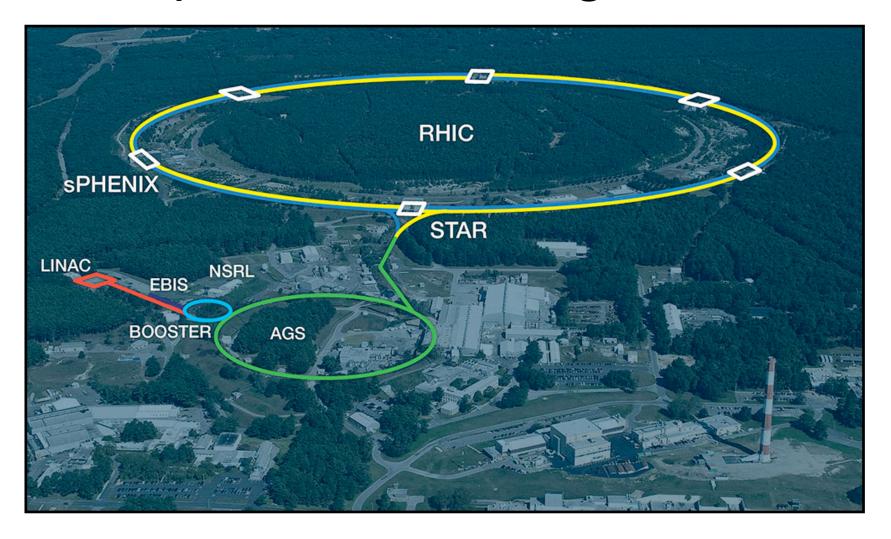


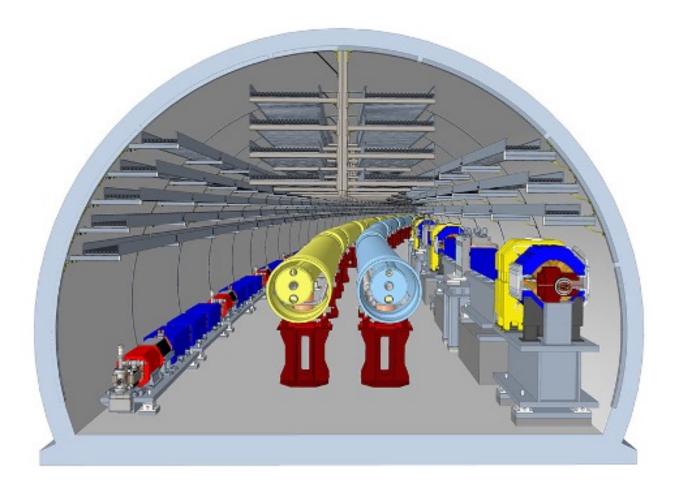
Overview

- Last year I spoke about uncertainty quantification (UQ) for accelerator control
 - Estimating digital twin parameters with error bars
 - Chris Kelly's talk summarizes the outcome of this work
- Looking forward, I would like to discuss in more detail:
 - Computational methods for UQ
 - Stochastic control theory
 - Optimal experimental design
 - Differentiable programming

Uncertainty in accelerator control

- Objective: Steer the beam (or control other beam properties)
- Problem: Imperfect knowledge of the relationship between system inputs (currents) and outputs (beam position)
 - Magnet misalignments
 - Transfer function between current and magnetization
 - Current set points not identical to realized currents in system
- Imperfect modeling can lead to incorrect control policy, but we never have perfect knowledge





Review of uncertainty quantification

- We consider probabilistic parameter estimation
 - e.g., estimate Bmad parameters from beam position / ORM data, with uncertainties
- Parameter estimation is often done to improve predictions
 - Although sometimes we care about the parameter values themselves (e.g. theory fits)
 - Here we will focus on constraining/improving digital twin predictions for control
- This is often formulated as a (nonlinear) regression problem:
 - Observations = Model(parameters) + Error
 - $y_i = m_i(c; \theta) + \epsilon$
- Example:
 - y_i is a BPM measurement, $m_i(c;\theta)$ is Bmad's prediction (for known control currents c and unknown parameters θ), and $\epsilon \sim N(0,\sigma^2)$ is a random measurement error variable

Bayesian parameter estimation

- In point estimation such as least squares fitting, goal is to find single best parameter vector
 - $\hat{\theta} = \arg\min_{\theta} \sum_{i} (y_i m_i(c; \theta))^2$
- Bayesian inference seeks a probability distribution of parameters, conditional on the data:
 - $p(\theta | y)$
- Bayes's theorem gives this posterior distribution in terms of a likelihood and prior:
 - $p(\theta | y) \propto p(y | \theta) p(\theta)$
- For the regression probability model and iid normal errors this becomes:

$$p(\theta | y) \propto p(y | \theta) p(\theta) = \frac{1}{\left(\prod_{i} \sqrt{2\pi\sigma_{i}^{2}}\right)} \exp\left[-\frac{1}{2} \frac{\sum_{i=1}^{N} (y_{i} - m_{i}(c; \theta))^{2}}{\sigma_{i}^{2}}\right] \times \prod_{k=1}^{K} p(\theta_{k})$$

Probabilistic programming

- The equations get complicated and messy (and will be mores for more complex models)
- Can we implement this in a more "declarative" style closer to the model we're using:
 - $y_i = m_i(c; \theta) + \epsilon$
- Probabilistic programming defines a statistical model and sample it with Monte Carlo:
 - We use Turing.jl in Julia; Python has PyMC, PyStan, Pyomo, ...
- Model definition:

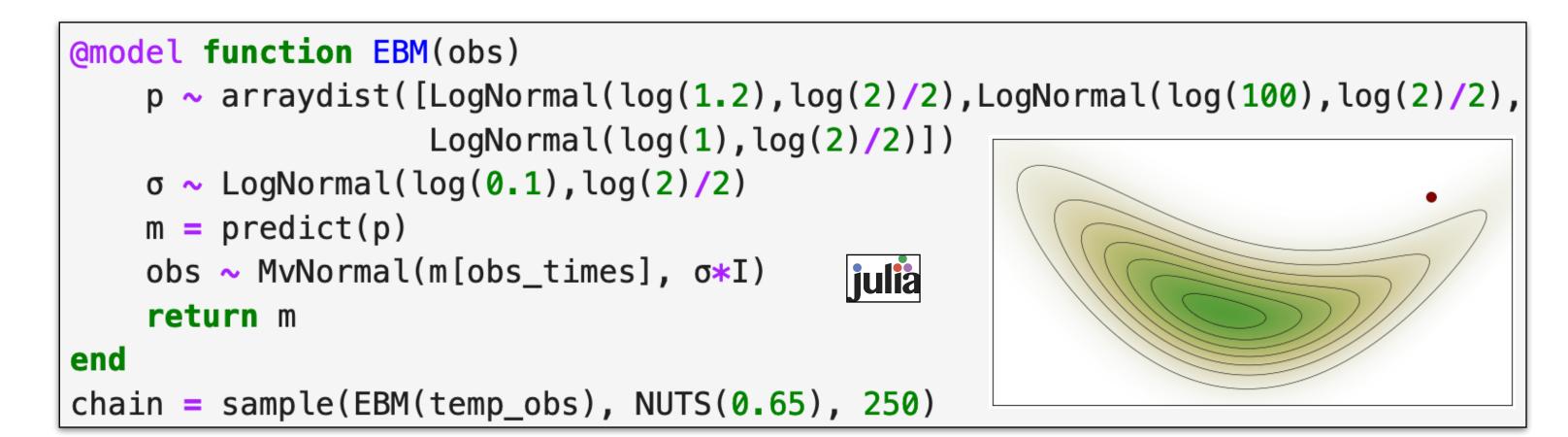
```
Qmodel function bmad_regression_model(\Deltabpm, c+, c-) 
 \theta \sim \text{product\_distribution(LogNormal.(logµ_<math>\theta, \sigma_\theta)) 
 \Deltabpm \sim \text{product\_distribution(Normal.(bmad_pos(c+,<math>\theta) - bmad_pos(c-,\theta), \sigma)) 
 end
```

