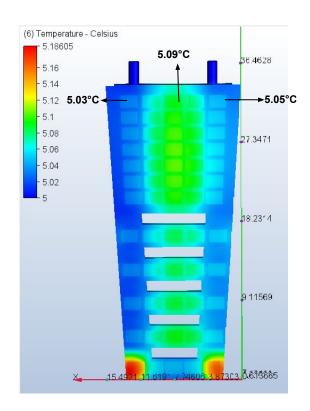
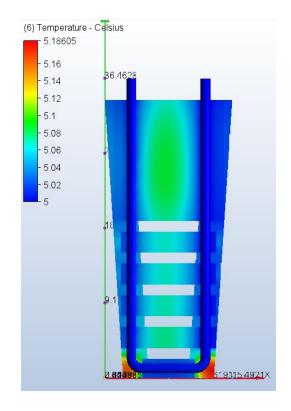

PCB Testing and Cu pipe bending techniques

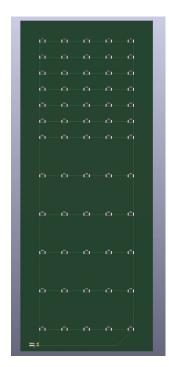
Shefali

Dr. Wouter Deconinck University of Manitoba


Design

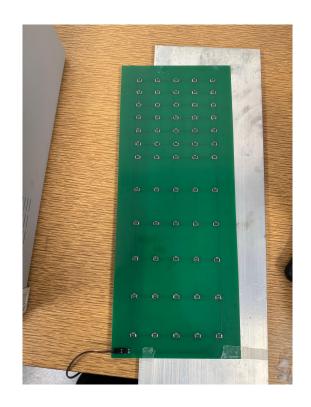


Boundary Conditions


- 1.) Inlet Boundary Conditions:
 - a) Water is introduced at 5 °C, as suggested in the Mechanics and Sectors Meeting.
 - b) Volume flow rate is set to 2 gal/min at the inlet.
- 2.) Outlet Boundary Condition: Pressure is fixed at 0 Pa.

Thermal Simulation results

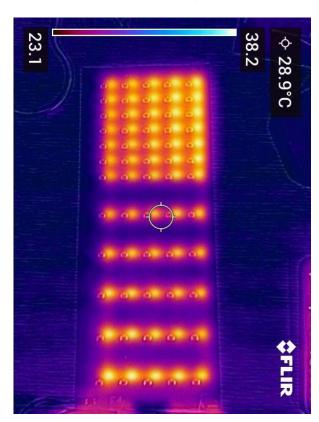
PCB Design

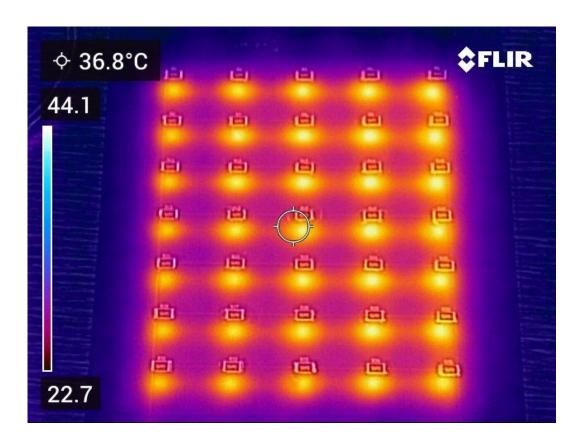


Resistance of each resistor = 56 Ohm.

- $I_i = 0.05 A$
- V_i = 2.6 V
- $P_i \approx 0.14 \text{ W}, P_t \approx 8.4 \text{ W}$
- Dimensions of PCB: Length = 381 mm (15 in), Width = 152.40 mm (6 in), Thickness= 1.6mm or 0.06 in (FR4 = 0.3 mm, Cu base: 1.3 mm).
- Resistance = 23.33 Ohm

Design of the PCB


PCB Testing



- Size of the Resistors = (6.3 X 3.15) mm (smd__6332_2512).
- PCB has one layer, FR4 = 1.6 mm.
- Resistance measured = 26.1 Ohm.
- We will deposit 8.4 W of power.

