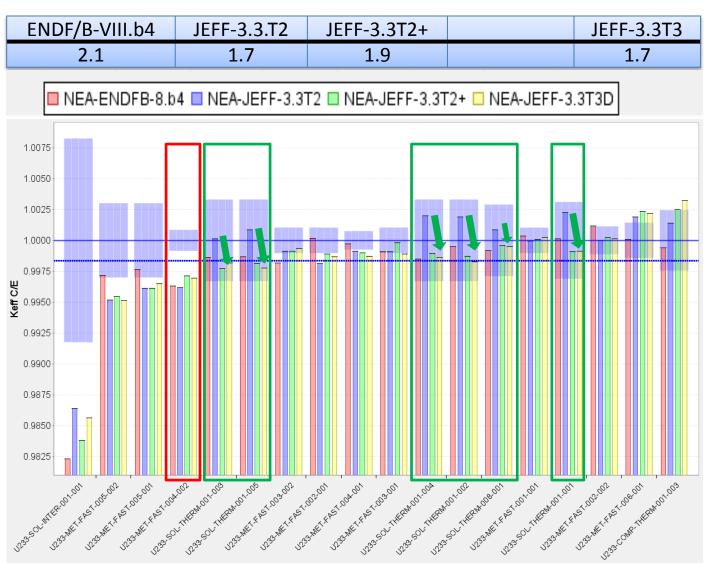
II.4 HEU- INTER & THERM



II.5 IEU

ENDF/B-VIII.b4	JEFF-3.3.T2	JEFF-3.3T2+	JEFF-3.3T3
1.9	2.7	2.1	2.2

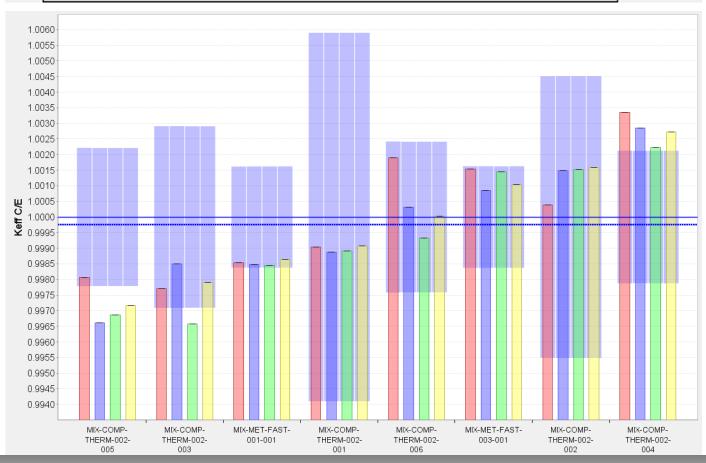
■ NEA-ENDFB-8.b4 ■ NEA-JEFF-3.3T2 ■ NEA-JEFF-3.3T2+ ■ NEA-JEFF-3.3T3D



- ☐ Case with highest contribution in Chi-2
- o IMF1-4
- ☐ JEFF
- o IMF1-4(Cu, Fe)

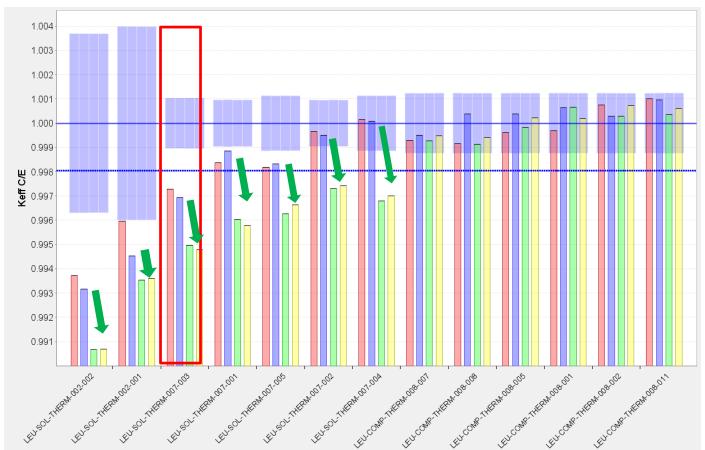
II.6 U233

- ☐ Case with highest contribution in Chi-2
- **UMF4-2**
- ☐ JEFF
- UMF4-2(Cu, Zr, W)
- ☐ JEFF
- o USTs (016&H2O)



II.7 MIX

ENDF/B-VIII.b4	JEFF-3.3.T2	JEFF-3.3T2+	JEFF-3.3T3
1.0	0.9	1.0	0.8



II.8 LEU

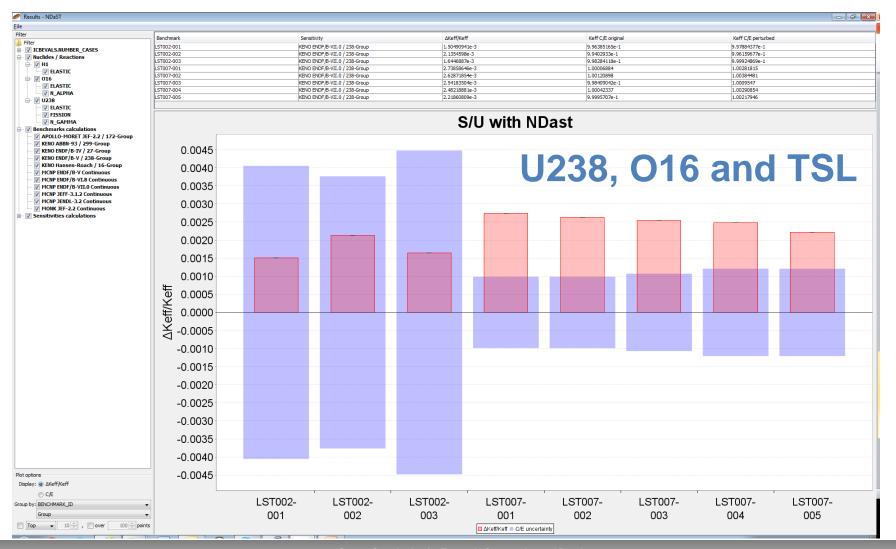
ENDF/B-VIII.b4	JEFF-3.3.T2	JEFF-3.3T2+	JEFF-3.3T3
1.4	1.8	3.7	4.0

■ NEA-ENDFB-8.b4 ■ NEA-JEFF-3.3T2 ■ NEA-JEFF-3.3T2+ ■ NEA-JEFF-3.3T3D

- ☐ Case with highest contribution in Chi-2
- o LST7-1/5
- □ JEFF3.3T3
- LSTs(O16&H2O)

