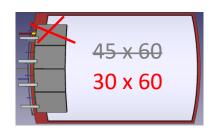
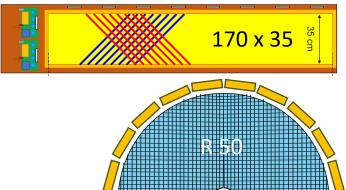


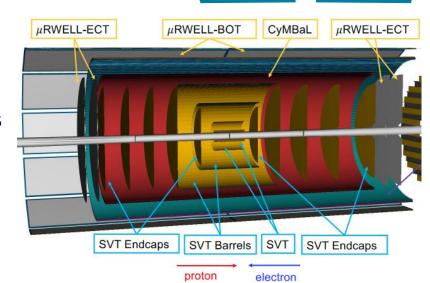
ePIC MPGD readout Rectification after eDAQ PDR on September 3-4

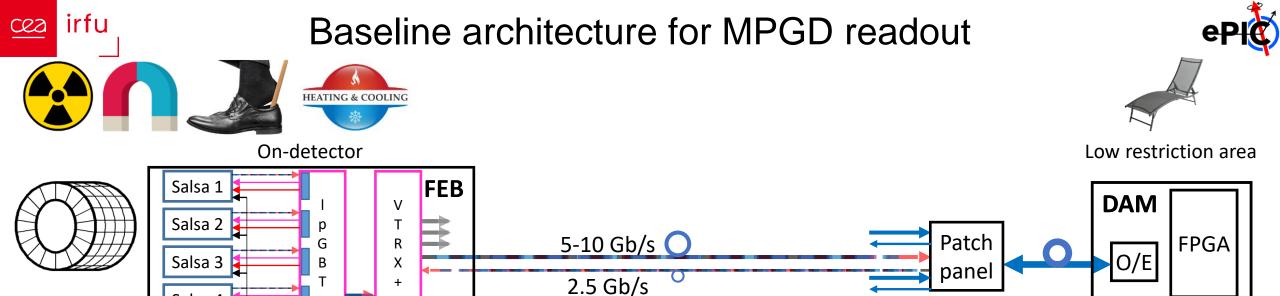
Irakli Mandjavidze

Irfu, CEA Saclay Gif-sur-Yvette, 91191 France


ePIC eDAQ WG weekly 18/Sep/2025




Quick update on MPGD channel counts



- Cylindrical Micromegas Barrel Layer: CyMBaL: ~50k channels
 - → 48 tiles of 1024 channels each
- μRWELL Barrel Outer Tracker : μRWell-BOT : ~100k channels
 - → 24 modules of 4 096 U-V strips each
- μRWell End Cap Tracker : μRWell-ECT : ~30k channels
 - → 8 half-disks of 4 000 X-Y strips each
- ~180k-channel heterogeneous system
 - → Micromegas, µRWell, barrel, endcap, curved, planar, circular
- Common approach to acquire data from different types of ePIC MPGDs
 - → Use same frontend ASIC
 - Salsa under development
 - → Share frontend design between groups
 - Adapt form factor if needed

- 256-channel FEB with 4 Salsa-s per board
- Direct FEB-DAM connection avoiding intermediate RDO stage
 - → Downstream

Salsa 4

Clock Synchronous run-control commands

Async slow control and monitoring requests

→ Upstream

Physics and calibration data

Slow control and monitoring responses

- → Presented at collaboration meeting in Frascati, January 2025
 https://agenda.infn.it/event/43344/contributions/253075/attachments/130667/194487/250124_IM_MpgdRo_Update.pdf
- → For detailed discussion on IpGBT use in MPGD readout see

https://indico.bnl.gov/event/25106/contributions/97861/attachments/57983/99568/241017_IM_lpGbt2Salsa.pdf

176K-ch MPGD readout component count

Operational quantities

	CyMBaL	μRWell-BOT	μRWell-ECT
Channels	48K	96K	32K
Salsa	768	1 536	512
FEB	192	384	128
DAM	6	12	4

Total
176K
2 816
704
† 22

- Production quantities
 - Including prototyping, test-bench and quality assurance needs
 - \rightarrow 4 000 Salsa-s
 - → 770 FEBs
 - 770 VTRX+
 770 lpGBT
 A common pool of spare components expected
 - → 25 DAMs
 - 75 12-Rx and 12-Tx FireFly modules

Summary

- Reminder: RDO subsystem is complex and has non negligible size
 - → O(100) RDO boards to be housed, powered, cooled, controlled and monitored
 - → Effort to develop, validate, produce, install and commission
 - Hardware, firmware, software
 - → A group to be identified responsible for RDO subsystem
- Pros and cons of presented architecture
 - → Pros : Avoids RDO complexity and related effort
 - Inline with several other subsystems developments can be shared
 - → Cons: increases number of DAMs
 - Basically doubles
 - 1.5 increase with higher channel count DAMs: Fully populated with FireFly components
 - GTU has to accommodate the extra DAMs
- Are there strong arguments for not to adopting this architecture for MPGDs?

Backup

160K-ch MPGD readout configurations and component count

FEB with direct Salsa-VTRX+ interface

Low density 1 Gb/s grade

FEB with lpGBT-VTRX+ interface

FEB with direct DAM interface

High density 10 Gb/s grade

No RDOs to design, produce, install, debug and maintain

3 times more 12-lane FF pairs

2 times more DAMs