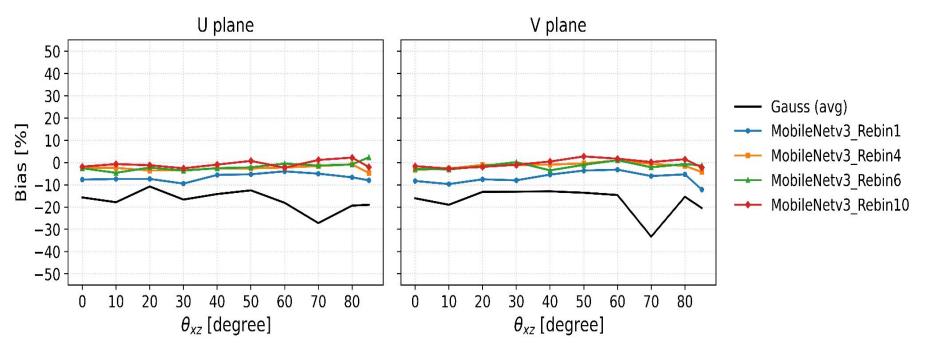
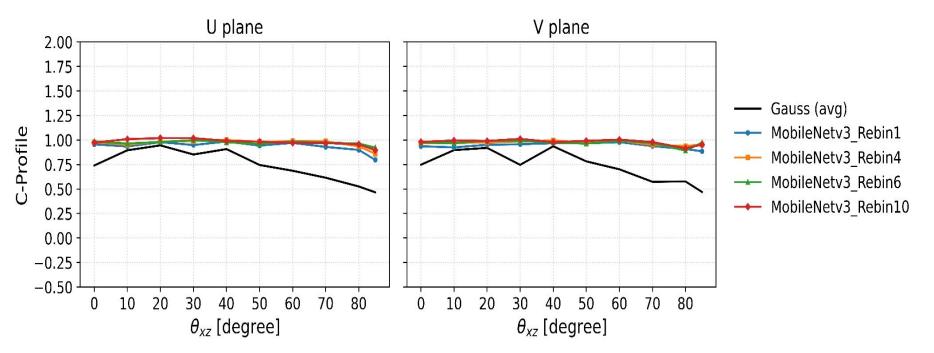


