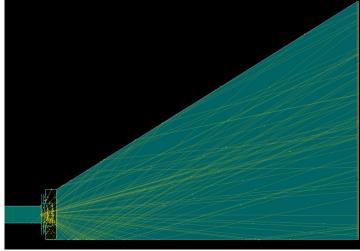

hpDIRC Simulation Status in ePIC Software

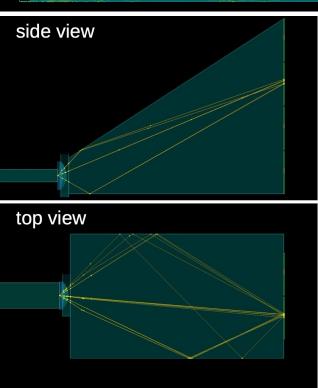
Greg Kalicy

ePIC TIC Meeting

September 22nd, 2025

HPDIRC RECONSTRUCTION

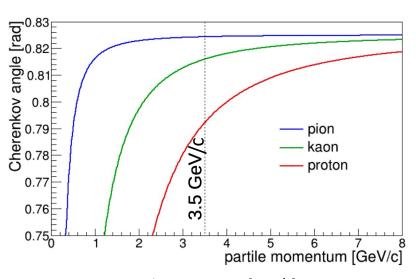

hpDIRC PID methods:

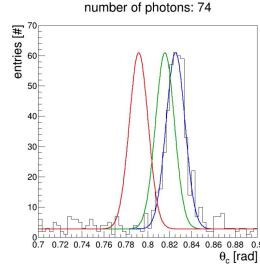

- Geometrical (BABAR-like), robust and fast method based on Look-Up Tables, delivers Cherenkov angle per particle and Single Photon Resolution (useful for calibration and in prototype tests), does not depend on precise time measurement
- ➤ Time Imaging (Belle II TOP-like), uses Probability Density Functions (analytical or simulation-based), makes optimum use of precision of position and time information
- Neural Network Reconstruction, directly using binned time and channel id to provide PID (under development)

High-precision angular track resolution is crucial for reaching required hpDIRC performance for all reconstruction methods

GEOMETRICAL RECONSTRUCTION

- > Key features:
 - BaBar-like
 - uses Look-Up Tables
 - delivers Cherenkov angle per particle and
 Single Photon Resolution (useful for calibration)
 - > does not depend on precise time measurement
- Pixel position + bar location define photon direction at bar end, stored in Look-Up Table (LUT), combined with particle track to calculate Θ_C.
- ightharpoonup Path pixel bar not unique combinatorial background in Θ_{C} requires careful treatment.
- Arrival time information is used to resolve ambiguities
- Will be the first implemented reconstruction method in ElCrecon

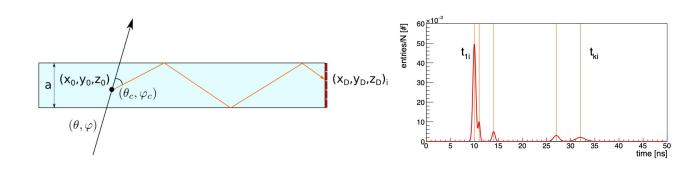


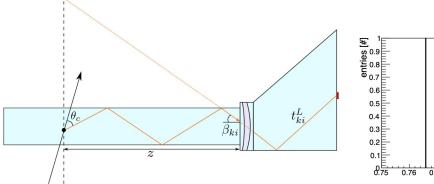

GEOMETRICAL RECONSTRUCTION

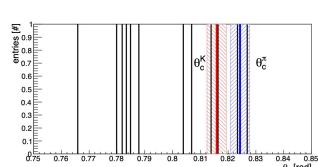
> Key features:

- BaBar-like
- uses Look-Up Tables
- delivers Cherenkov angle per particle and
 Single Photon Resolution (useful for calibration)
- > does not depend on precise time measurement
- Pixel position + bar location define photon direction at bar end, stored in Look-Up Table (LUT), combined with particle track to calculate Θ_C.
- ightharpoonup Path pixel bar not unique combinatorial background in Θ_{C} requires careful treatment.
- Arrival time information is used to resolve ambiguities
- Will be the first implemented reconstruction method in ElCrecon

$$\log \mathcal{L}_h = \sum_{i=1}^N \log(S_h(c_i) + B_h(c_i)) + \log P_h(N)$$
 signal combinatorial background

