Brainstorm | Next Reconstruction Priorities

- Open discussion on future physics + reconstruction priorities will be part of this week's Physics Readiness WS
 - Scheduled for <u>Wednesday</u>, <u>Sep. 17th at 1:40</u>
 UK time
 - So want to brainstorm some possible priorities/to-do's from reconstruction side

Some thoughts:

- PID development/integration (eg. upcoming <u>TIC</u> <u>discussion</u>)
- Evolution of PF/eID after baseline
 - Expanding topoclustering (clustering across calorimeters)
 - > Integration of PFAlpha and eID
- Generalized resonance reconstruction

More thoughts:

- Expansion of kinematic/inclusive algorithms
 - Eg. The "Reaction Hypothesis" floated on <u>Aug.</u>
 4th
 - Tighter integration of central & FF/FB regions
- Timeframe integration
- Background impact on holistic reconstruction

Clustering Inventory | First Steps (1/2)

- By itself: not necessarily a physics + reconstruction priority, but tangentially related
 - Some degeneracies in our suite of calorimeter clustering algorithms
 - Eg. Dima noted duplication b/n
 ImagingClusterReco and ClusterRecoCoG
 in <u>ElCrecon#1658</u>
 - And some similarities between ImagingTopocluster and CalorimeterIslandCluster
 - Some areas we might be able to improve
 - Eg. CalorimeterTruthClustering might need an update (cf. ElCrecon#2072)

- So now starting inventory of clustering
 - Building on some slides I did for the June ORNL Calorimeter workfest (in backup)

Algorithm	Description	
Island Clustering	Clusters hits into continuous deposits of energy; incl. distance metric, adjacency matrix, and cluster splitting	
Imaging Topocluster	Clusters hits into continuous deposits of energy across several layers; incl. distance metric	
HEXPLIT	Divides hits into sub-hits based on overlap in previous layers	
Truth Clustering	Groups reconstructed hits by contributions' MC particles	
Cluster Reco CoG	Calculates weighted sum of hit energy, barycenter	
Cluster Shape Calculation	Calculates cluster radius, eccentricity, etc.	
Imaging Cluster Reco	Calculates weighed sum of hit energy, barycenter across several layers	
Energy-Position Merger	Merges energies of one set of clusters with positions of another	
Truth Energy-Position Merger	Same as above, but with truth info	
Track-Based Merge/Splitter (PF)	Merges nearby clusters if E/p with a matched track is below tolerance, splits clusters between multiple tracks if need be	

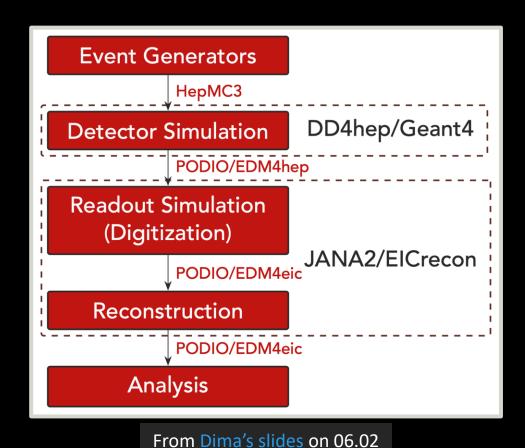
Tracking | Could Talk Be Divided?

- Last portion of 1st day dedicated to discussion of systematics
 - Scheduled for Wednesday, September 17th at 3:15 pm UK time
 - Includes talk on tracking
 - See agenda on left, and charge below
- Would it make sense to move some of tracking talk to the reconstruction block?

as you know, we are investigating possible sources of systematic uncertainty that we should account in the analyses. In order to evaluate them in the most educated way, we need your help.

Can you please help us with the following points/questions:

- Uncertainty on electron polar angle due to misalignment of detector planes.
- Uncertainties due to Material map.
- Are detector efficiencies correctly reproduced by current simulation? Do they account for Impact of Noise, beam backgrounds?
- · Reconstruction code efficiency for raw yield.