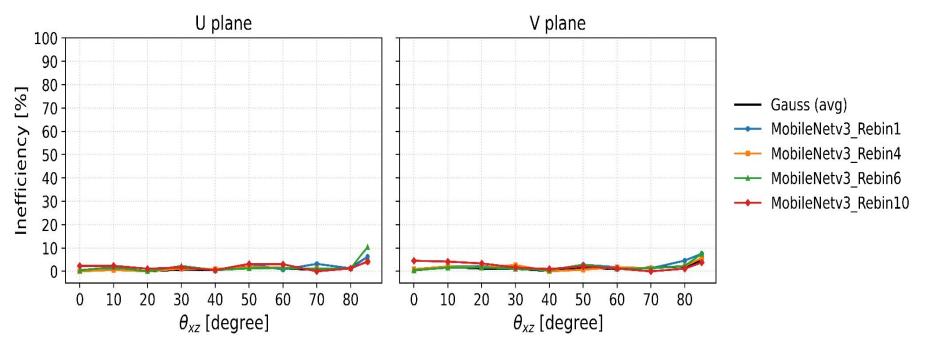
Status report on **DNNROI sigproc**


Hokyeong Nam Chung-Ang University

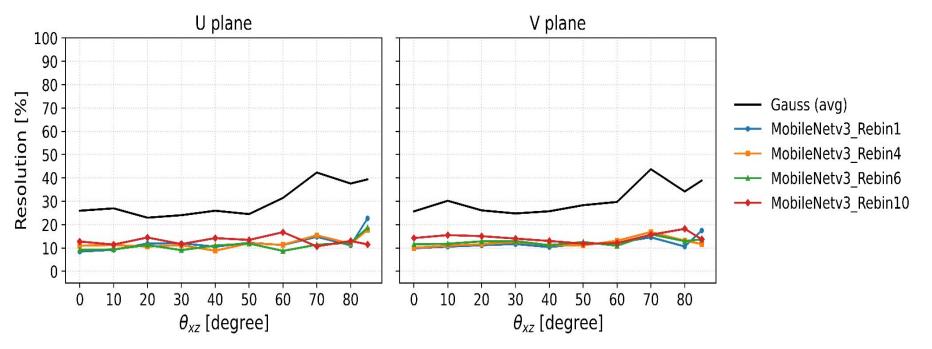
Train. vs. Val. Loss Curve


- MobileUNet V3
- Dataset: cosmic-ray 590 events
- High-resolution images leads lower final training loss
- The threshold 100 showed better performance across rebin factors

Bias vs θ_{xz} | 1GeV | DNN vs Gauss(avg)


- MobileUNet V3, Truth Threshold = 100
- Dataset: cosmic-ray 590 events

Cprofile vs θ_{xz} | 1GeV | DNN vs Gauss(avg)


- MobileUNet V3, Truth Threshold = 100
- Dataset: cosmic-ray 590 events

Inefficiency vs θ_{xz} | 1GeV | DNN vs Gauss(avg)

- MobileUNet V3, Truth Threshold = 100
- Dataset: cosmic-ray 590 events

Resolution vs θ_{xz} | 1GeV | DNN vs Gauss(avg)

- MobileUNet V3, Truth Threshold = 100
- Dataset: cosmic-ray 590 events

Time/Memory Measurement (Chunking + Rebining)

		UNet (MB)			
nchunks	Rebin 1 (full)	Rebin 4	Rebin 6	Rebin 10	
1	8608	4662	4210	3931	6468
2	6000	4032	3861	3723	4962
3	5242	3860	3736	3616	4410
4	4760	3777	3687	3622	4151
5	4539	3721	3641	3658	4021
10	3977	3657	3648	3660	3792

• PD-HD cosmic-ray data: 27673-1

```
// decon charge frame to eigen -
// (4) Convert Decon charge
Array::array_xxf decon_charge_eigen;
   auto traces = Aux::tagged_traces(inframe, m_cfg.decon_charge_tag);
   mu(fmt::format("4-1 decon tagged_traces (n={})", traces.size()));
   decon_charge_eigen = traces_to_eigen(traces);
   mu(fmt::format("4-2 decon eigen filled ({}x{}))", m_nrows, m_ncols));
    if (decon_charge_eigen.sum() == 0.0) {
        log->warn("call={} no traces for input tag {}, using zeros", m_sa
   else {
        log->debug("call={} tag={} ntraces={}", m_save_count, m_cfg.decon
```

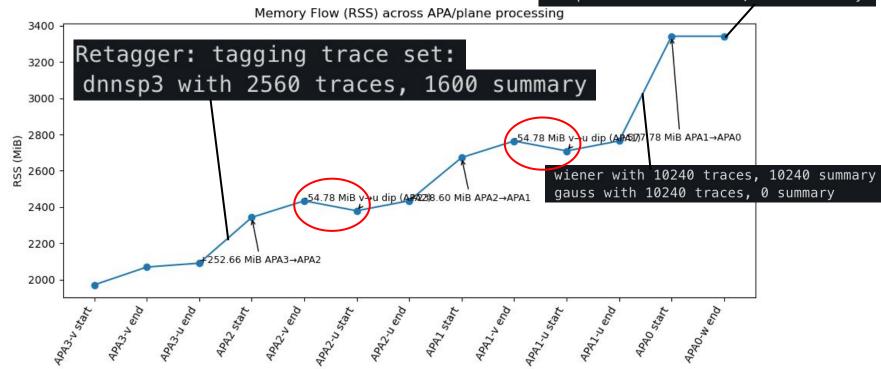
- 6-0 to 6-1b: Setup, loading TorchScript
- 0-0: Baseline
- 1-x: Frame → Eigen conversion
- 2-x: Eigen → Tensor conversion
- 3-x: Chunking & Inference
- 6-2 to 6-7:
 TorchService input conversion & output conversion
- 4-x: Deconvolution charge → Eigen conversion
- 5-x: ROI application & frame reconstruction