PCB Testing

Copper Pipe Bending Specification

Pipe Details:

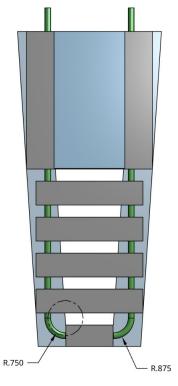
• Type: **K**

Inner Diameter (ID): 0.222 inOuter Diameter (OD): 0.25 in

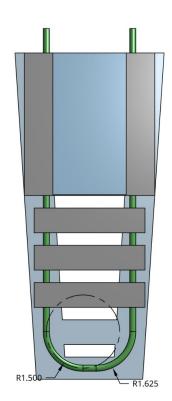
Wall Thickness: 0.014 inStandard: ASTM B251

• Temper: Hard

Bending Goal: 90° bend — Determine safe minimum bend radius ($\mathbb{R} \square_i \square$).


Table 4.1. Bending Guide for Copper Tube

Nominal Standard Size, in	Tube Type	Temper	Minimum Bend, Radius*, in
1/4	K,L	Annealed	3/4
3/8	K,L	Annealed	11/2
	K,L,M	Drawn	13/4
1/2	K,L	Annealed	21/4
	K,L,M	Drawn	21/2
3/4	K,L	Annealed	3
	K,L	Drawn	3
1	K,L	Annealed	4
11/4	K,L	Annealed	9


^{*} The radii stated are the minimums for mechanical bending equipment only.

Cu Temper	k-factor	R _{min}	Our case (CLR)
Soft (Annealed)	2.5- 3	3 times OD	0.75 in
Hard (Drawn)	3-6	6 times OD	1.5 in

Comparing CLRs for soft and hard Cu pipe

Soft (Annealed): CLR = 3*OD

Hard (Drawn): CLR = 6*OD

Bending Approaches

Using the bender:

Bending Issues: Vertex keeps moving/slipping even after clamping.

Solution: Use a **rubber cap** over the wire before inserting into the bending slot to **prevent slipping** (yet to be tested)

Current Focus: Find an **easier and repeatable bending method** for mass production

Center-to-center spacing (CLR as reference): 3.628 in

Bending Approaches

Circular tool:

Radius = 3 in, Groove machined using a ¼-in ball-nose cutter.

Center-to-center spacing (CLR as reference): 3.508 in

Problem: Circular pipe end needs a matching groove on the Al plate for proper fit. Straight grooves were preferred for easier fitting.

Solution: Making a rectangular pipe bending tool.

Bending Approaches

Rectangular tool:

Groove machined using a ¼-in ball-nose cutter, Bending radius = 0.75 in

Center-to-center spacing (CLR as reference): 3.258 in

Another approach for the model

Work in progress

Groove machining:

- Mill the groove on the aluminum plate as shown in the CAD model.
- After milling, cut the plate into smaller cold plate sections.

Attachment to PCB:

- Exploring different methods to attach each cold plate piece to the PCB.
- Current assumption: use thermal pads for attachment.
- If required, a mechanical fastening (e.g., drilling and screwing through PCB) can be used,
 with a soft thermal pad layer in between.

Role of thermal pad:

- Provides thermal interface between the PCB and cold plate.
- Acts as cushioning, reducing stress and potential vibrations from external sources.

Summary:

- In the last few slides, we compared different Cu pipe bending methods.
- The center-to-center distance in the CAD model is **3.533 in**, and the values from all three bending approaches are close to this target.

Observed Issues:

- Pipe Bender: Difficult to control the bend vertex due to pipe slipping.
- Circular Bend (Hard Cu):
 - Requires either removing the last cold plate or increasing pipe separation, increasing separation not feasible due to space constraints, as our pipelines already align closely with the last SiPM columns.
- Rectangular Tool:
 - Promising, but tight 90° bends cause wrinkling (inner side) and deflation (outer side).
 - Increasing bend radius could fix this, but would create the same spacing issue as the circular tool.
 - Also, we want to avoid semicircular milling of grooves on the Al plate for ease of fitting and manufacturing.

Suggestions Needed:

- Would using a soft (annealed) Cu tube help minimize these bending issues?
- Or, is there a better alternative material (stainless steel, Aluminum) or method to achieve the desired geometry?

Specifications (from GlueX)	values
OD	0.25 in
Thickness	0.035 in
ID	0.11 in