	Follow up on electron reconstruction	Win Lin
		13:40 - 14:00
14:00	Secondary Vertexing	Bishoy Dongwi et al.
		14:00 - 14:20
	Reconstruction Priorities Discussion	Derek Anderson
		14:20 - 14:40
	Afternoon Break	
45.00	Alternoon Break	
15:00		14:45 - 15:15
	Comments from inclusive plus BSM/EW	Juliette Mammei et al.
		15:20 - 15:25
	Comments from SIDIS	Anselm Vossen et al.
		15:25 - 15:30
	Comments from Exclusive, Diffractive and Tagging	Stephen Kay et al.
		15:30 - 15:35
	Comments from Jets and HF	Rongrong Ma et al.
		15:35 - 15:40
	Luminosity Monitor	Alex Smith
		15:40 - 16:00
16:00	Advice from tracking	Shujie Li
		16:00 - 16:25
	Discussion	
		16:25 - 17:00

September 15th, 2025 ePIC Reco WG Meeting 4

Overview | ElCrecon Structure

Algorithms

- Process data
- As generic as possible
 - not constrained to a particular geometry or detector
- Aim for minimal dependencies
 - e.g. JANA2 independence required

Data Model

- EDM4eic + EDM4hep,managed by PODIO
- Defines overall flow of simulation + reconstruction

Factories

 Lightweight interface between interface between an algorithm and JANA2

Plugin

- Defines what sequence of algorithms (incl. parameters + inputs/outputs) to run
- Currently grouped into 2 categories
 - detector: NHCal, FHCal, BHCal, EEEMCal, BIC, etc.
 - global: tracking, eventwise PID, particle reco

Overview | General Calorimeter Workflows

edm4hep::
SimCalorimeterHit

edm4hep:: RawCalorimeterHit edm4eic::
CalorimeterHit

edm4eic:: ProtoCluster edm4eic:: Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Calorimeter Hit Digi

Hit

Reconstruction

Calorimeter Hit Reco

Calorimeter Hits Merger*

(Pre-) Clustering

Calorimeter Island Clustering

Imaging Topo-Cluster

HEXPLIT

Calorimeter Truth Clustering

Cluster Reconstruction

Calorimeter Cluster Reco CoG

Imaging Cluster Reco Cluster Post-Processing

Calorimeter Cluster Shape

Energy-Position Cluster Merger

Truth-Energy Position Cluster Merger

Track-Cluster Merge Splitter

* Should be under (pre-) clustering

Algorithm Details | Digitization

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic::
ProtoCluster

edm4eic:: Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster
Post-Processing

Calorimeter Hit Digi: used by every calorimeter

Gist

- 1. Sums hits over specified fields
- 2. Smears summed energy by parameterized resolution & converts to ADC
- 3. Determines & smears time of hit

- Inputs:
 - SimCalorimeterHit
- Outputs:
 - RawCalorimeterHit,
 - Sim-RawCalorimeterHit Association

Algorithm Details | Hit Reconstruction

edm4hep::SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic:: ProtoCluster edm4eic:: Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster
Post-Processing

<u>Calorimeter Hit Reco:</u> used by every calorimeter

Gist

- Convert ADC value to energy & TDC to time
- Can be used to mock-up dead channels by adjusting sampling fraction

- Inputs:
 - > RawCalorimeterHit
- Outputs:
 - CalorimeterHit

Algorithm Details | (Pre-) Clustering (1/5)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic::
ProtoCluster

edm4eic::Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster
Post-Processing

Calorimeter Hits Merger: used by NHCal, BHCal (sort of), FHCal Insert

Gist

- 1. Merges rec calo hits based on provided transformations
- Energy is summed, and hit position/relations set to that of "reference cell"

- Inputs:
 - → CalorimeterHit
- Outputs:
 - CalorimeterHit

Algorithm Details | (Pre-) Clustering (2/5)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic:: ProtoCluster edm4eic:: Cluster

edm4eic::
Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster Post-Processing

<u>Calorimeter Island Clustering:</u> used by every calorimeter except BIC (Imaging)

Gist

- 1. Combines hits into continuous deposits of energy
- Identifies neighbors based on either selected distance metrics or based on "adjacency matrix" (cell ID comparisons)

- Inputs:
 - → CalorimeterHit
- Outputs:
 - ProtoCluster

Algorithm Details | (Pre-) Clustering (3/5)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic::
ProtoCluster

edm4eic:: Cluster

edm4eic::
Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster
Post-Processing

Imaging Topo Cluster: used by BIC, FHCal Insert, ZDC (HCal)

Gist

- 1. Combines hits into continuous deposits of energy across layers of a radially segmented calo
- Identifies neighbors based on selected distance metric
- 3. Likely can merge with island clustering...