- Include WireCellUtil/MemUsage.h to "DNNROIFinding.cxx" and "TorchService.cxx"
- Printed the RSS memory at each step

```
EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K TorchService::forward begin (dev=cpu)
 IEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-2a before from_itensor
 1EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-2b after from_ltensor
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-3 before module.forward
 1EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-4 after module.forward
 1EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-5 before to_itensor
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=<u>0K 6-6 after to itenso</u>
[09:07:29.663] I [ torch ] <TorchService:dnnroi> MemUsage summary (forward)
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K TorchService::forward begin (dev=cpu)
 IEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-2a before from_itensor
 EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-2b after from_itensor
 EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-3 before module.forward
 EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-4 after module.forward
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-5 before to_itensor
 1EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 6-6 after to_itensor
[09:07:29.731] I [ torch ] <DNNROIFinding:dnnroi2v> MemUsage summary for call=0
MEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K call=0 begin
 IEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 0-0 frame baseline
MEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-0 [loose_lf2] start
MEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-1 [loose_lf2] traces collected (n=0)
 HEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-2 [loose_lf2] eigen allocated+filled (800x6000)
 EM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-3 [loose_lf2] input scale/offset applied
 EM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-4 [loose lf2] downsampled by 10
MEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-5 [loose_lf2] pushed into ch_eigen (size=1)
 EM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-0 [mp2_roi2] start
 EM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-1 [mp2_roi2] traces collected (n=2560)
 EM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-2 [mp2_roi2] eigen allocated+filled (800x6000)
 1EM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1−3 [mp2_roi2] input scale/offset applied
 IEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-4 [mp2_roi2] downsampled by 10
IEM: total: size=5.04237e+06K, res=2.39739e+06K increment: size=0K, res=0K 1-5 [mp2_roi2] pushed into ch_eigen (size=2)
MBH: total: $12855-042274906K, res=2.39/39es06K increment: $12890K, res=0K: 1-5 (mp2_roi2) pUshed into ch_eigen (size=2)
MBH: total: $12855-04227490K, res=2.39/39es06K increment: $12890K, res=0K: 1-6 (mp2_roi2) pUshed into ch_eigen (size=2)
MBH: total: $12855-04227490K, res=2.39/39es06K increment: $12890K, res=0K: 1-2 (mp2_roi2) eigen allocated filled (800K000)
MBH: total: $12855-04227490K, res=2.39/39es06K increment: $12890K, res=0K: 1-2 (mp2_roi2) eigen allocated filled (800K000)
MBH: total: $12855-04227490K, res=2.39/39es06K increment: $12890K, res=0K: 1-3 (mp2_roi2) input $2812471848 applied
 TEM: total: size 5.04427e+06K, res 2.39918e+06K increment: size 1896K, res 1792K 1-4 [mp3 roi2] downsampled by 10
 EDN: total: size=5.04427e+06K, res=2.39918e+06K increment: size=0K, res=0K 1-5 [mp3_roi2] pushed into ch_eigen (size=3)
EDN: total: size=5.04427e+06K, res=2.39918e+06K increment: size=0K, res=0K 2-1 from_blob tag#0 (600×800)
EDN: total: size=5.04427e+06K, res=2.39918e+06K increment: size=0K, res=0K 2-1 from_blob tag#1 (600×800)
 1EM: total: size=5.04427e+06K, res=2.39918e+06K increment: size=0K, res=0K 2-1 from_blob tag#2 (600x800)
 EM: total: size=5.04427e+06K, res=2.39918e+06K increment: size=0K, res=0K 2-2 stack(ch,0)
MBH: total: size=0.044270-00K, res=2.399180-00K increment: size=0K, res=0K 2-3 transpos(1,2)
MBH: total: size=0.044270-00K, res=2.999180-00K increment: size=0K, res=0K 2-3 transpos(1,2)
MBH: total: size=0.044270-00K, res=2.399180-00K increment: size=0K, res=0K 3-1 chunk view created (N-5)
MBH: total: size=0.044270-00K, res=2.399180-00K increment: size=0K, res=0K 3-2 chunk0 cloned(if needed)+vrapped
MBH: total: size=0.044270-00K, res=2.499280-00K increment: size=0K, res=0K 3-3 chunk0 cloned(if needed)+vrapped
MBH: total: size=0.074270-00K, res=2.499280-00K increment: size=30000K, res=30000K 3-4 chunk0 clonward done
MBH: total: size=0.074270-00K, res=2.499280-00K increment: size=30000K, res=30000K 3-4 chunk0 croward done
MBH: total: size=0.074270-00K, res=2.4992820-00K increment: size=30000K, res=30000K 3-4 chunk0 croward done
 EM: total: size=5.07427e+06K, res=2.42922e+06K increment: size=0K, res=0K 3-6 chunk0 pushed(clone) into outputs (size=1)
 EM: total: size=5.07427e+06K, res=2.42922e+06K increment: size=0K, res=0K 3-2 chunk1 cloned(if needed)+wrapped
 IEM: total: size=5.07427e+06K, res=2.42922e+06K increment: size=0K, res=0K 3-3 chunk1 to_itensor
 1EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=16K 3–4 chunk1 forward done
 EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-5 chunk1 from_itensor (to cpu tensor)
 EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-6 chunk1 pushed(clone) into outputs (size=2)
 IEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-2 chunk2 cloned(if needed)+wrapped
MBH: total: sizes5.07427e-06K, res2_42924e-06K increment: size=0K, res=0K 3-4 chunk2 forward done
MBH: total: size=5.07427e-06K, res2_42924e-06K increment: size=0K, res=0K 3-5 chunk2 from Itensor (to cpu tensor)
MBH: total: size=5.07427e-06K, res2_42924e-06K increment: size=0K, res=0K 3-6 chunk2 pushed(clone) into outputs (size=3)
MBH: total: size=5.07427e-06K, res2_42924e-06K increment: size=0K, res=0K 3-2 chunk3 clode(if needed)+wrapped
 1EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-3 chunk3 to_itensor
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K<u>3-4 chunk3 forward done</u>
 EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-5 chunk3 from_itensor (to cpu tensor)
 1EM: total: size=5.07427e+θ6K, res=2.42924e+θ6K increment: size=θK, res=θK 3-6 chunk3 pushed(clone) into outputs (size=4)
 EM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-2 chunk4 cloned(if needed)+wrapped
 IEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-3 chunk4 to_itensor
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K, res=0K 3-4 chunk4 forward done
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=06K, res=0K 3-5 chunk4 from itensor (to cpu tensor)
MEM: total: size=5.07427e+06K, res=2.42924e+06K increment: size=0K. res=0K 3-6 chunk4 pushed(clone) into quiputs (size=5)
```