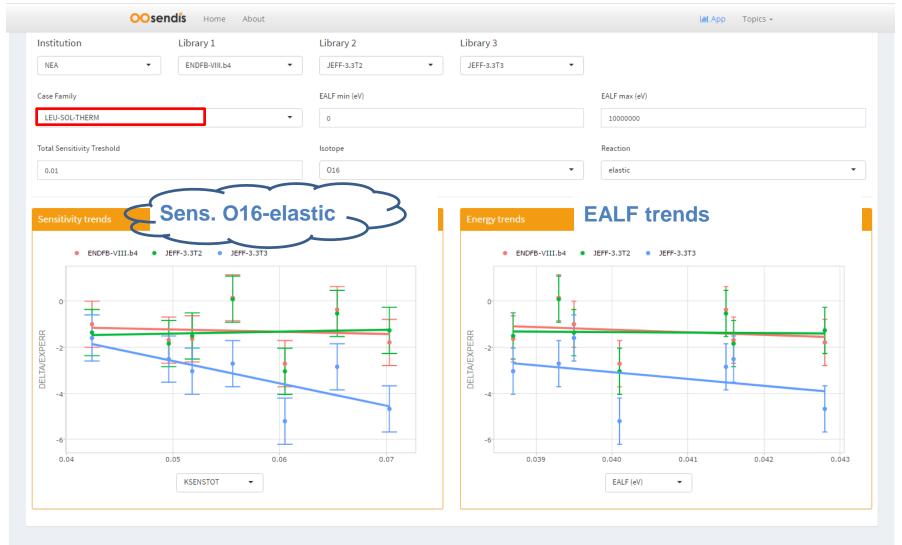
III. S/U analysis

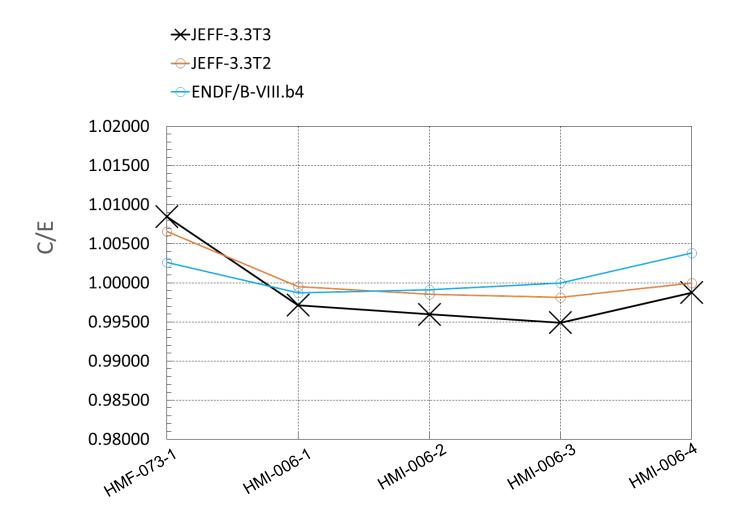
III.1 LST cases

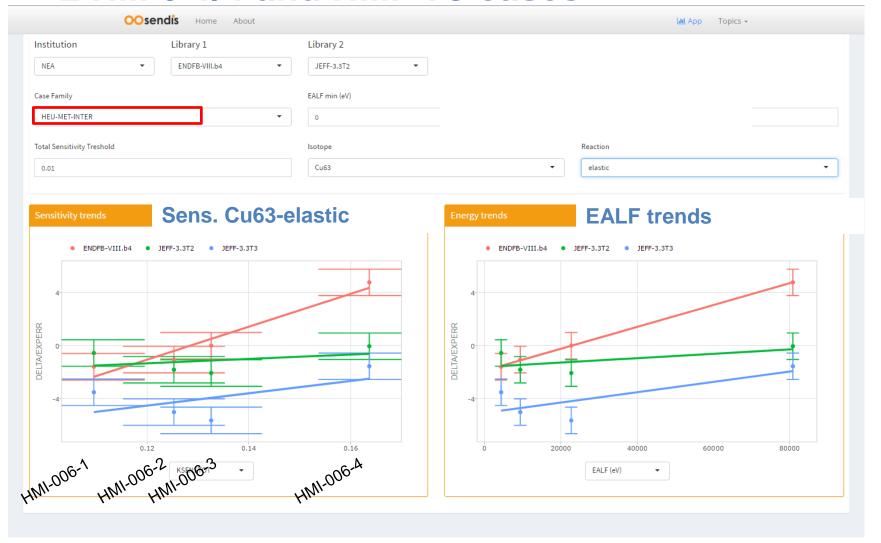

See Annex I

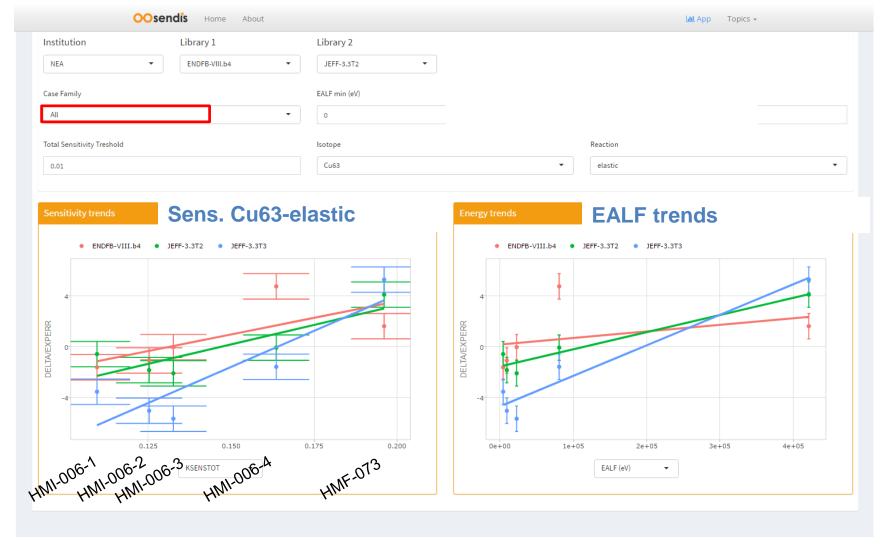
III.2 HMI6-1/4 and HMF73-1

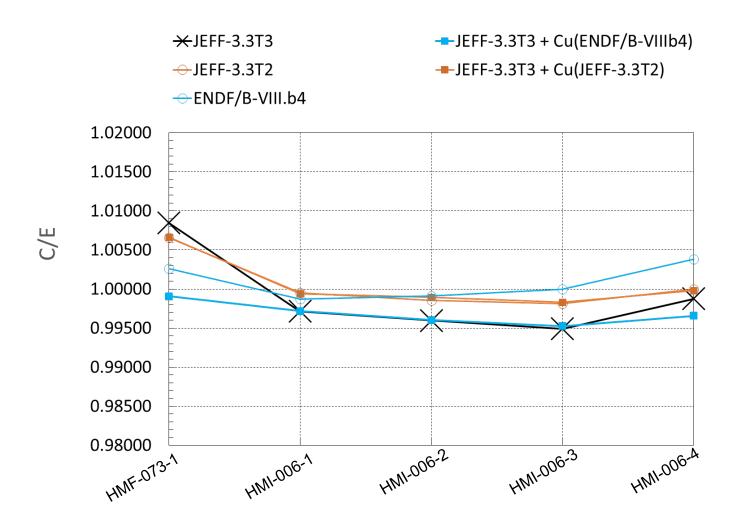
See Annex II



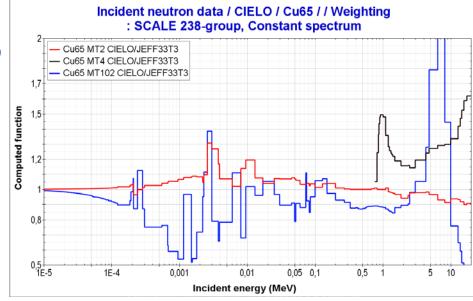


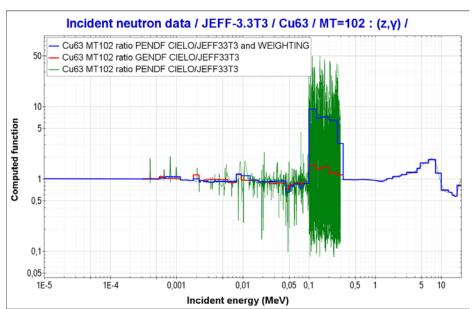


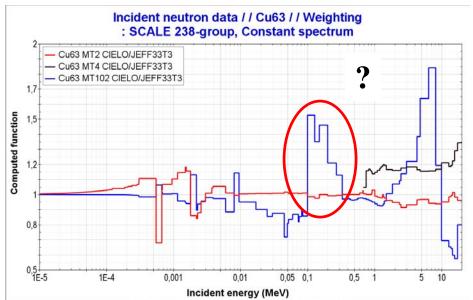




III.2 HMI6-1/4 and HMF-73 cases

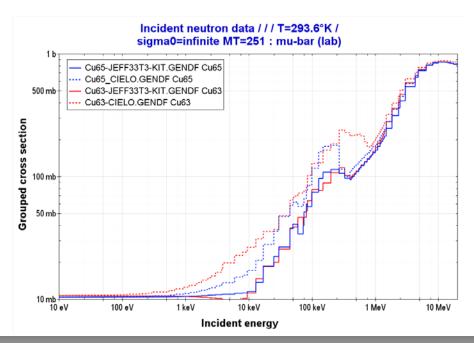

→ JEFF-3.3T3 JEFF-3.3T3 + Cu(ENDF/B-VIIIb4) → JEFF-3.3T3 & MF3 ENDF/B-VIIIb4 (NDaST) → JEFF-3.3T3 & MF4/MT2 ENDF/B-VIIIb4 (up to 300keV) 1.02000 MF4 files based on different resonance parameters up to 100 1.01500 +717 pcm keV (ENDF/B-VIIIb4) and up to 300 keV (JEFF-3.3T3) 1.01000 1.00500 1.00000 0.99500 0.99000 -1972 pcm 0.98500 0.98000 HMI-006-A HM1-006-2 HMI-006-1 HMF-073-1

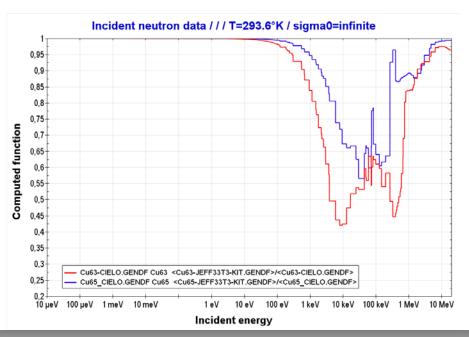




III.2 HMI6-1/4 and HMF-73

JEFF-3.3T3 versus ENDF/B-VIIIb4





Change in angular distributions

- ☐ JEFF-3.3T3 versus ENDF/B-VIIIb4: MT251 mu-bar
- MF4/MT2 produced by T. Kawano based on different resonance parameters:
 - JEFF-3.3T3 resonance parameters up to 100 keV
 - + smoothly transition from the MF4 based on the resonance parameters to the MF4 based on Kawano's model calculations above 300 keV