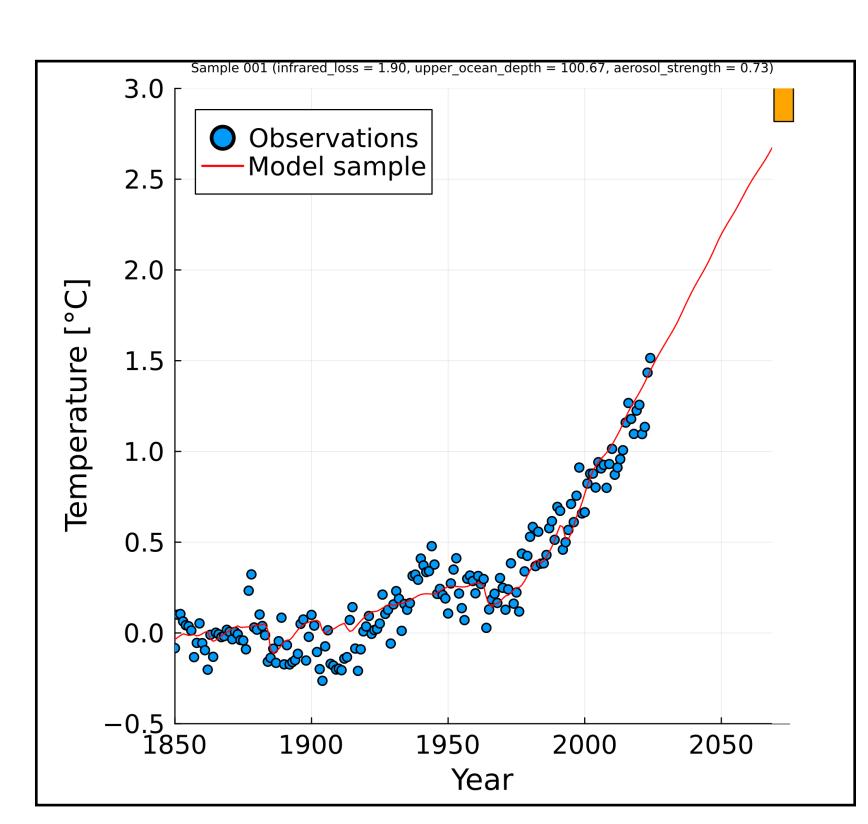
Sampling:

```
chain = sample(bmad_regression_model(\Deltabpm,c+,c-), NUTS(), num_iterations)
```

Hybrid (or Hamiltonian) Monte Carlo sampling

- Hybrid Monte Carlo: idea from lattice field theory
- Let $U(\theta) = -\log \pi(\theta \mid y)$ be "potential energy"
- "Kinetic energy" $K(p) = \frac{1}{2}p^T M^{-1}p$ (fictitious momentum)
- Propose samples by integrating Hamiltonian dynamics of particle in potential (configuration space = parameter space), $\dot{\theta} = \partial \mathcal{H}/\partial p$, $\dot{p} = -\partial \mathcal{H}/\partial \theta$
- Metropolis test to accept/reject trajectories
- Requires a differentiable model (or surrogate)





Imperfect models: From parameter to function estimation

- We assumed all uncertainties are in parameters, such as transfer function coefficients
- What if the uncertainties about the form of the functions themselves?
- Examples:
 - Transfer function shape beyond low-order polynomial
 - Unknown functional dependence of parameters on other variables (such as the environment, hysteresis history, ...)
 - Overall form of a lattice element's Lie map
- Can we learn "missing physics" in the digital twin as ML function approximations?
 - May need to preserve "structure" (monotonicity, convexity, symplecticity, ...)
 - Learn operators acting on distributions of particles (avoid Monte Carlo simulation)?
 - · High dimensional inverse problem: computationally challenging and may need more data
- This amounts to adding data-driven ML corrections to the digital twin ("hybrid model")

Stochastic optimization for control inputs

- Control c: inputs that the operator can specify
- Parameters θ : unknown system characteristics (random variable from distribution $\pi(\theta)$)
- Model $m(c;\theta)$: the modeled system response to inputs (e.g., beam position)
- Objective: a metric of system performance (e.g., a loss function) to optimize
 - $\mathcal{L}(m(c;\theta|y)) = \sum_{i} (\bar{z}_i m_i(c;\theta))^2$ (deviation of beam position from target at BPMs)
- Stochastic control is robust to uncertainties in quantities we can't estimate perfectly
- Find control that optimizes expected objective (average over Monte Carlo samples $\{\theta_j\}$):

$$c^* = \arg\min_{c} \mathbb{E}_{\theta|y}[\mathcal{L}(m(c;\theta))]$$

$$\approx \frac{1}{J} \sum_{j=1}^{J} \sum_{i=1}^{N} (\bar{z}_i - m_i(c;\theta_j))^2$$

Risk-averse control

• Expected loss minimization: find control that minimize expected loss

$$c^* = \arg\min_{c} \mathbb{E}_{\theta|y}[\mathcal{L}(m(c;\theta))]$$

- This finds the control policy that does best on average
- But some rare scenarios could be very bad; we want to be robust to "long-tailed risk"
- Conditional value-at-risk (CVaR): idea from financial risk management
 - Instead of the objective to minimize being "average loss" ...
 - ... minimize "average loss in the worst (1-α)% of outcomes" (CVaR)
 - e.g., if α=0.95 (95th percentile), select scenarios leading to the 5% worst losses, and minimize the average loss over just these "tail risk" scenarios
 - Value-at-risk (VaR): loss at a quantile, $VaR = \ell$ s.t. $Pr[\mathcal{L} \leq \ell] = \alpha$
 - Conditional value-at-risk (CVaR): average loss above the 95% percentile, $CVaR = \mathbb{E}_{\theta|v}[\mathcal{L} \mid \mathcal{L} > VaR]$