- Inputs:
 - CalorimeterHit
- Outputs:
 - ProtoCluster

Algorithm Details | (Pre-) Clustering (4/5)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic:: ProtoCluster edm4eic:: Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster
Post-Processing

HEXPLIT: used by FHCal Insert, ZDC (HCal)

Gist

- 1. Divides hits into "subhits" based on the overlap of hits in previous layers
- 2. Divides energy proportional to overlap

- Inputs:
 - > CalorimeterHit
- Outputs:
 - CalorimeterHit

Algorithm Details | (Pre-) Clustering (5/5)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic::
ProtoCluster

edm4eic:: Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster
Post-Processing

Calorimeter Truth Clustering: used by every calorimeter

Gist

- 1. Groups hits into clusters based on "first" contributing particle
 - Nominally should get a cluster of all hits caused by particle
- Needs update to match how sim-rec associations are handled

- Inputs:
 - > CalorimeterHit
 - SimCalorimeterHit
- Outputs:
 - ProtoCluster

Algorithm Details | Cluster Reconstruction (1/2)

edm4hep::SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic::
CalorimeterHit

edm4eic::
ProtoCluster

edm4eic:: Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction Cluster
Post-Processing

<u>Calorimeter Cluster Reco CoG:</u> used by every calorimeter except BIC (Imaging)

Gist

- 1. Reconstructs cluster w/ energy set to be weighted sum of hits
- 2. Position set to be barycenter of cluster using selected weighting scheme
- 3. Associates cluster to primary particles

- Inputs:
 - > ProtoCluster
 - Sim-Rec Hit Associations
- Outputs:
 - Cluster
 - Sim-Rec Cluster Assoc.s

Algorithm Details | Cluster Reconstruction (2/2)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic::
CalorimeterHit

edm4eic:: ProtoCluster edm4eic:: Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction Cluster Post-Processing

Imaging Cluster Reco: used by BIC

Gist

- 1. Same functionality as Cluster Reco CoG
- 2. But also performs weighted sum/barycenter calculation over all hits in a given layer of a radially segmented calorimeter

- Inputs:
 - > ProtoCluster
 - Sim-Rec Hit Associations
- Outputs:
 - > Cluster (x2)
 - Sim-Rec Cluster Assoc.s

Algorithm Details | Cluster Post-Processing (1/4)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic::
CalorimeterHit

edm4eic::
ProtoCluster

edm4eic::
Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction

Cluster
Post-Processing

<u>Calorimeter Cluster Shape:</u> used by every calorimeter

Gist

- 1. Computes cluster shapes (radius, eccentricity, etc.) on reconstructed clusters
- 2. Outputs copy of clusters + associations but now with shapes

- Inputs:
 - Cluster
 - Sim-Rec Cluster Assoc.s
- Outputs:
 - Cluster
 - Sim-Rec Cluster Assoc.s

Algorithm Details | Cluster Post-Processing (2/4)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic:: ProtoCluster **edm4eic::**Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction Cluster
Post-Processing

Energy-Position Cluster Merger: used by BIC

Gist

- 1. Merges energy of a cluster with the position of another
- 2. Clusters matched based on eta-phi distance

- Inputs:
 - > Cluster (x2)
 - Sim-Rec Cluster Assoc.s (x2)
- Outputs:
 - Cluster
 - > Sim-Rec Cluster Assoc.s

Algorithm Details | Cluster Post-Processing (3/4)

edm4hep::
SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic::
ProtoCluster

edm4eic::Cluster

edm4eic:: Cluster

Data Model

Algorithms

Digitization

Hit Reconstruction

(Pre-) Clustering Cluster Reconstruction Cluster Post-Processing

Truth Energy-Position Cluster Merger: used by BIC

Inputs/Outputs

- Inputs:
 - MC particles
 - Cluster (x2)
 - Sim-Rec Cluster Assoc.s (x2)
- Outputs:
 - Cluster
 - Sim-Rec Cluster Assoc.s