 - ENDF/B-VIIIb4 up to 300 keV

IV. Re-evaluation of T3 criticality benchmarking

Table 3. Evaluation of general performance for extended validation suites. Values are "*reduced*" Chi-squared, <u>number of cases in brackets</u>

	NEA					4		
	ENDF/B-	JEFF-	JEFF-	JEFF-3.3T3	JEFF-3.3T3	JEFF-3.3T3	JEFF-3.3T3	JEFF-3.3T3
	VIIIb4	3.3.T2	3.3T2+	+TSL/JEFF3.1	+TSL/JEFF3.1	+TSL/JEFF3.1	+TSL-JEFF3.1	
				+O16&Cu&Fe T2	+O16&Cu T2	+O16 T2		
PU	2.2	2.8	2.4	2.8	2.9	2.9	2.7	2.4
PU	(29)	(29)	(29)	(29)	(29)	(29)	(29)	(29)
HEU	4.1	2.2	3.5	2.2	2.1	3.4	3.7	3.9
ПЕО	(42)	(42)	(42)	(42)	(42)	(42)	(42)	(42)
IEU	1.9	2.7	2.1	2.5	2.8	2.7	3.0	2.2
IEU	(12)	(12)	(12)	(12)	(12)	(12)	(12)	(12)
1 511	1.4	1.8	3.7	2.1	1.8	2.0	2.8	4.0
LEU	(13)	(13)	(13)	(13)	(13)	(13)	(13)	(13)
U233	2.1	1.7	1.9	1.4	1.4	1.7	1.6	1.7
0233	(18)	(18)	(18)	(18)	(18)	(18)	(18)	(18)
NAIV	1.0	0.9	1.0	1.0	1.0	1.0	1.2	0.8
MIX	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)
Total	2.22	2.02	2.9	2.03	1.95	2.5	2.9	3.1
Total	(123)	(123)	(123)	(123)	(123)	(123)	(123)	(123)

IV. Re-evaluation of T3 criticality benchmarking

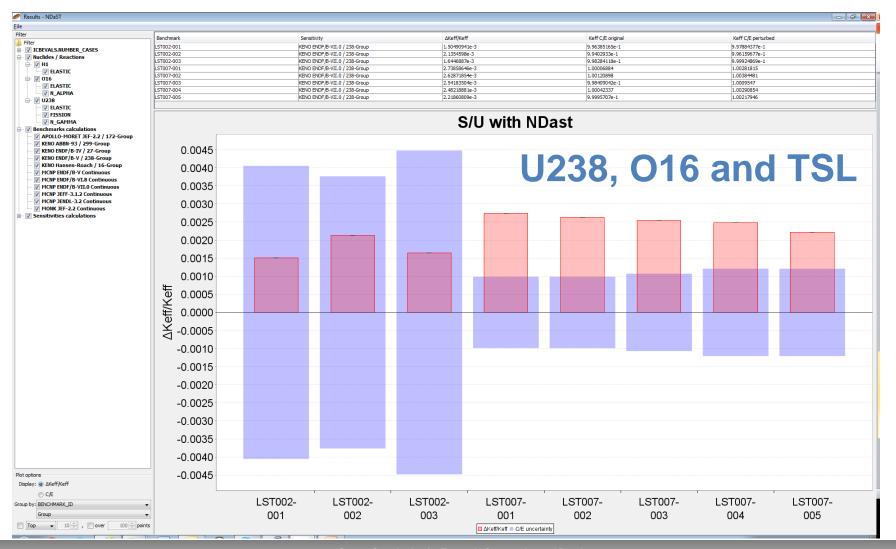
Table 4. Evaluation of general performance for extended validation suites. Values are "*reduced*" Chi-squared, <u>number of cases in brackets</u>