Robust control

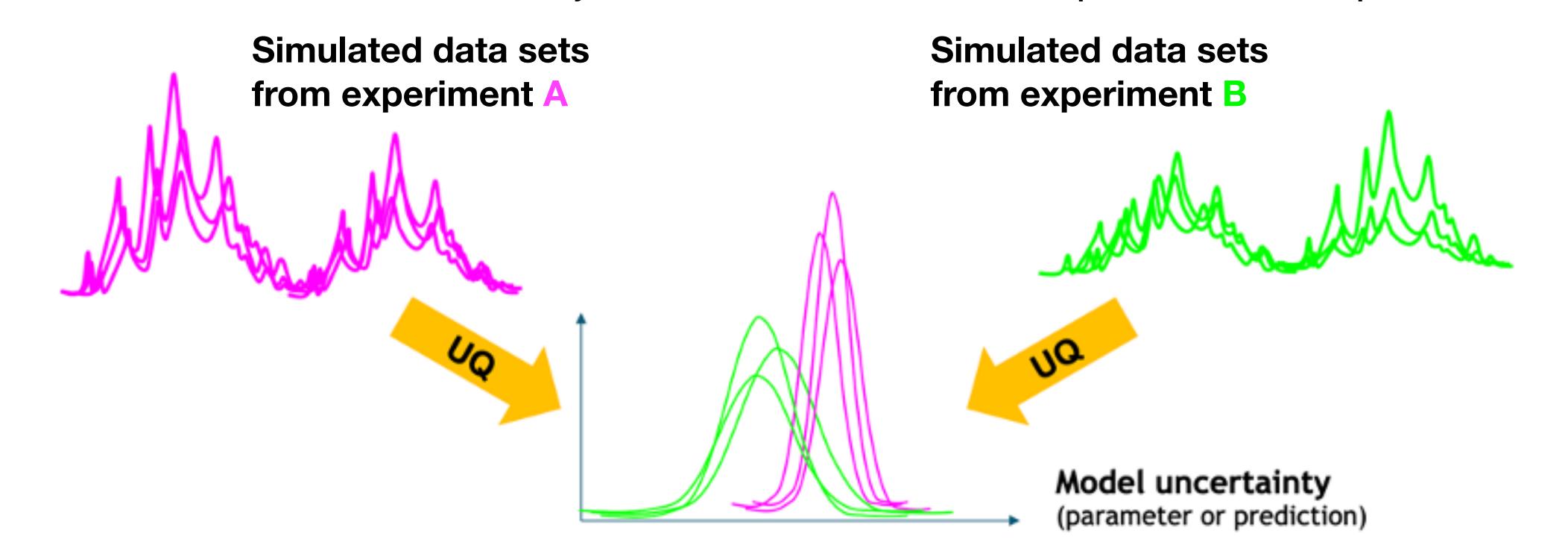
- Other topics in robust control theory
 - Barrier certificates: "Safety indicator" to monitor system approaching unsafe states
 - Reachability: Prove system can't reach unsafe state from different controls
 - **Distributionally robust control:** Without making probability assumptions, find robust control policies over a worst-case "ambiguity set" of possible scenarios
- Harder under uncertainty, model misspecification, black-box or nonlinear models
 - State-of-art in control theory research
 - Might be able to get bounds/certification from truncated Taylor map expansion?
 - But all bets are off without any kind of bound on digital twin model error

A workflow for accelerator control

- There are many approaches to control (BO, RL, model-based, model-free etc.)
- My own preferred approach:
 - Write down regression model with DT error term:
 - Observations = Model(parameters) + <u>DT error</u> + Measurement error
 - Improve DT (e.g., with learnable internal correction terms) so DT error becomes simpler
 - (Optional: build surrogate of DT if DT is not fast enough)
 - Calibrate regression model: learn parameters & DT error term
 - Optimize control inputs using DT via differentiable optimization (e.g., gradient descent)
 - May need state estimation along with DT parameter estimation
 - Deploy on real machine
- Streaming update loop (as data comes in: update regression, re-optimize with DT)
- "Greedy" algorithm; can use RL if sequences of decisions matter

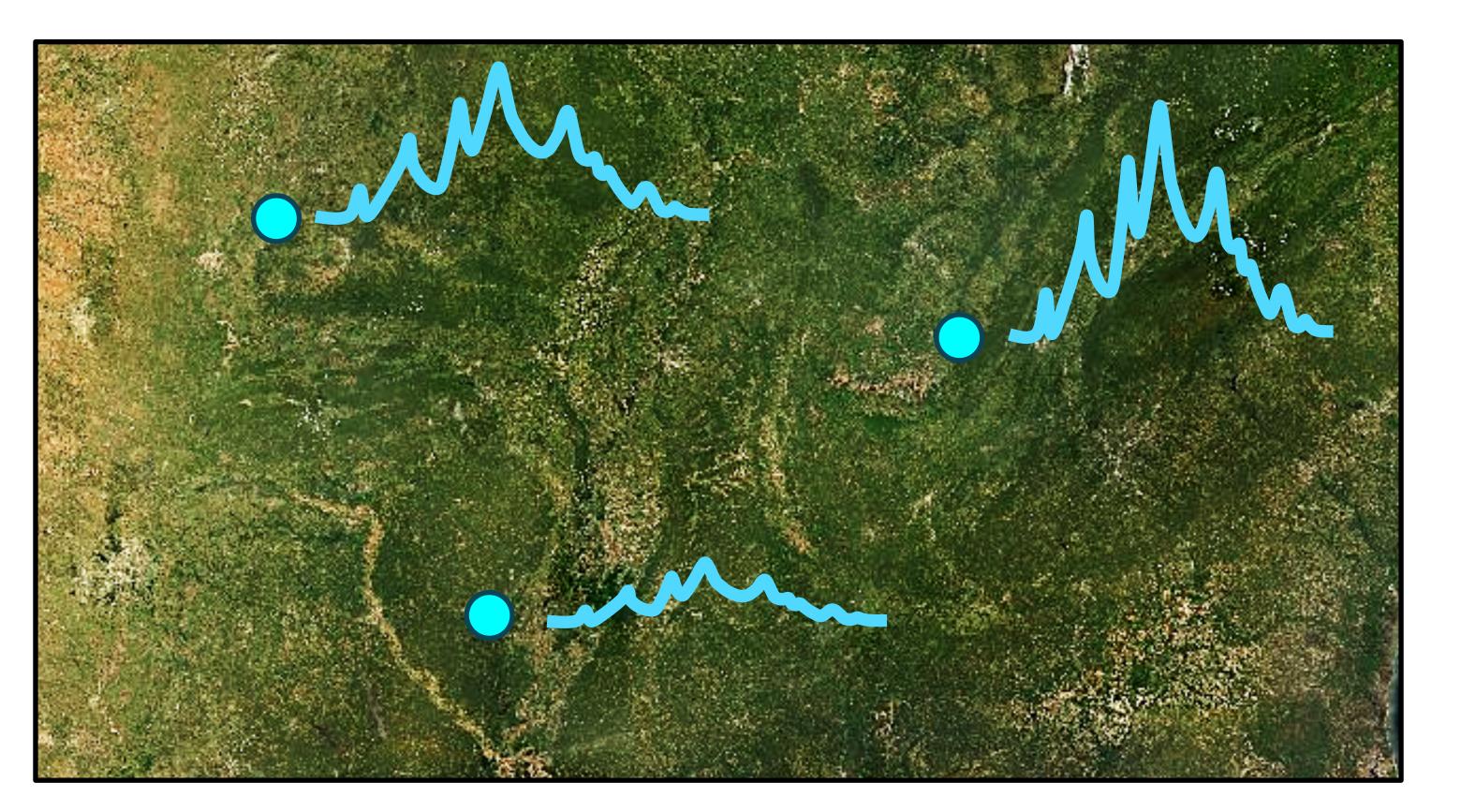
Optimal experimental design (OED)