- Fraction of logs for
 - MobileUNet V3, rebin = 10, nchunks = 5
 - PD-HD cosmic-ray data: 27673-1

- This study revealed decon to egien conversion and apply ROI mask require ~60 MB of additional memory
- If so, where the other memory increment comes from?


MEM: total: size=5.08177e+06K, res=2.43682e+06K increment: size=0K, res=384K 4-2 decon eigen filled (800x6000)

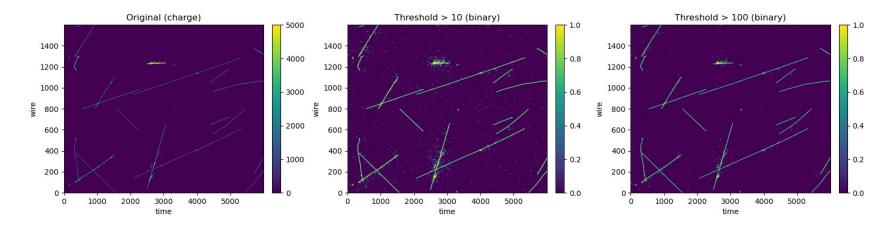
MEM: total: size=5.13802e+06K, res=2.49298e+06K increment: size=56252K, res=56152K 5-2 mask applied (with transpose)

MEM: total: size=5.13802e+06K, res=2.49254e+06K increment: size=0K, res=0K 5-6 frame built & tagged