				NEA 🗸	4					
	ENDF/B	JEFF-	JEFF-	JEFF-3.3T3	JEFF-3.3T3	JEFF-3.3T3	JEFF-3.3.T3	JEFF-3.3T3		
	-	3.3.T2	3.3T2+	+TSL/JEFF3.1	+TSL/JEFF3.1		+LuizU5*	+TSL/JEFF3.1+Cu T2		
	VIIIb4			+016&Cu&Fe	+O16&Cu T2			+LuizO16&U5*		
				T2						
PU	2.2	2.8	2.4	2.8	2.9	2.4	2.4	2.6		
PU	(29)	(29)	(29)	(29)	(29)	(29)	(29)	(29)		
ПЕП	4.1	2.2	3.5	2.2	2.1	3.9	3.6	2.3		
HEU	(42)	(42)	(42)	(42)	(42)	(42)	(42)	(42)		
IEU	1.9	2.7	2.1	2.5	2.8	2.2	2.5	2.5		
IEU	(12)	(12)	(12)	(12)	(12)	(12)	(12)	(12)		
1 511	1.4	1.8	3.7	2.1	1.8	4.0	3.1	2.0		
LEU	(13)	(13)	(13)	(13)	(13)	(13)	(13)	(13)		
U233	2.1	1.7	1.9	1.4	1.4	1.7	1.9	1.4		
0233	(18)	(18)	(18)	(18)	(18)	(18)	(18)	(18)		
NAIV	1.0	0.9	1.0	1.0	1.0	0.8	0.8	1.3		
MIX	(8)	(8)	(8)	(8)	(8)	(8)	(8)	(8)		
Total	2.22	2.02	2.9	2.03	1.95	3.1	2.8	2.05		
Total	(123)	(123)	(123)	(123)	(123)	(123)	(123)	(123)		

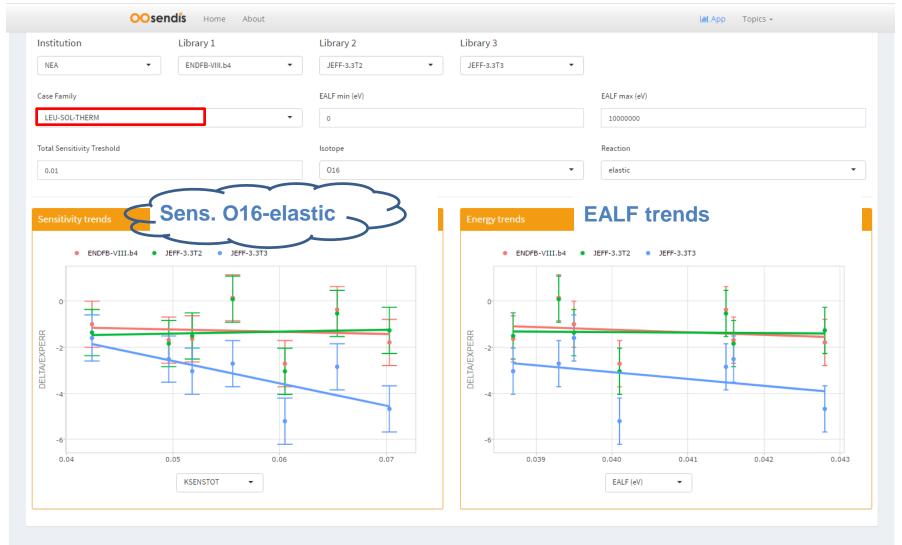
^{* (}April 2017) Luiz Leal, U235 thermal cross section according to the latest IAEA-2016 thermal values

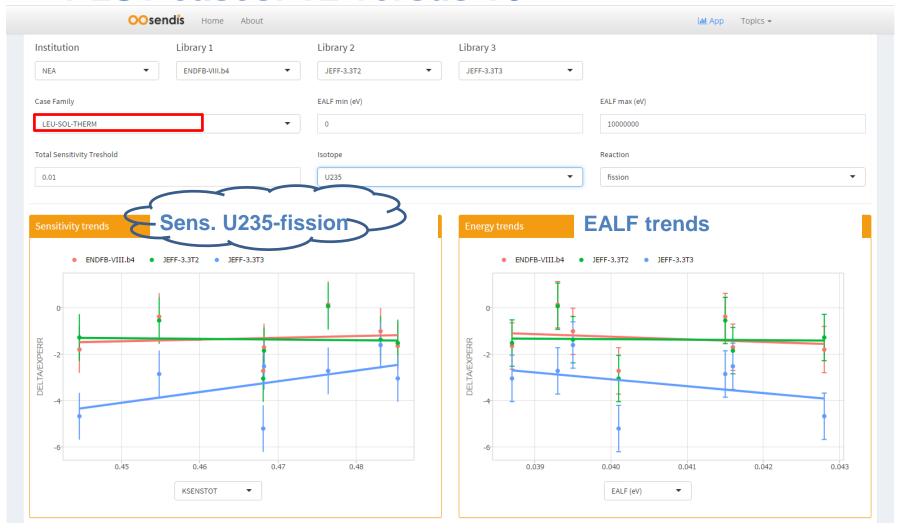
Conclusion

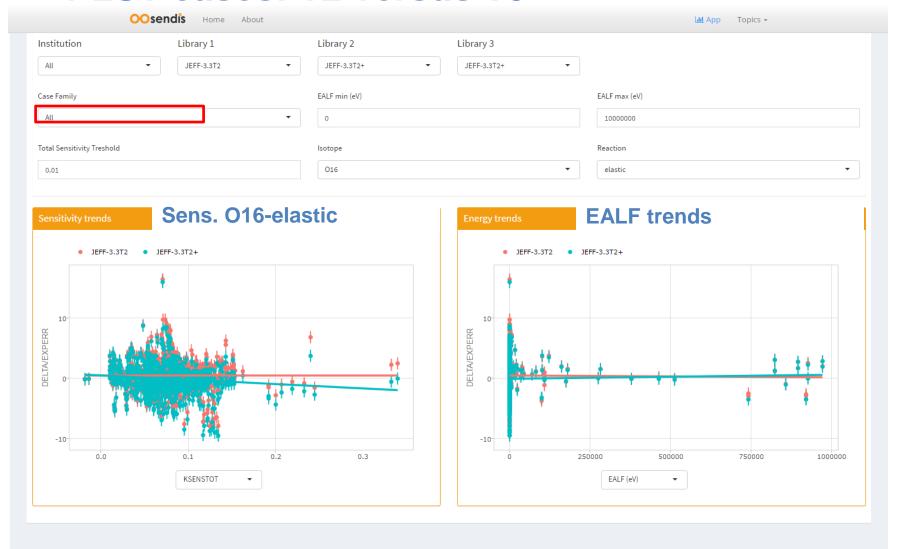
- ☐ Testing JEFF-3.3T2, T2+ and T3
 - Comparison with ENDF/B-VIIIb4
- □ Assessing the main contributors of Chi-squared
 - o HMI6-1/4, HMF73
 - IMF1-4
 - o LSTs
 - PMF8-1, PMF21-2, PST9-3
 - o UMF4-2
- □ Assessing the main changes in T3
 - o TSI H in H2O
 - o **O16**
 - Cu63 and Cu65
 - o Fe
- ☐ Re-evaluation of T3: **JEFF-3.3T3 can be improved for criticality benchmarking**