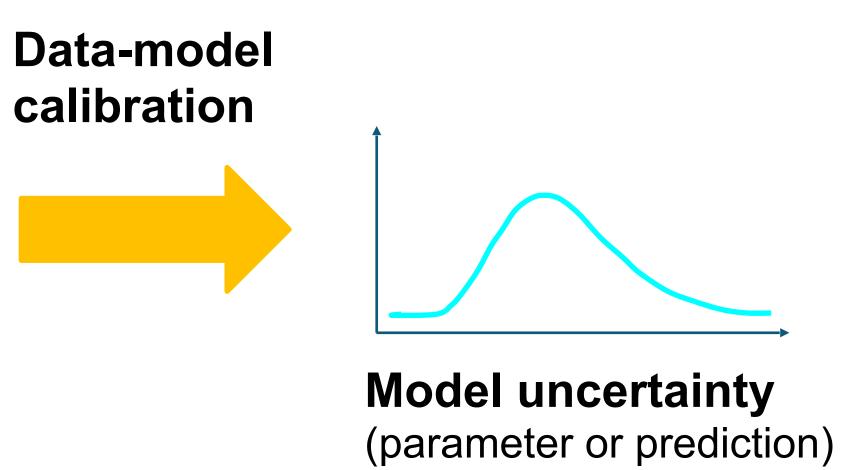
- Beyond UQ: what should we do to reduce uncertainty?
- Which machine-probing experiments help us control the beam better?
 - Limited downtime between science runs which magnets to perturb & how much?
- Choose experiments whose data would reduce uncertainties the most?
 - Or rather, most reduce the objective to the stochastic optimal control problem



OED for sensor placement example

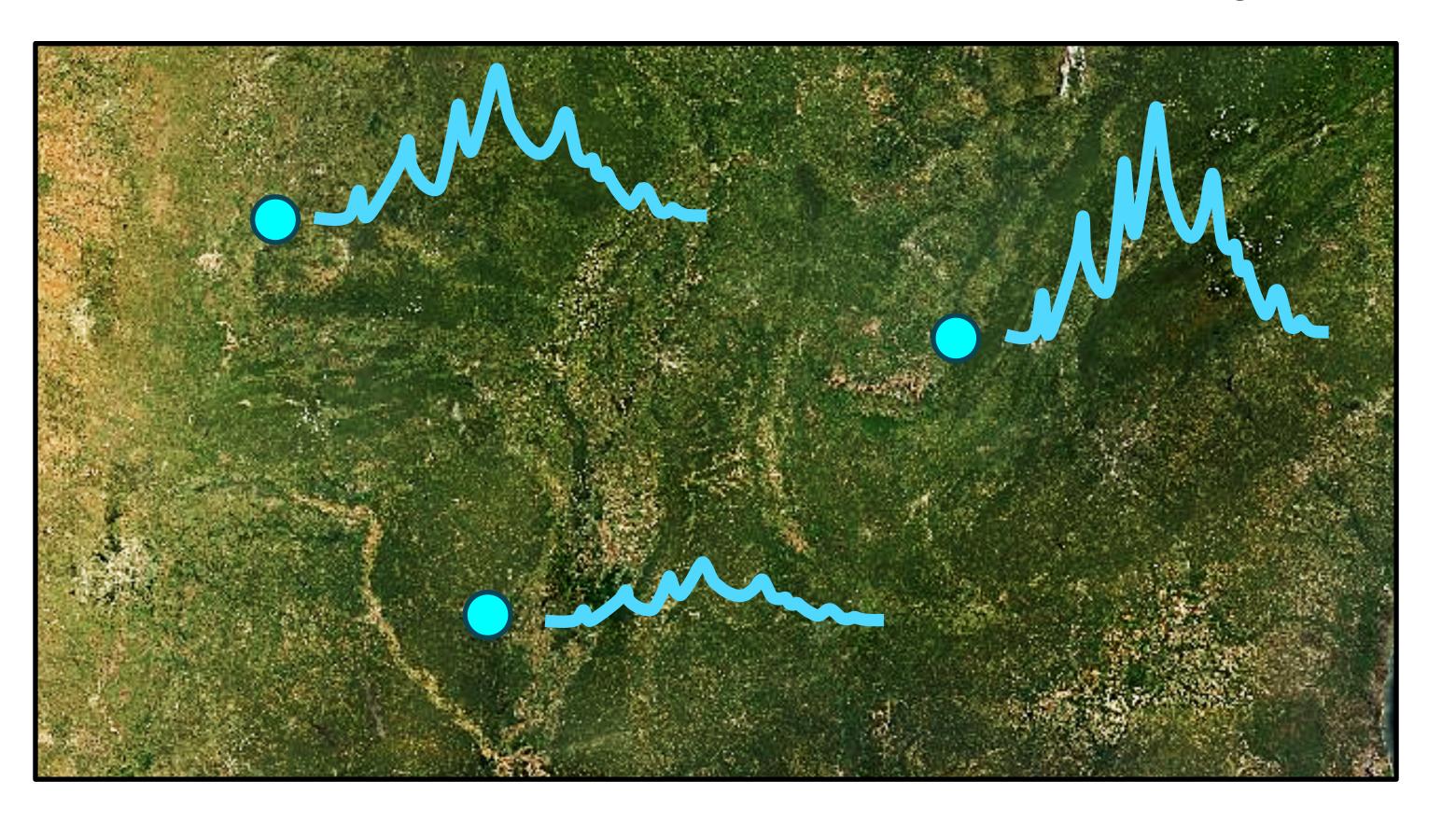
• Our experimental design problem might be how to perturb magnet currents and measure beam positions to learn about model parameters (transfer functions, magnet misalignments, ...)