Gist

 Same as previous energy-position cluster merger, but does so based on truth information

Algorithm Details | Cluster Post-Processing (4/4)

edm4hep::SimCalorimeterHit

edm4hep::
RawCalorimeterHit

edm4eic:: CalorimeterHit edm4eic:: ProtoCluster edm4eic:: Cluster

edm4eic::
Cluster

Data Model

Algorithms

Digitization

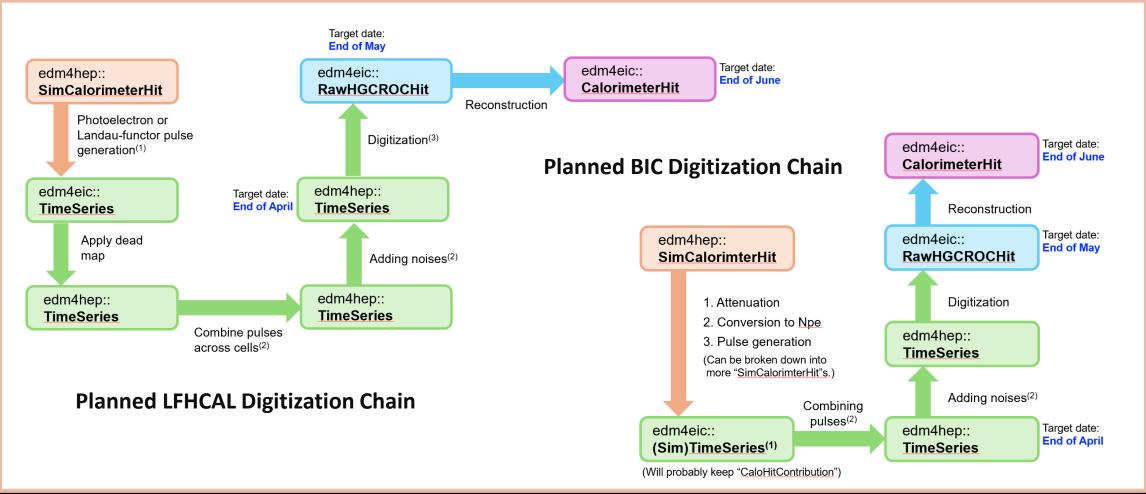
Hit Reconstruction (Pre-) Clustering Cluster Reconstruction

Cluster Post-Processing

<u>Track-Cluster Merge/Splitter:</u> used by NHCal, EEEMCal, BHCal, LFHCAL,

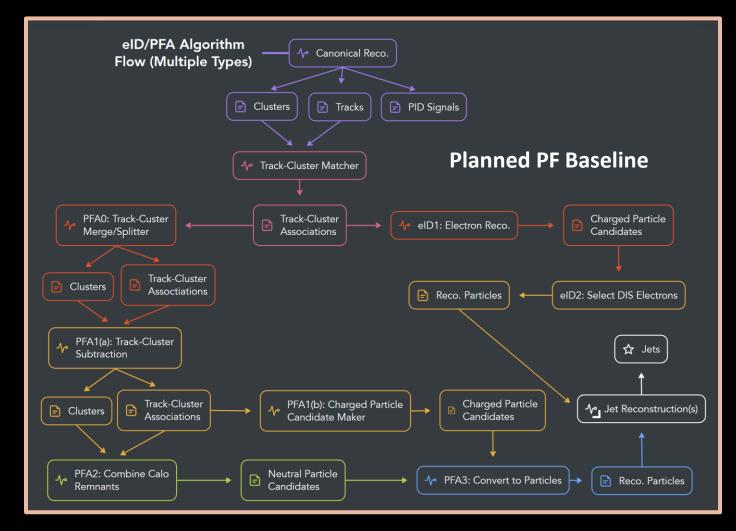
FEMC

Inputs/Outputs


- Inputs:
 - → ProtoCluster
 - → TrackSegment
- Outputs:
 - > ProtoCluster

Gist

- 1. Sums all clusters within a provided window based on if E/p of projected track falls within provided tolerance
- Then divides clusters if multiple tracks pointing to same one
 - Energy attenuated proportional to track momentum


Ongoing Work | Enhancing Digitization

Ongoing Work | Particle Flow