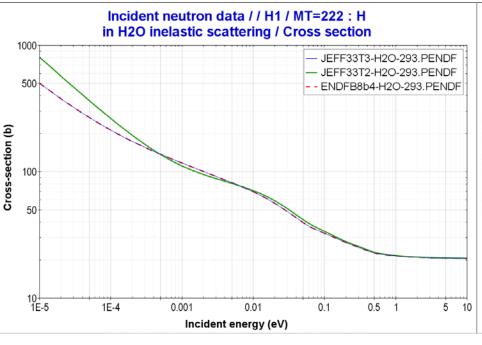


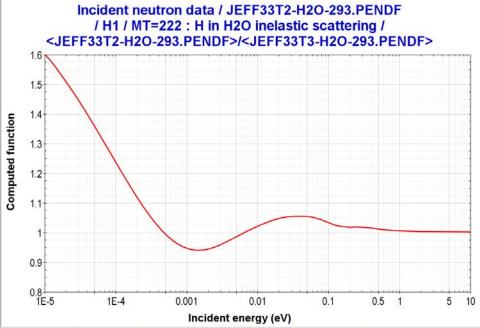
Annex I. S/U analysis: LST cases





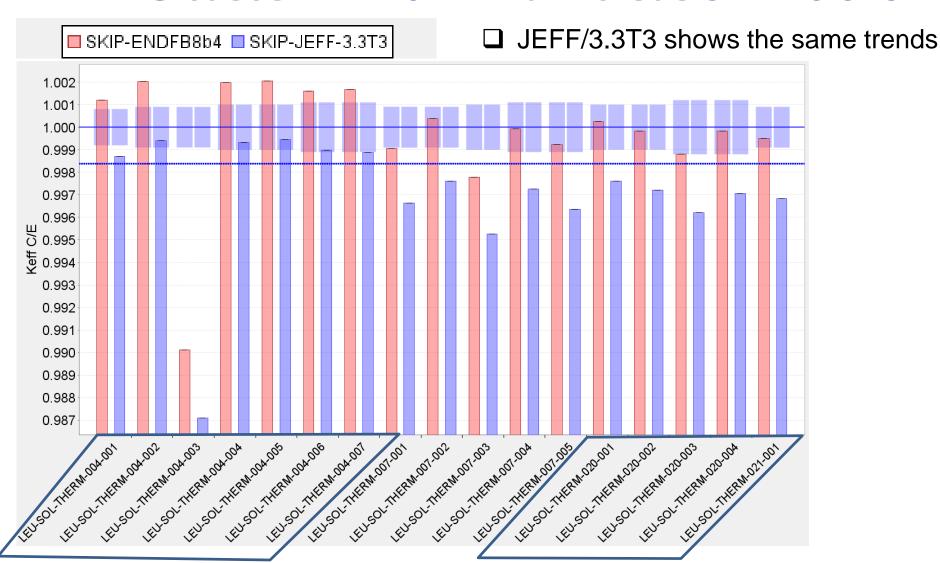




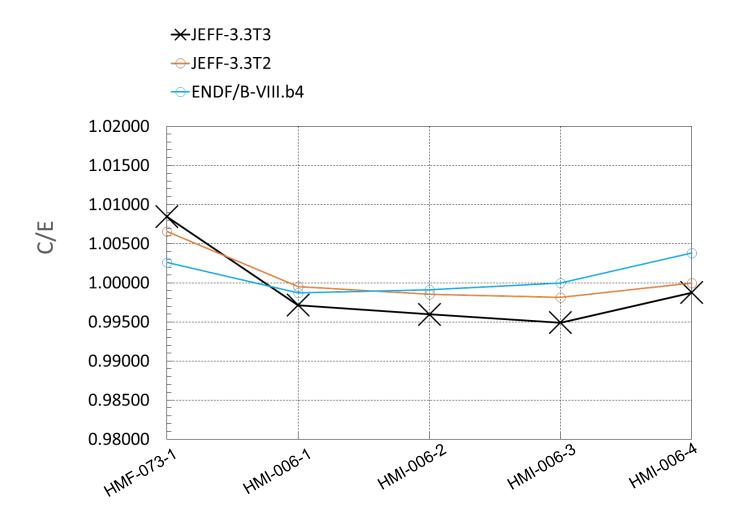


III.1 LST cases: T2 versus T3

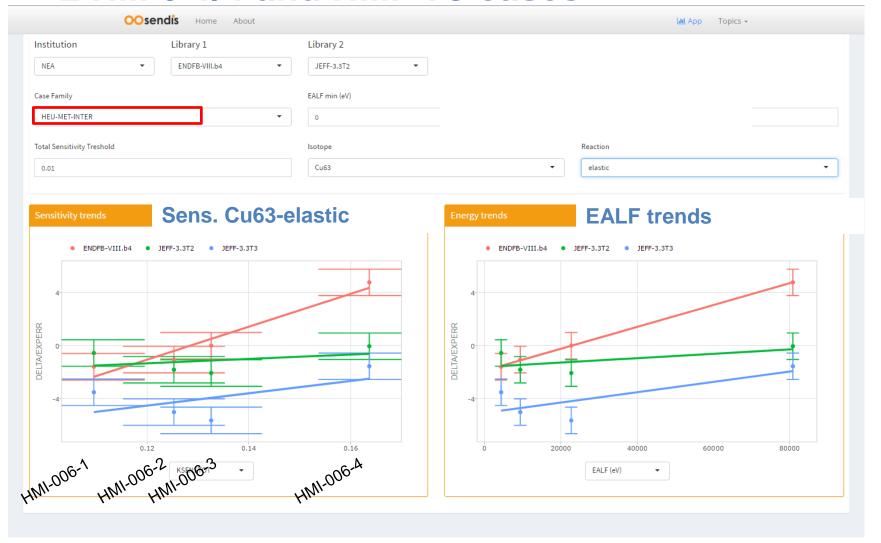
☐ TSLs H in H2O

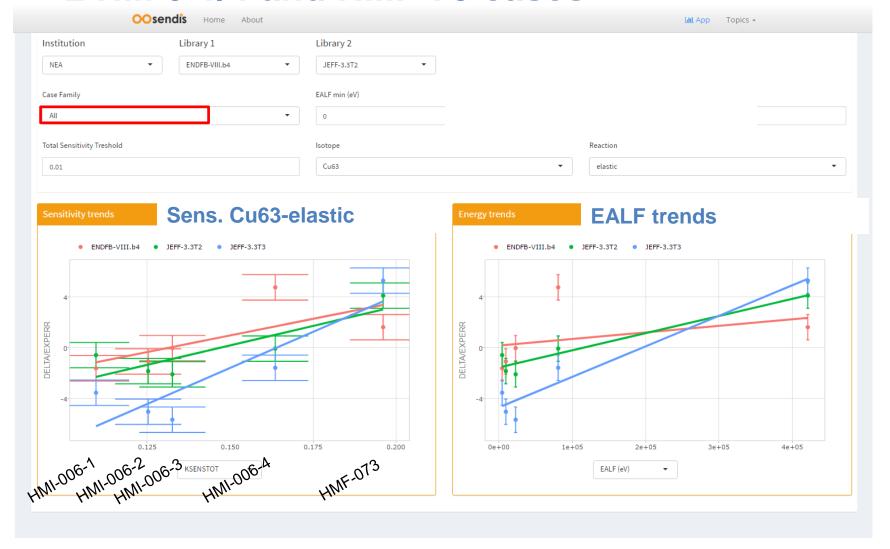


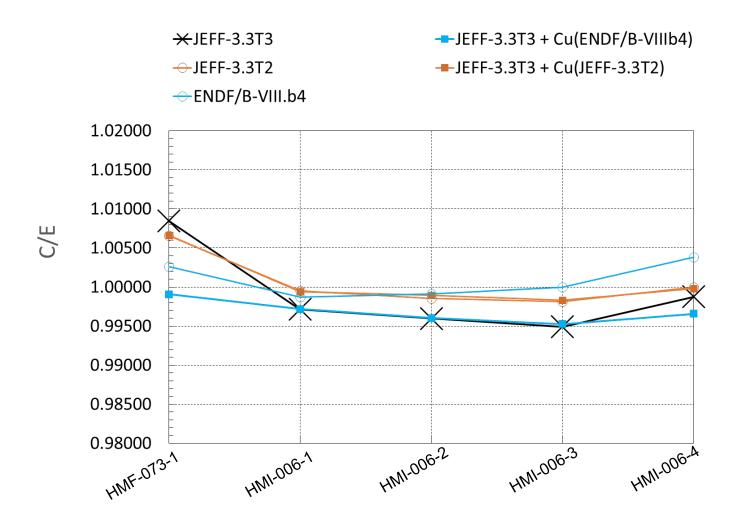
III.1 LEU cases: ENDF/B-VIIIb4 versus JEFF-3.3T3



Annex II. S/U analysis: HMI6-1/4 and HMF73-1





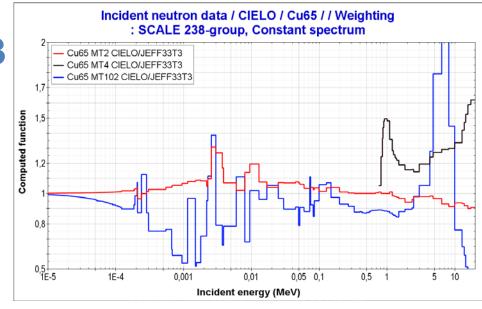


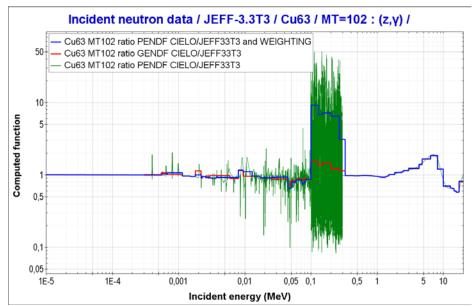
III.2 HMI6-1/4 and HMF-73 cases

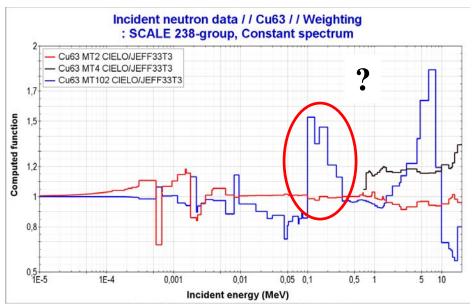
→ JEFF-3.3T3 JEFF-3.3T3 + Cu(ENDF/B-VIIIb4) → JEFF-3.3T3 & MF3 ENDF/B-VIIIb4 (NDaST) → JEFF-3.3T3 & MF4/MT2 ENDF/B-VIIIb4 (up to 300keV) 1.02000 MF4 files based on different resonance parameters up to 100 1.01500 +717 pcm keV (ENDF/B-VIIIb4) and up to 300 keV (JEFF-3.3T3) 1.01000 1.00500 1.00000 0.99500 0.99000 -1972 pcm 0.98500 0.98000 HMI-006-A HM1-006-2 HMI-006-1 HMF-073-1