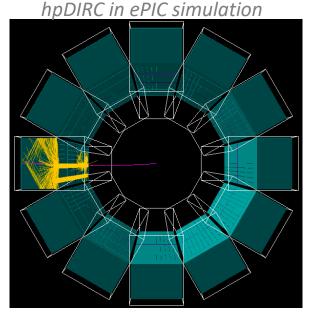




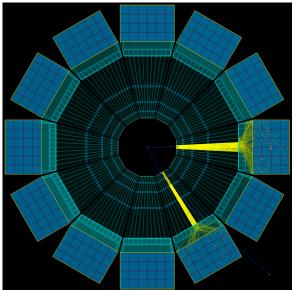

TIME-BASED RECONSTRUCTION

- > Key Features:
 - ➤ Belle II TOP-like
 - uses Probability Density Functions
 - optimal use of position and time information
- Probability density functions (PDFs):
 - From data: best PID, requires a large amount of data in whole angular and momentum acceptance
 - Simulated: full Geant4 simulation of every possible particle type direction and momentum
 - Analytical: fast, low memory footprint initially developed for Belle II TOP, modified to account for spherical lens focusing (PDFs using LUT)

$$\log \mathcal{L}_h = \sum_{i=1}^{N} \log(S_h(c_i, t_i) + B_h(c_i, t_i)) + \log P_h(N)$$


HPDIRC IN EPIC SIMULATION

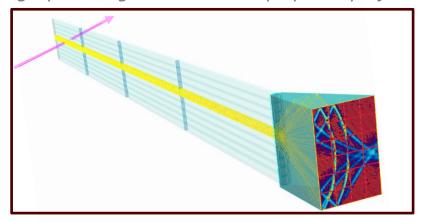
> Implemented:

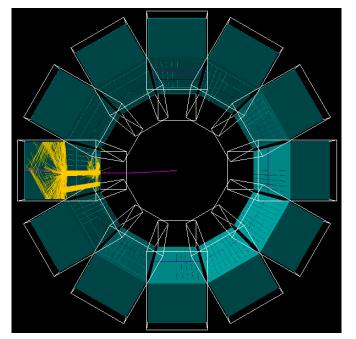

- All optical components of the geometry are implemented (radiator, focusing system, EV, mirror)
- Wave-length dependent material properties
- Quantum and collection efficiencies of PMTs are implemented (stacking action class)
- ➤ Digitization: DIRCRawHit (RawTrackerHit) → celd Id → position → PMT Id, pixel Id → DIRC tree

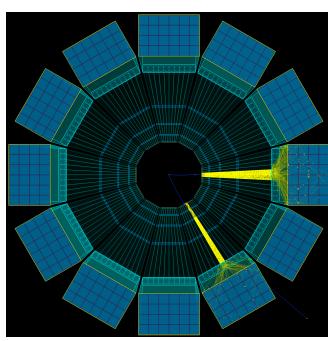
> Reconstruction:

- Initial approach using plug-in DIRC tree (see https://github.com/eic/snippets/tree/main/PID/hpDIRC) does not work anymore
- > Geometrical reconstruction: LUT was created using standalone Geant4 simulation to be directly imported into ePIC's simulation.
- > Time-imaging reconstruction: PDFs were created using standalone macros using simulated data.

Stand-alone hpDIRC simulation


HPDIRC SIMULATION IN EPIC STACK


- > Integration of hpDIRC Reconstruction into Full ePIC Simulation restarted
- > Collaborative work between WSU and SBU teams.


- Bill Llope (WSU)
 Shubham Dutta (SBU)
 Julio Barrantes (SBU)
- > Shubham will work with support from Roman and Bill to adopt stand alone code according to ePIC tutorials and dRICH examples. He will start with Geometric reconstruction.
- ➤ Coordination with the Reconstruction Working Group has started. Chandra's involvement will help strengthen collaboration and support the development and integration of the algorithms in ElCrecon.

 PDIRC in ePIC and stand-alone simulation

Single particle gun events to map hpDIRC performance