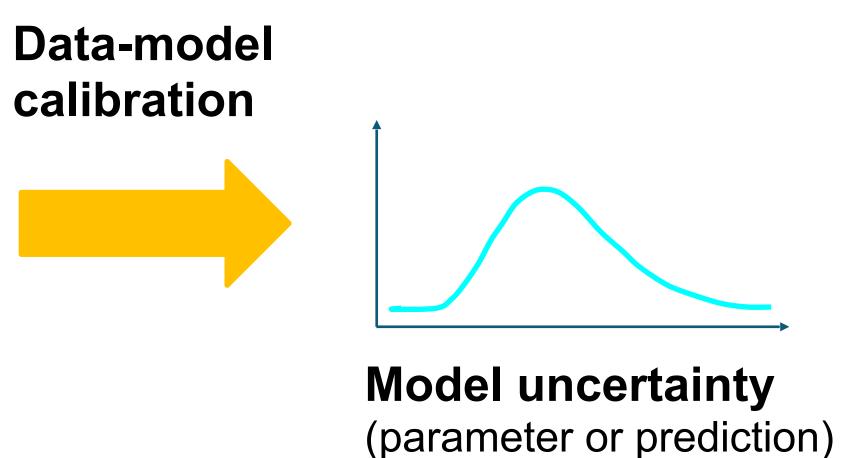




OED for sensor placement example

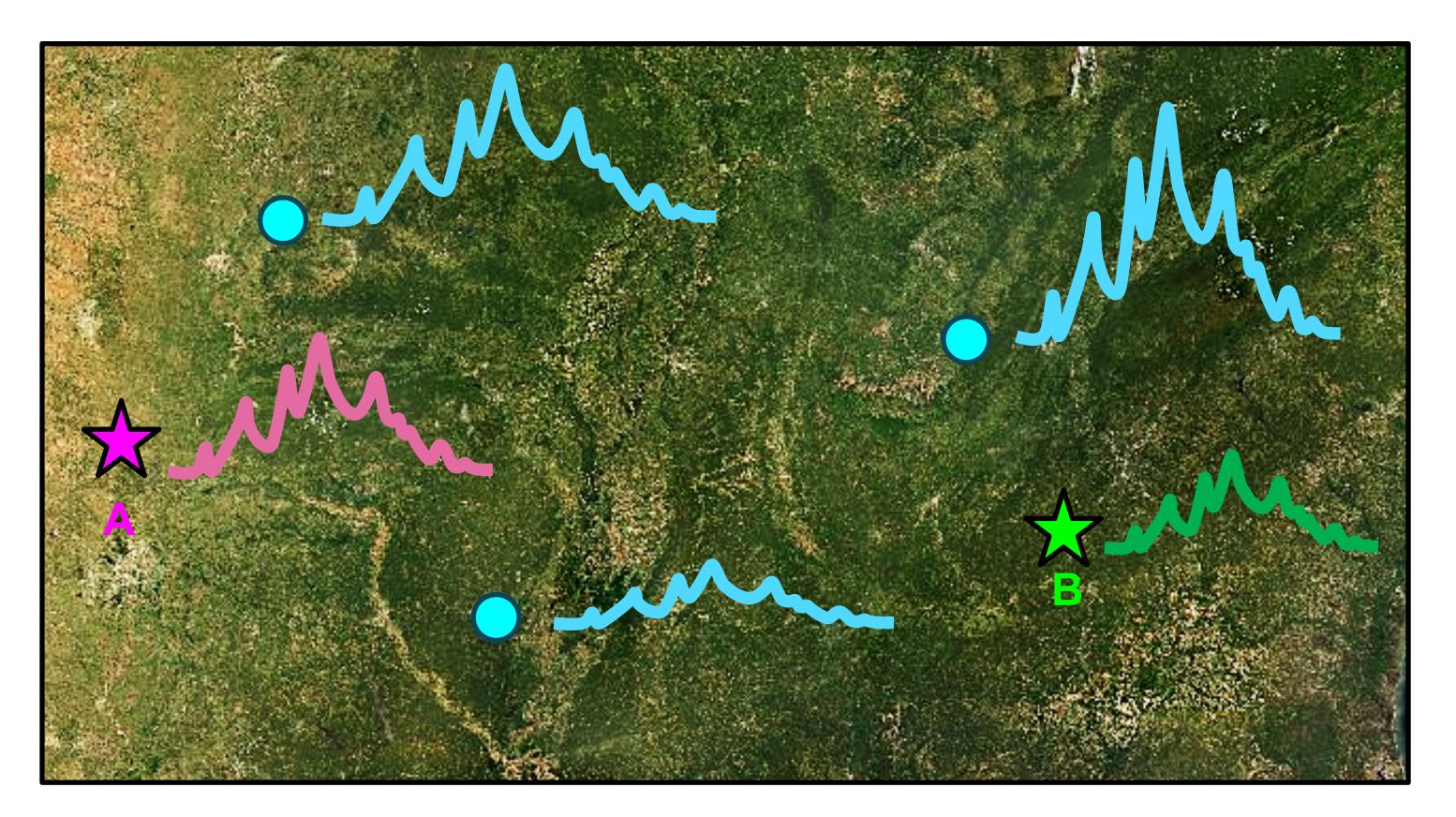
- Here is an example of how this works for an environmental sensor placement problem
 - Sensor network: start with UQ (infer terrestrial vegetation model parameters)

