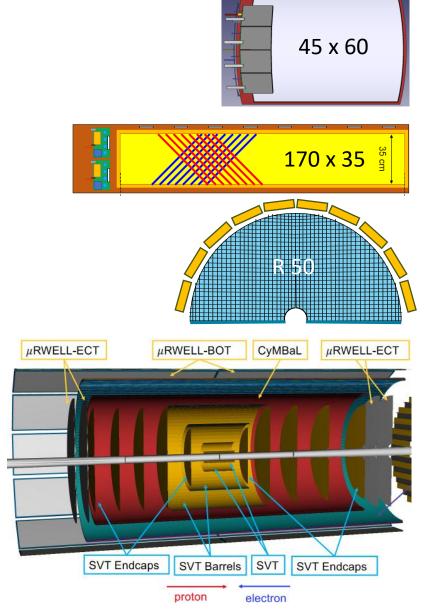


ePIC MPGD readout Power dissipation oriented Intro

Irakli Mandjavidze

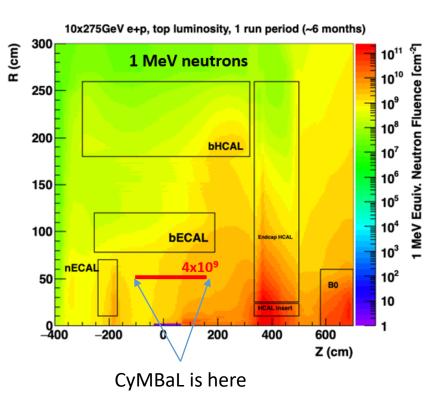
Irfu, CEA Saclay Gif-sur-Yvette, 91191 France


17/Sep/2025

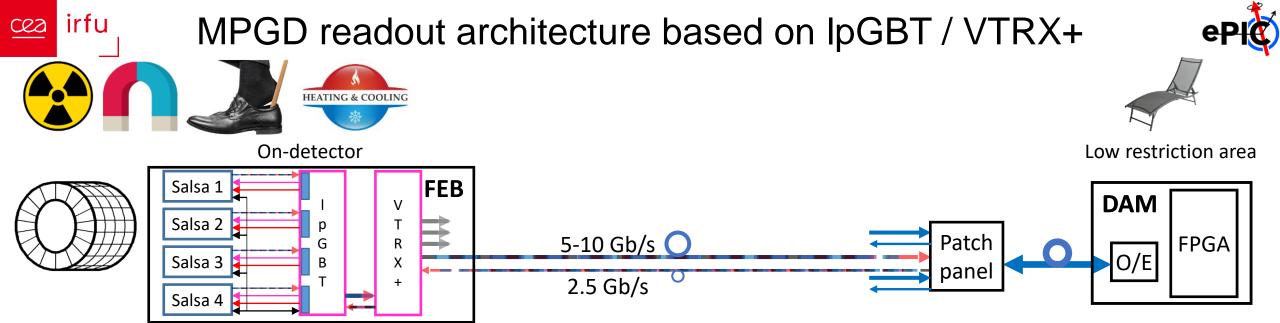
Reminder on MPGD sub-systems and channel counts

- Cylindrical Micromegas Barrel Layer: CyMBaL: ~50k channels
 - → 48 tiles of 1024 channels each
- μRWELL Barrel Outer Tracker : μRWell-BOT : ~100k channels
 - → 24 modules of 4 096 U-V strips each
- μRWell End Cap Tracker : μRWell-ECT : ~30k channels
 - → 8 half-disks of 4 000 X-Y strips each
- ~180k-channel heterogeneous system
 - → Micromegas, µRWell, barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
 - → Use same frontend ASIC
 - Salsa under development
 - → Share frontend design between groups
 - Adapt form factor if needed

Inner detector fronted environment


- Stringent space
- Restricted material budget including for cooling
- Magnetic field
- Radiation
- Example of CyMBaL tracker environment

 \rightarrow TID after 10 years : 10 krad


 \rightarrow Neutron fluence after 10 years: $10^{11} n_{eq} / cm^2$

 \rightarrow 20 MeV proton flux: 100 particle / cm² / s

→ Magnetic field: 1.9 T

- Similar radiation and magnetic field environment for other MPGD detector frontends
- Note: radiation environment changes "every week"
 - → Mainly due to ups and downs in estimations of synchrotron radiation

- 256-channel FEB with 4 Salsa-s per board
- Direct FEB-DAM connection avoiding intermediate RDO stage
 - → Downstream
 - Clock Synchronous run-control commands Async slow control and monitoring requests
 - → Upstream
 - Physics and calibration data
 Slow control and monitoring responses

176K-ch MPGD readout component count

Operational quantities

		Cy	yMBaL	μRWell-BOT	μRWell-ECT	Total	
_	Channels		48K	96K	32K	176K	
	Salsa		768	1 536	512	2 816	
L	FEB		192	384	128	704	
	DAM		6	12	4	22	

Production quantities

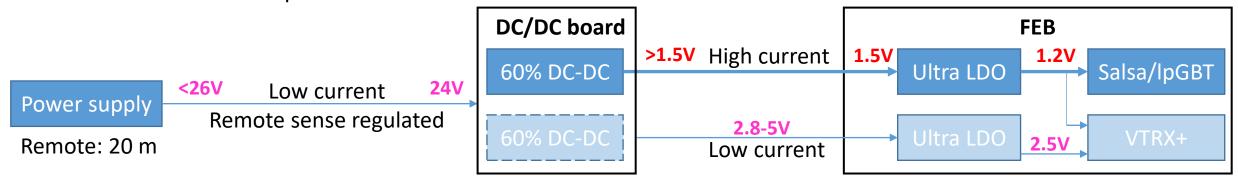
- Including prototyping, test-bench and quality assurance needs
- → 4 000 Salsa-s
- → 770 FEBs
 - 770 VTRX+
 - 770 lpGBT
- → 25 DAMs
 - 100 12-Rx and 12-Tx FireFly modules