III.2 HMI6-1/4 and HMF-73 cases

△ Akeff CIELO/JEFF-3.3T3 with NDaST


		HMF73-1	HMI6-1	HMI6-2	HMI6-3	HMI6-4
	MT2	-165	-72	-81	-85	-94
Cu63	MT4	701	235	265	308	413
Cuos	MT102	-258	-86	-86	-90	-113
	All	279	78	98	133	206
	MT2	37	228	244	225	234
Cu65	MT4	342	113	126	146	201
Cuos	MT102	58	66	61	57	54
	All	438	406	432	428	489
Cu63+Cu65	All	717	484	529	561	695





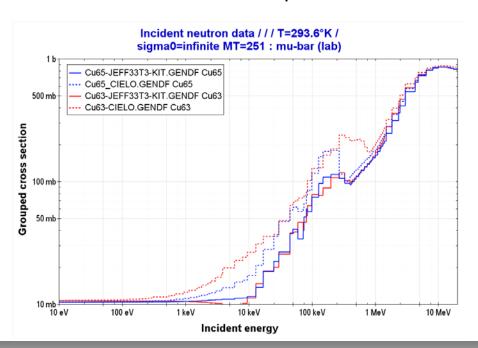
III.2 HMI6-1/4 and HMF-73

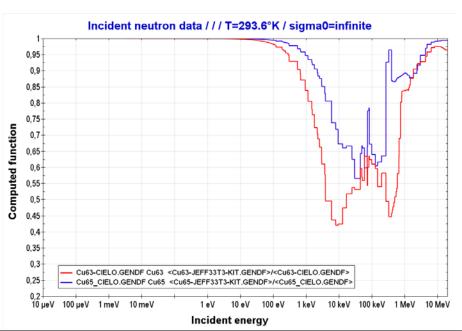
→ JEFF-3.3T3 versus ENDF/B-VIIIb4

Sensitivity analysis with NDaST

□ ∆keff JEFF-3.3T2/JEFF-3.3T3 with NDaST

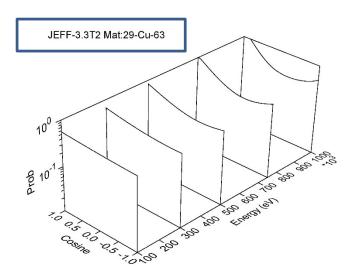
		HMF73-1	HMI6-1	HMI6-2	HMI6-3	HMI6-4
	MT2	126	232	210	166	146
Cu63	MT4	106	38	42	48	64
Cuos	MT102	-352	-570	-534	-501	-463
	All	-121	-300	-282	-288	-253
Cu65	MT2	86	350	362	322	266
	MT4	187	60	66	78	107
	MT102	-66	-4	-13	-24	-48
	All	207	407	416	376	325
Cu63+Cu65	All	87	107	134	89	72