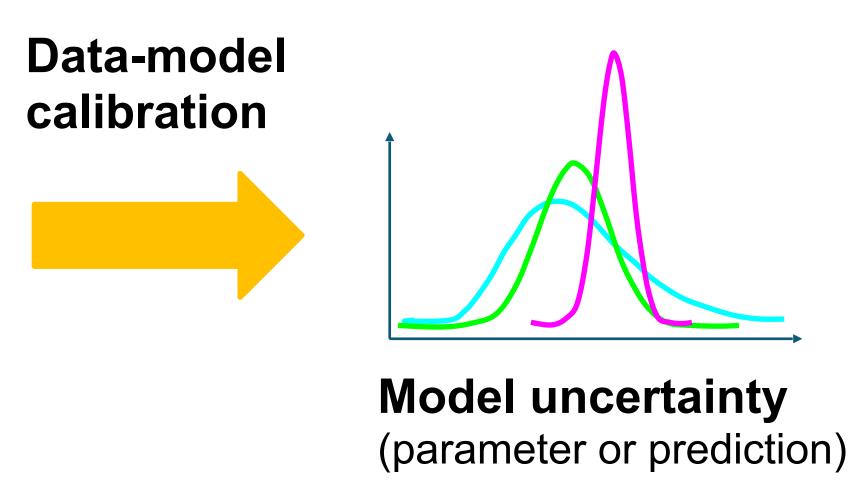




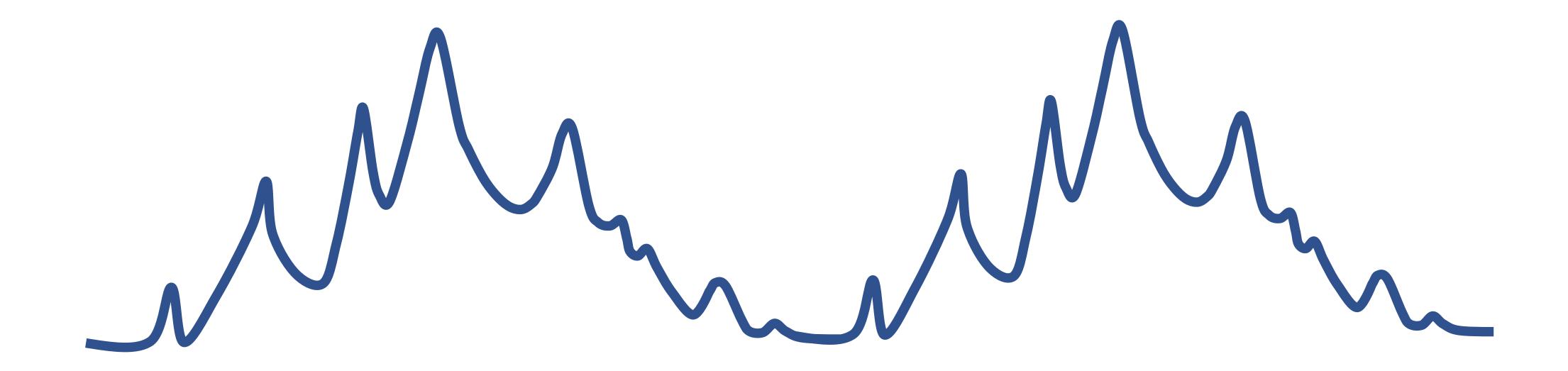
OED for sensor placement example

- Of two proposed new site locations (A and B), which should we choose?
 - Select the location whose data, if measured, reduces model uncertainty the most

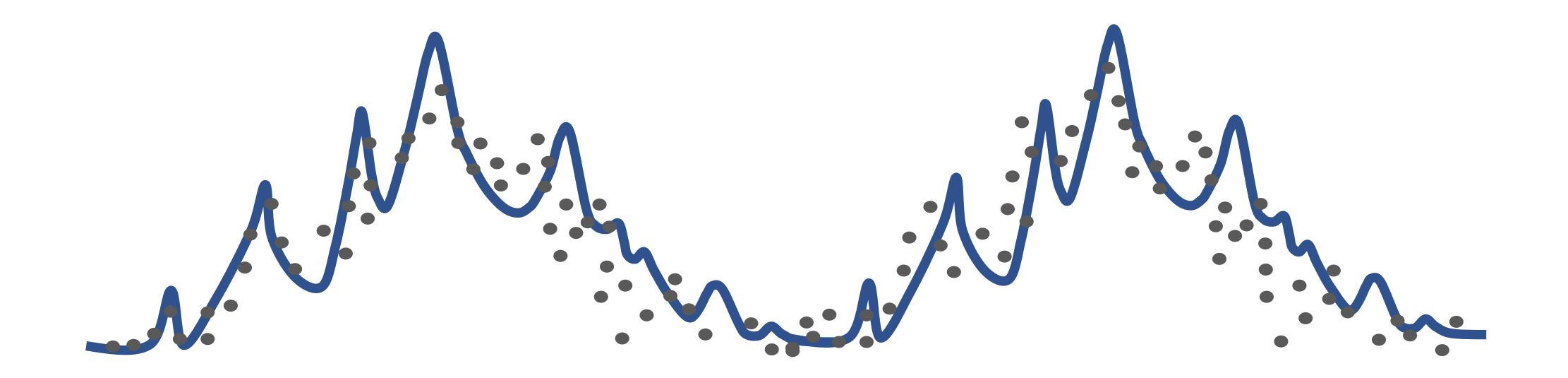




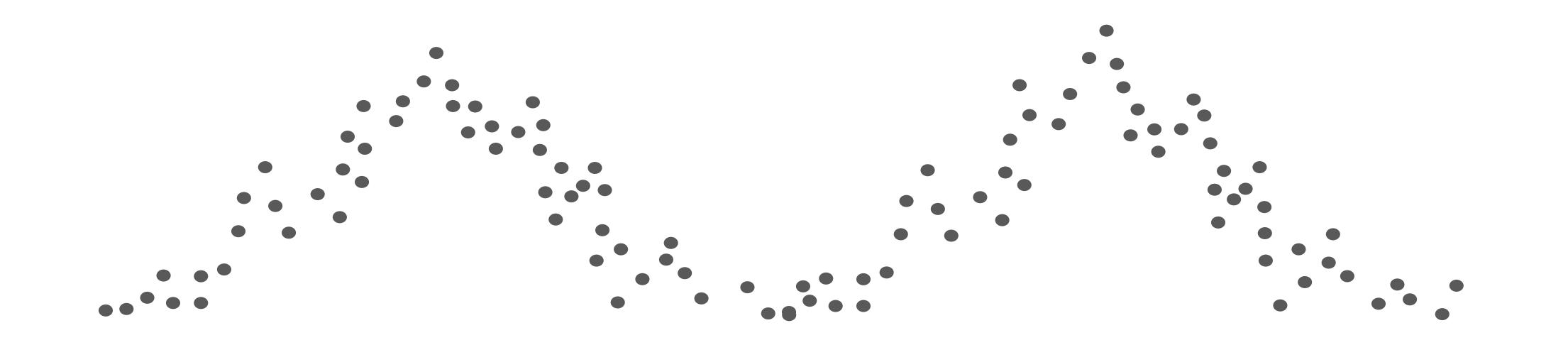
- Problem: we haven't measured any data at these sites
 - Simulate the data
 - Step 1: run the model



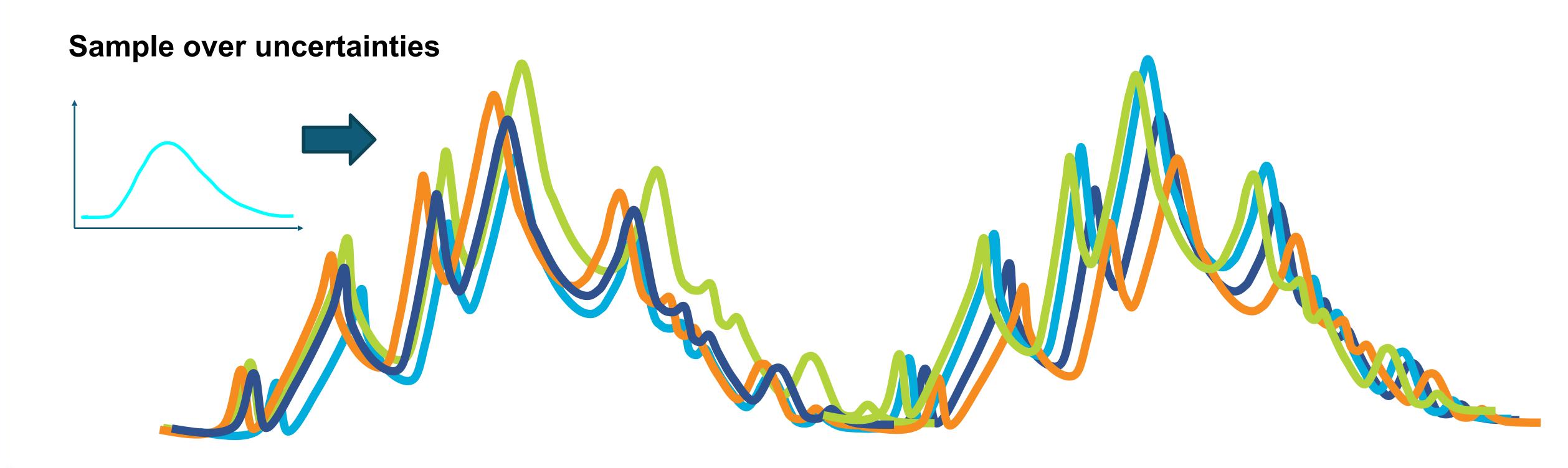
- Problem: we haven't measured any data at these sites
 - Simulate the data
 - Step 1: run the model
 - Step 2: simulate observations (add unmodeled variability, model bias, instrument error)