	•	· ·		
Segment	Forward Start RSS (MiB)	End of Call RSS (MiB)	Change (same APA, MiB)	Change (previous plane, MiB)
APA4-V	1970.68	2068.87	+98.19	_
APA4-U	2068.87	2090.29	+21.42	_
APA4 → APA3	2342.95	_	_	+252.66
APA3-V	2342.95	2434.12	91.17	_
V → U transition	2379.34	_	_	-54.78
APA3-U	2379.34	2434.55	+55.21	_
APA3 → APA2	2673.15	_	_	+238.60
APA2-V	2673.15	2764.39	+91.24	_
V → U transition	2709.61	_	_	-54.78
APA2-U	2709.61	2764.82	+55.21	_
APA2 → APA1	3342.60	_	_	+577.78
APA1-W	3342.60	3342.60	_	_

dnnsp0 with 2560 traces, 1760 summary
dnnsp with 10240 traces, 6560 summary

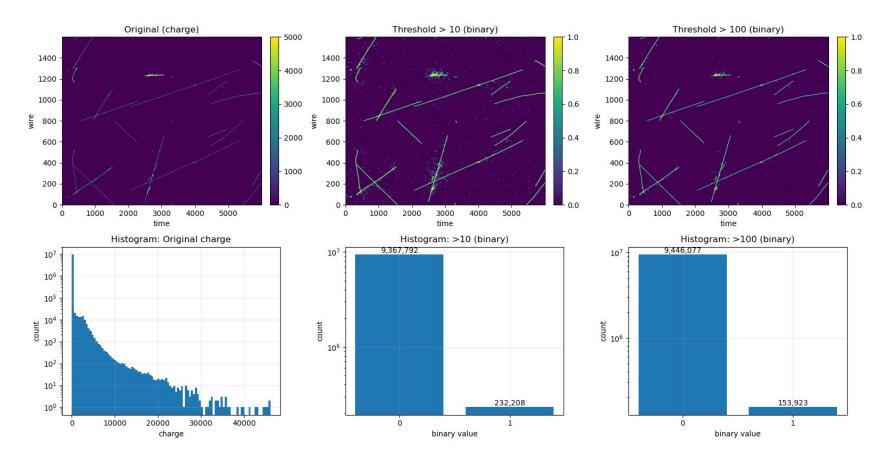
- MobileUNet V3, rebin = 10, nchunks = 5
- PD-HD cosmic-ray data: 27673-1


- ~ 1.2 GiB of memory comes from Retagger
- Study for different model & rebin & chunking?

Plan

- Padding to the truth ROI \rightarrow check the 1D waveform and evaluate the results
 - Apply truth threshold = 100 or more →
 reduce noise-like signals and narrow the ROI window in time axis
 - Loop over wire channels to identify continuous signal along time axis
 - Openeding on the padding factor (e.g. $1 \rightarrow \pm 1$ time tick, $7 \rightarrow \pm 7$ time tick), include additional time ticks to recover the subtracted ROI window
- Snakemake workflow and metric vs. ideal MIP track direction (SPDIR plots)
- Replace WC standalone simulation with LArWC for single track simulation
- Revise the script for 2D waveform evolution plot to include
 - Charge cut applied to DNN SP results for imaging
 - Raw, after noise filter results

Back Up


True ROI definition in training script

True ROI: Convert continuous charge map into binary mask for training (for BCE loss)

- Raw Truth Data: each pixel = deposited charge at (wire, time)
- Rebin & Crop: downsample in time using rebin factor, and select region for training
- Thresholding over bin content (truth_th in code):
 - \circ If charge > threshold \rightarrow mask as signal (1)
 - \circ If charge \leq threshold \rightarrow background (0)
- Low threshold \rightarrow more pixels labeled as signal (recall \(\frac{1}{2}\), precision \(\psi\))
- High threshold \rightarrow fewer pixels labeled as signal (recall \downarrow , precision \uparrow)