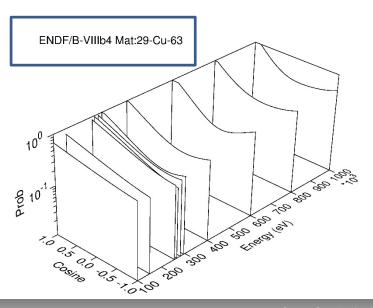


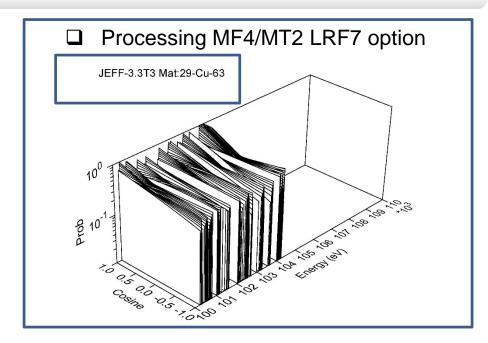


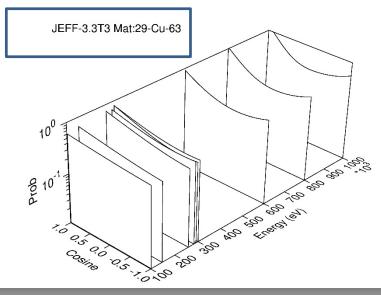
Change in angular distributions

- ☐ JEFF-3.3T3 versus ENDF/B-VIIIb4: MT251 mu-bar
- MF4/MT2 produced by T. Kawano based on different resonance parameters:
 - JEFF-3.3T3 resonance parameters up to 100 keV
 - + smoothly transition from the MF4 based on the resonance parameters to the MF4 based on Kawano's model calculations above 300 keV
 - ENDF/B-VIIIb4 up to 300 keV

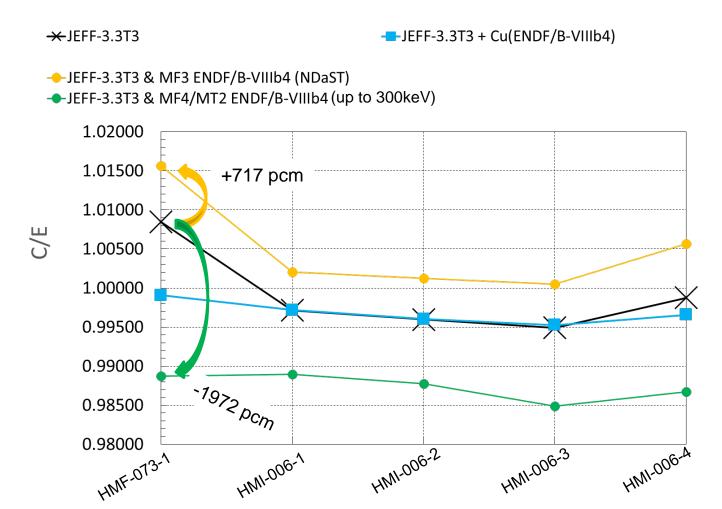


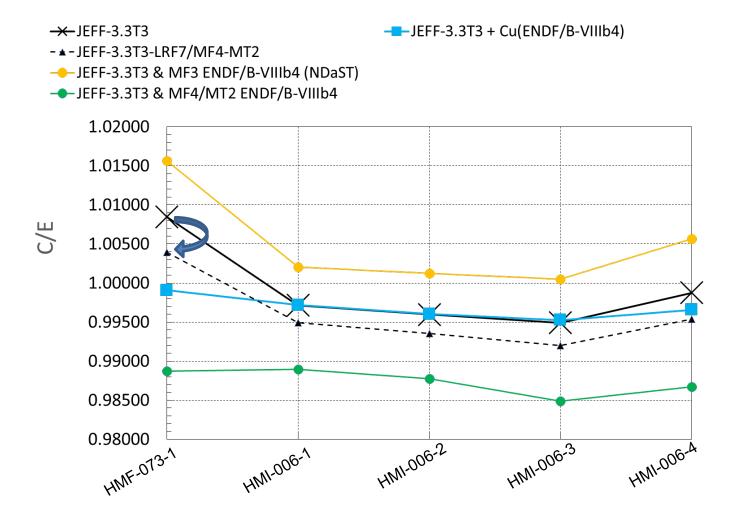


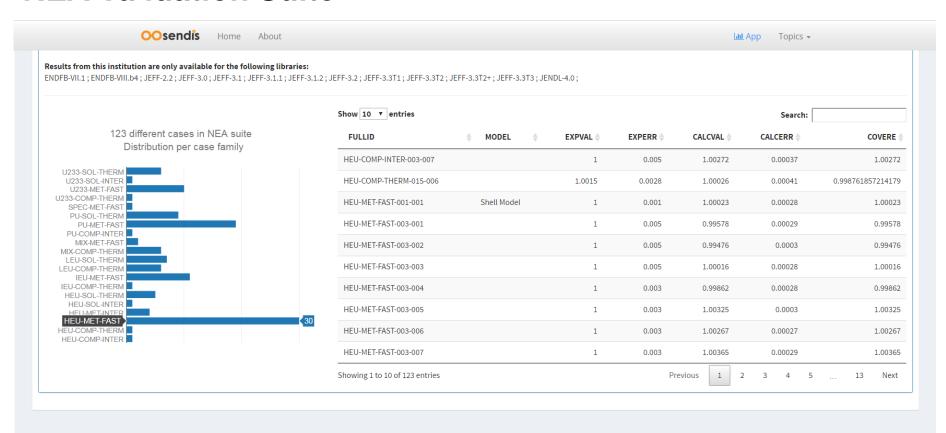




MF4/MT2 distributions







Annex III. NEA Validation Suite (=R.Mosteller)

NEA Validation Suite

Annex III. NEA Validation Suite (=R.Mosteller)

U233 Benchmarks

Spectrum	Form	Shape	Moderator and/or Reflector	ICSBEP Benchmark name
			Unreflected	u233-met-fast-001
			HEU	u233-met-fast-002-CASE_1
			REO	u233-met-fast-002-CASE_2
				u233-met-fast-003-CASE_1
Fast	Metal	Spheres Normal Uranium Tungsten Beryllium	Normal Uranium	u233-met-fast-003-CASE_2
Fast	Wetai			u233-met-fast-006
			u233-met-fast-004-CASE_1	
			rungsten	u233-met-fast-004-CASE_2
			Beryllium	u-233-met-fast-005-CASE_1
				u-233-met-fast-005-CASE_2
Intermediate	Solution	Sphere	Beryllium	u233-sol-inter-001-case1
	UO2+ZrO2	Lattice	Water	u233-comp-therm-001-case3
				u233-sol-therm-001-case1
				u233-sol-therm-001-case2
Thermal	Colution	Sphere	Unreflected	u233-sol-therm-001-case3
	Solution		Unreflected	u233-sol-therm-001-case4
				u233-sol-therm-001-case5
				u233-sol-therm-008