256-channel FEB power consumption

Component illustration for CyMBaL FEB

- Raw power budget with minimal margin: ~6.8 W
 - \rightarrow 27 mW / ch
- Assume 8.5 W for safety: 25% extra
 - \rightarrow 33 mW / ch
 - \rightarrow 1.5 V 5.6 A
 - \rightarrow 2.8 V 90 mA
- · Cooling to be studied

FEB components and their power consumption

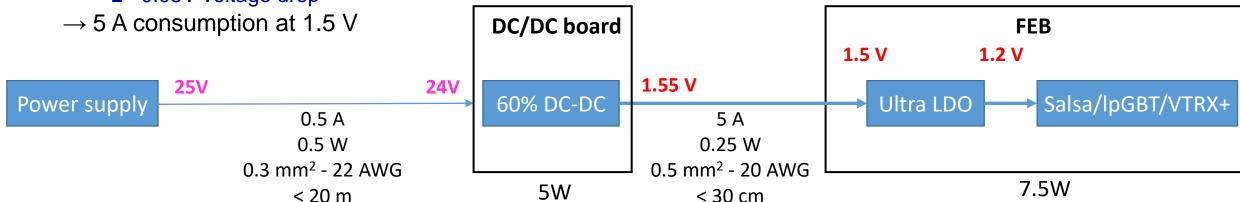

Component	Vin V	Current mA	Power mW	Comment
Salsa 1		1 000	1 200	15 mW/ch
Salsa 2	1.2			
Salsa 3	1.2			
Salsa 4				
lpGBT	1.2	420	500	Overestimated
VTRX+	1.2	20	25	
VIKAT	2.5	70	175	
LDO Salsa 1-2	1.5	2 000	600	LDO / Salsa to
LDO Salsa 3-4	1.5	2 000		avoid hotspots?
LDO lpGBT/VTRX+	1.5	440	130	
LDO VTRX+	2.8	70	20	

FEB powering in ~1.8 T magnetic field

- DC/DC-based LV distribution: to be magnetic field tolerant
 - → Remote power supply distributes 12-24V with a low voltage drop over ~20 m cables
 - → Low cross-section power cables

As close to FEB as possible : 1 cm - 50 cm

- DC/DC regulator board
 - → Might be bulky and a source of EMI
 - Space + extra material for shielding
 - → Delivers high current for 1.2V
 - Should be close to FEBs
 - Avoid significant power drop and power dissipation in cables
 - Avoid pickup noise and ground-loops
- Studies within the ePIC collaboration to have common approach to power the frontends
 - → Adapt proposed solution to MPGDs



Expected power dissipation

Assume

- → 20 m cable between remote power supply and DC-DC convertor
 - Less than 1 V voltage drop
- → 60% DC-DC efficiency
- → DC-DC not far from FEB
 - In 30cm vicinity
 - 0.05V voltage drop

Dissipation

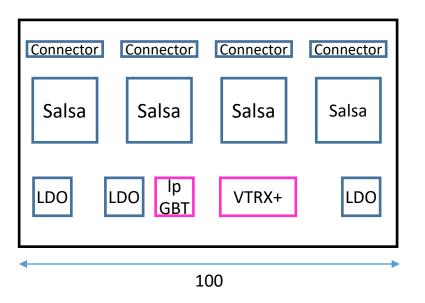
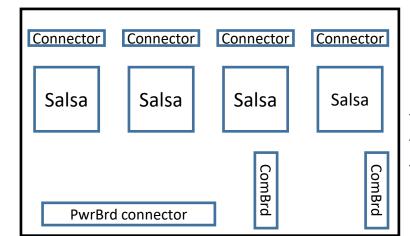
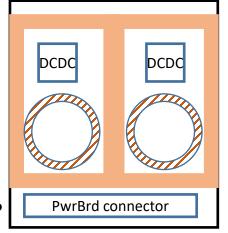

- \rightarrow 0.5 W over PS DC-DC cables : 22 AWG
- \rightarrow 5 W on DC-DC board
 - Requires cooling
- → 0.25 W over DC-DC FEB interconnect : 20 AWG
- \rightarrow 7.5 W on FEB
 - Requires cooling

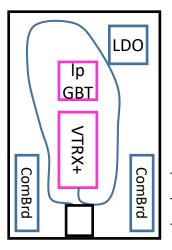
Illustration of CyMBaL lpGBT-based FEB organization options

Single board

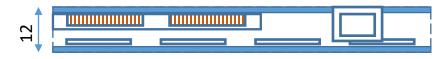


- → Complex high density high speed
- → MPGD-specific form factor


- → DC/DC mezzanine
- → 2 T tolerant low EMI
- → Common to all MPGDs ?


9

Mezzanine approach



- → FEB mother-board
- → Low density low speed
- → MPGD-specific form factor

- → Communication mezzanine
- → high density high speed
- → Common to all MPGDs ?

Summary

- Design is in early stage
- Specific form-factors for frontend electronics boards depending on MPGD type
 - → FEB, optical module, DC-DC converter
- Not enough knowledge on component placement and space constraints
- Cooling will be required for all frontend components
- Targeted operation temperature should be within 25-35°C.
 - → With current knowledge, temperature stability less than 3°C peak to peak can be acceptable