True ROI definition in training script

Model Comparison - Network Architectures

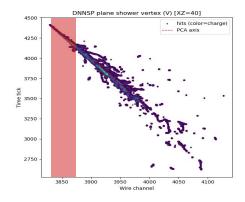
Model	Connector	Decoder	Skip Connection	Downsampling Depth	Activations	
	Encoder				Encoder	Decoder
UNet	Convs	4 Convs	Yes	1/16	ReLU	ReLU
MobileNetV2-UNet	Depthwise separable	2 Convs	None	1/32	ReLU6	ReLU
MobileNetV3-UNet	Depthwise separable + SE	4 Convs	Yes	1/32	h-swish + ReLU	ReLU
Transformer-UNet	Convs	4 Convs	Yes	1/16	ReLU	ReLU
	+ Transformer bottleneck				GELU (transformer)	

- Training dataset: 590 cosmic-ray events
- Optimizer: SGD (Stochastic Gradient Descent)
- Learning rate: 0.1
- Early stopping: Enabled

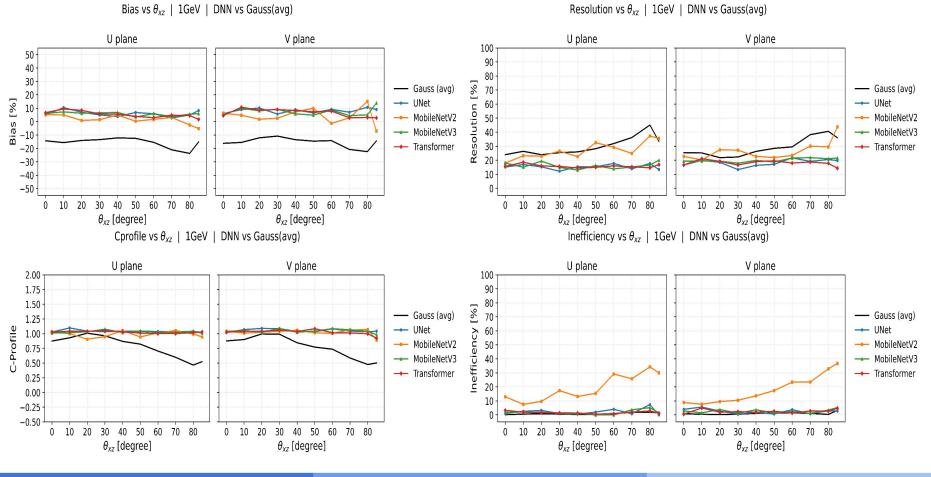
- Train/Val split: 0.9/0.1
- Loss: BCELoss (Binary Cross-Entropy Loss)
- Number of epochs : 50
- Output activation function: Sigmoid

Training was carried out on the WC Cluster using an NVIDIA GeForce RTX 4090 GPU (24 GB)

DNN-ROI Performance Evaluation


• For track events, three metrics are used: Bias, Resolution, and Inefficiency

$$Bias = 100 \times \left(\left| \frac{Q_{reco}}{Q_{truth}} \right| - 1 \right) \quad Resolution = 100 \times \frac{RMS\left(\frac{Q_{reco}}{Q_{truth}} \right)}{\left| \frac{Q_{reco}}{Q_{truth}} \right|} \quad Inefficiency = 100 \times \frac{Number of \ bad \ channels}{Number of \ valid \ truth \ channels}$$


- For shower events, a charge profile based on vertex information was added as the fourth metric:
 - \circ Sum the charge along the shower direction up to 42 wire channels ($\approx 1-2$ radiation lengths)
 - Compare the reconstructed-to-truth ratio charge ratio

$$Q_{method} = \sum_{w \in W} Q_{method}(w)$$
 $R_{cprofile} = \frac{Q_{reco}}{Q_{truth}}$

- Samples were generated with
 - Detector configuration: ProtoDUNE Horizontal Drift (PD-HD)
 - o XZ angle: 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 85°
 - o Shower energies: 100 MeV, 500 MeV, 1 GeV, 2 GeV, 3 GeV, 5 GeV
 - o Software: WCT standalone (Tracks), LAr-WCT (Showers)

Single Shower Evaluation (Thr 100, 1 GeV)