Annex III. NEA Validation Suite (=R.Mosteller)

Spectrum	Form	Shape	Moderator and/or Reflector	ICSBEP Benchmark name
				heu-met-fast-001
			Unreflected	heu-met-fast-008
				heu-met-fast-018-case2
				heu-met-fast-003-case1
				heu-met-fast-003-case2
				heu-met-fast-003-case3
			Name of Heavisian	heu-met-fast-003-case4
			Normal Uranium	heu-met-fast-003-case5
				heu-met-fast-003-case6
				heu-met-fast-003-case7
				heu-met-fast-028
			Depleted Uranium	heu-met-fast-014
			Tungsten carbide	heu-met-fast-003-case8
		Spheres		heu-met-fast-003-case9
Fast	Metal			heu-met-fast-003-case10
				heu-met-fast-003-case11
			Nickel	heu-met-fast-003-case12
			Steel	heu-met-fast-013
			Steel	heu-met-fast-021-case2
			Duralumin	heu-met-fast-022-case2
			Aluminium	heu-met-fast-012
			Graphite	heu-met-fast-019-case2
			Beryllium	heu-met-fast-009-case1
			Beryllium Oxide	heu-met-fast-009-case2
			Polyethylene	heu-met-fast-011
			· Orycuryiche	heu-met-fast-020-case2
			Water	heu-met-fast-004-case1
		Cylinder	Unreflected	heu-met-fast-015
		Lattice	Paraffin	heu-met-fast-026-case9

Spectrum	Form	Shape	Moderator and/or Reflector	ICSBEP Benchmark name
	UH3	Cylinder	Natural U	heu-comp-inter-003-case7
				heu-met-inter-006-case1
Intermediate	Metal	Cylinder	Graphite, copper	heu-met-inter-006-case2
	Wetai			heu-met-inter-006-case3
				heu-met-inter-006-case4
Thermal	UO2+ZrO2	Lattice	Water, ThO2	u233-comp-therm-001-case6
·	Solution	on Sphere		heu-sol-therm-013-case1
				heu-sol-therm-013-case2
			Unreflected	heu-sol-therm-013-case3
				heu-sol-therm-013-case4
				heu-sol-therm-032

HEU Benchmarks

Annex III. NEA Validation Suite (=R.Mosteller)

IEU Benchmarks

Spectrum	Form	Shape	Moderator and/or Reflector	ICSBEP Benchmark name
			Unreflected	ieu-met-fast-003-case2
		Spheres	Steel	ieu-met-fast-005-case2
		Sprieres	Duralumin	ieu-met-fast-006-case2
		,	Graphite	ieu-met-fast-004-case2
Foot	Metal	Cylinder	Unreflected	ieu-met-fast-001-case1
Fast				ieu-met-fast-001-case2
			·	ieu-met-fast-001-case3
				ieu-met-fast-001-case4
			Normal U	ieu-met-fast-002
			Depleted U	ieu-met-fast-007-case1
Intermediate	Plate	Lattice	Normal U, steel	mix-met-fast-008-case7
	UO2	Lattice	Water	ieu-comp-therm-002-CASE_3
				leu-sol-therm-007-CASE14
Thermal				leu-sol-therm-007-CASE30
	Solution	Cylinder	Unreflected	leu-sol-therm-007-CASE32
				leu-sol-therm-007-CASE36
				leu-sol-therm-007-CASE49

Annex III. NEA Validation Suite (=R.Mosteller)

LEU Benchmarks

Spectrum	Form	Shape	Moderator and/or Reflector	ICSBEP Benchmark name
	UO2 Latt	Lattice	UO2 rods, Water	leu-comp-ther-008-CASE_1
				leu-comp-therm-008-CASE_2
				leu-comp-therm-008-CASE_5
Thormal				leu-comp-therm-008-CASE_7
Thermal				leu-comp-therm-008-CASE_8
				leu-comp-therm-008-CASE_11
	Solution	Caboro	Water	leu-sol-therm-002-case1
	Solution Sphere	Unreflected	leu-sol-therm-002-case2	

Annex III. NEA Validation Suite (=R.Mosteller)

Spectrum	Form	Shape	Moderator and/or Reflector	ICSBEP Benchmark name	
				pu-met-fast-001-CASE_1	
			Unreflected	pu-met-fast-002-CASE_1	
			,	pu-met-fast-022	
		,	HEU	mix-met-fast-001-CASE_1	
			HEU	mix-met-fast-003	
			Normal Uranium	pu-met-fast-006	
			Normal Oranium	pu-met-fast-010-CASE_1	
		Spheres .		Depleted Uranium	pu-met-fast-020
			Thorium	pu-met-fast-008-case2	
			Tungsten	pu-met-fast-005-CASE_1	
Fast	Metal		Steel	pu-met-fast-025	
				pu-met-fast-026	
			Aluminium	pu-met-fast-009-CASE_1	
			Graphite	pu-met-fast-023	
		,	B 415	pu-met-fast-018-CASE_1	
			Beryllium	pu-met-fast-019	
			Polyethylene	pu-met-fast-024	
			Water	pu-met-fast-011-CASE_1	
		Cylinder	Beryllium	pu-met-fast-021-case1	
			Beryllium Oxide	pu-met-fast-021-case2	
		Lattice	Unreflected	pu-met-fast-003-case103	

Spectrum	Form	Shape	Moderator and/or Reflector	ICSBEP Benchmark name
Intermediate	Mixture	Homog	Hydrogen, graphite	pu-comp-inter-001
				mix-comp-therm-002-case-pnl30
				mix-comp-therm-002-case-pnl31
	мох	Lattice	Water	mix-comp-therm-002-case-pnl32
	WIOX	Lattice	vvaler	mix-comp-therm-002-case-pnl33
				mix-comp-therm-002-case-pnl34
				mix-comp-therm-002-case-pnl35
Thermal			Unreflected	pu-sol-therm-009-case3a
Illelillai				pu-sol-therm-011-CASE_5.16
		Cnhoro		pu-sol-therm-011-CASE_1.18
	Solution	Sphere		pu-sol-therm-011-CASE_6.18
	Solution			pu-sol-therm-021-case_1.t9a
				pu-sol-therm-021-CASE_3.T9A
		Cylinder	Water	pu-sol-therm-018-case_9
				pu-sol-therm-034-case_01

PU Benchmarks

Annex III. NEA Validation Suite (=R.Mosteller)

Additional Benchmarks

		Case
PU	Thermal	PU-SOL-THERM-009 (48-inch sphere of plutonium nitrate solution)
HEU	Fast	HEU-MET-FAST-73 (Unmoderated ZEUS benchmark)
HEU	Thermal	HEU-SOL-THERM-004_case1 (Heavy water solutions, reflected spheres)
SPEC	Thermal	SPEC-MET-FAST-08 (Neptunium sphere reflected by HEU)