- Problem: we haven't measured any data at these sites
 - Simulate the data
 - Step 1: run the model
 - Step 2: simulate observations (add unmodeled variability, model bias, instrument error)



- Another problem: we are uncertain what data will be measured at a site
 - (we don't know the model parameters, plus there is random measurement error)
 - ⇒ Simulate *ensembles* of data for each site (sampling parameter & measurement uncertainty)

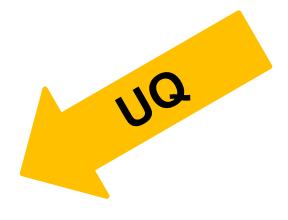


^{*} For visual clarity, this only shows step 1 (model uncertainty), not step 2 (observation uncertainty)

- Each simulated data set gives a simulated reduction in uncertainty
 - We pick the site that has the greatest average uncertainty reduction

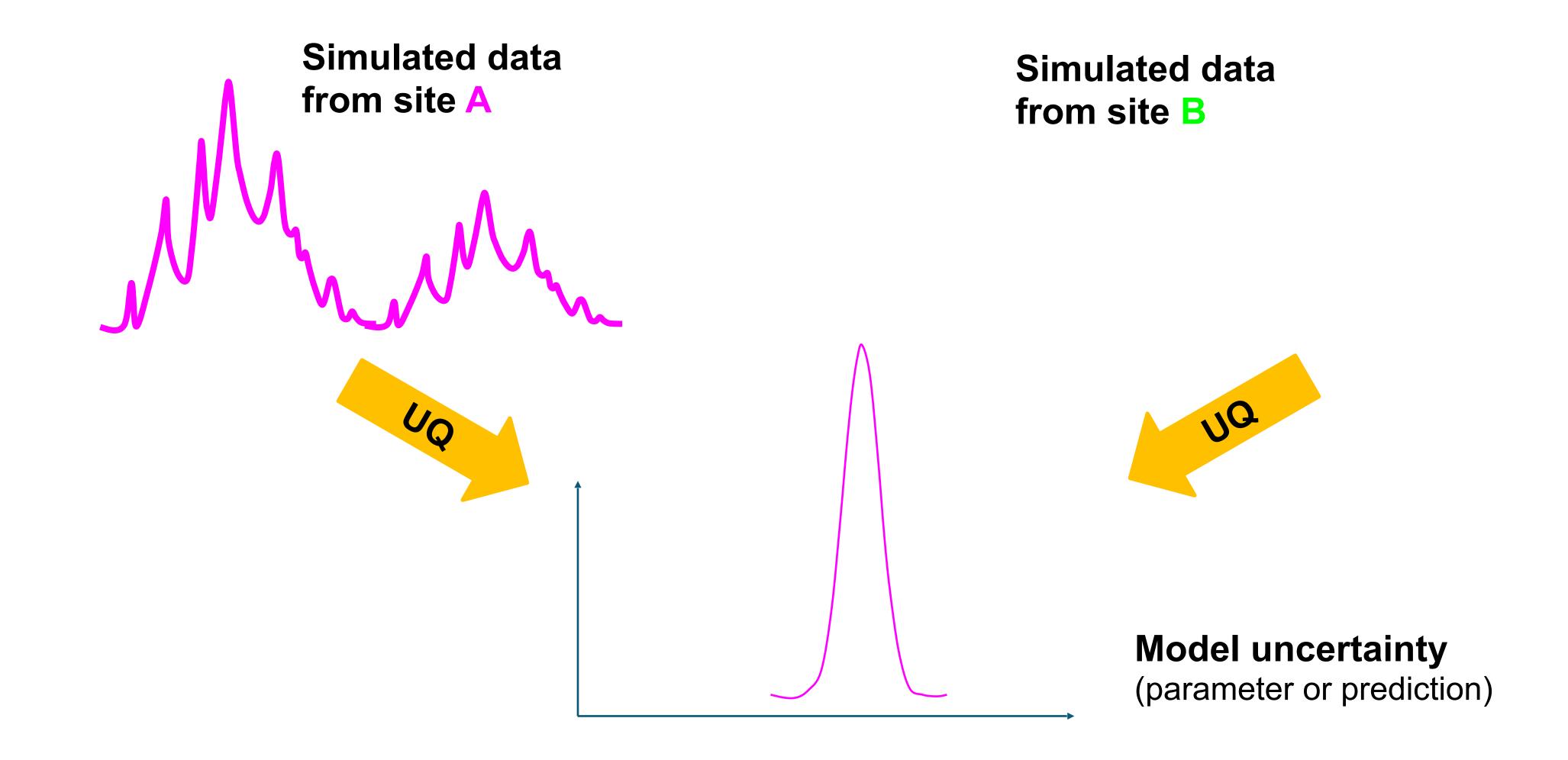
Simulated data from site A

Simulated data from site B

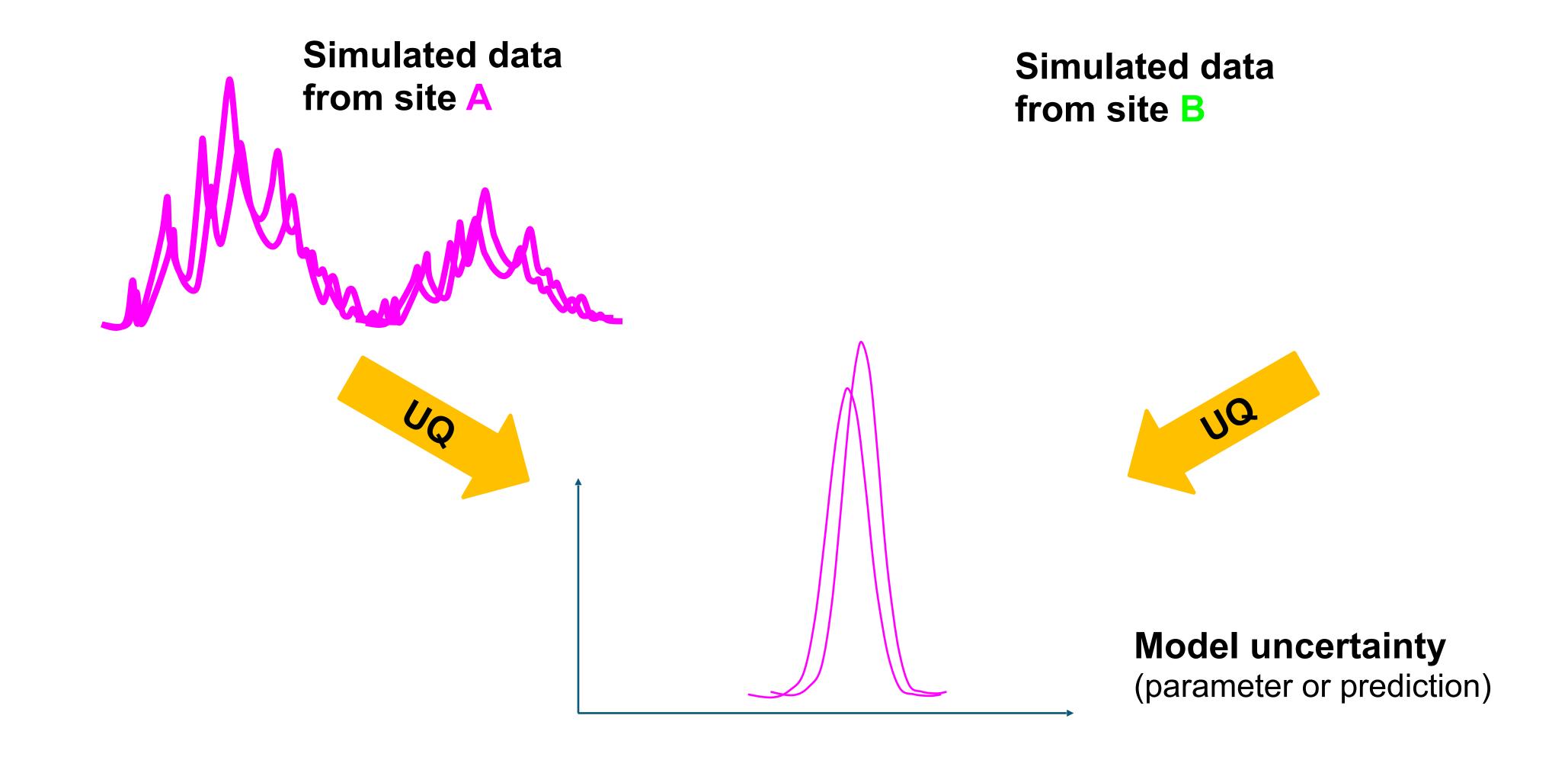


Model uncertainty (parameter or prediction)

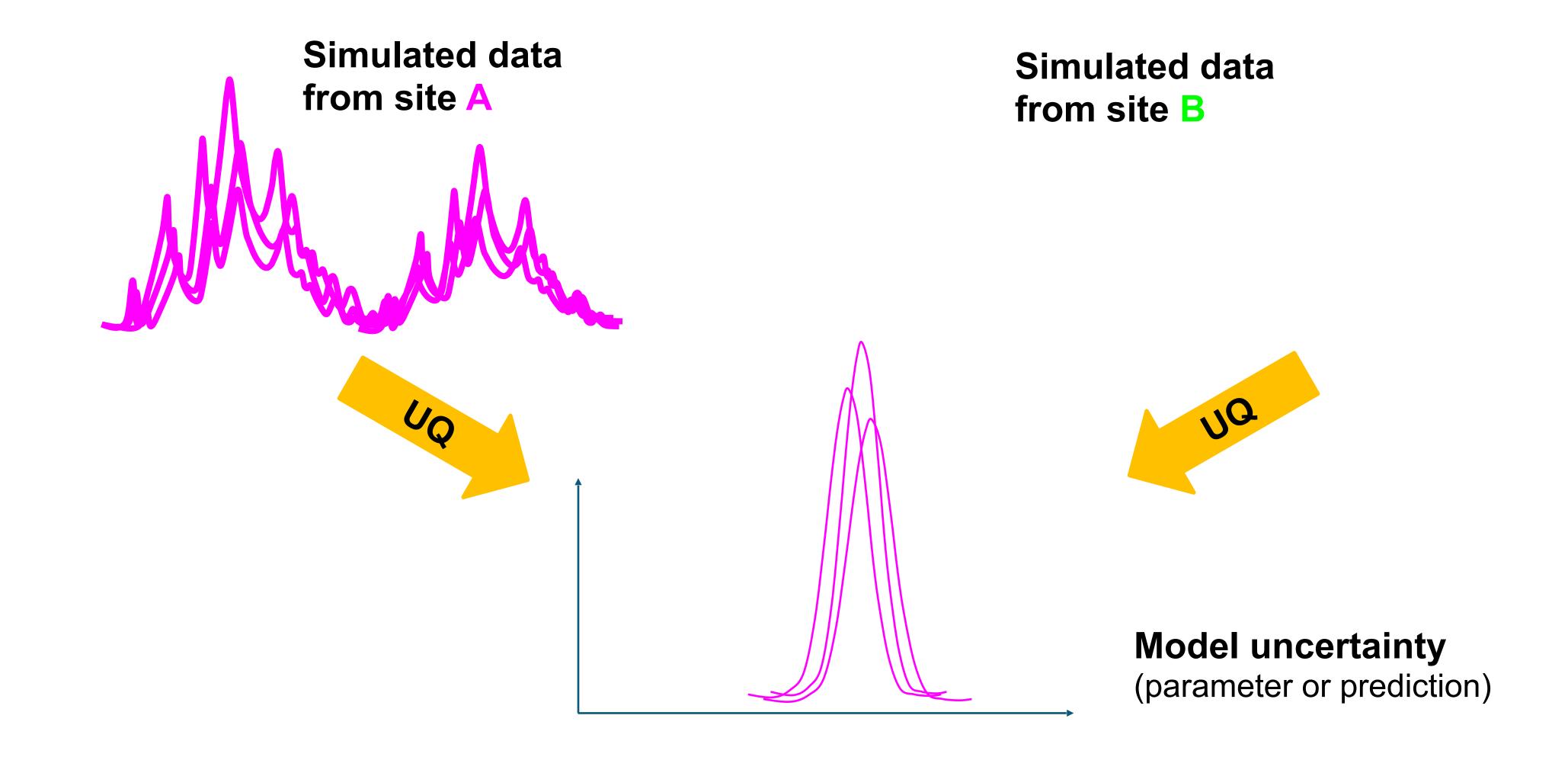
- Each simulated data set gives a simulated reduction in uncertainty
 - We pick the site that has the greatest average uncertainty reduction



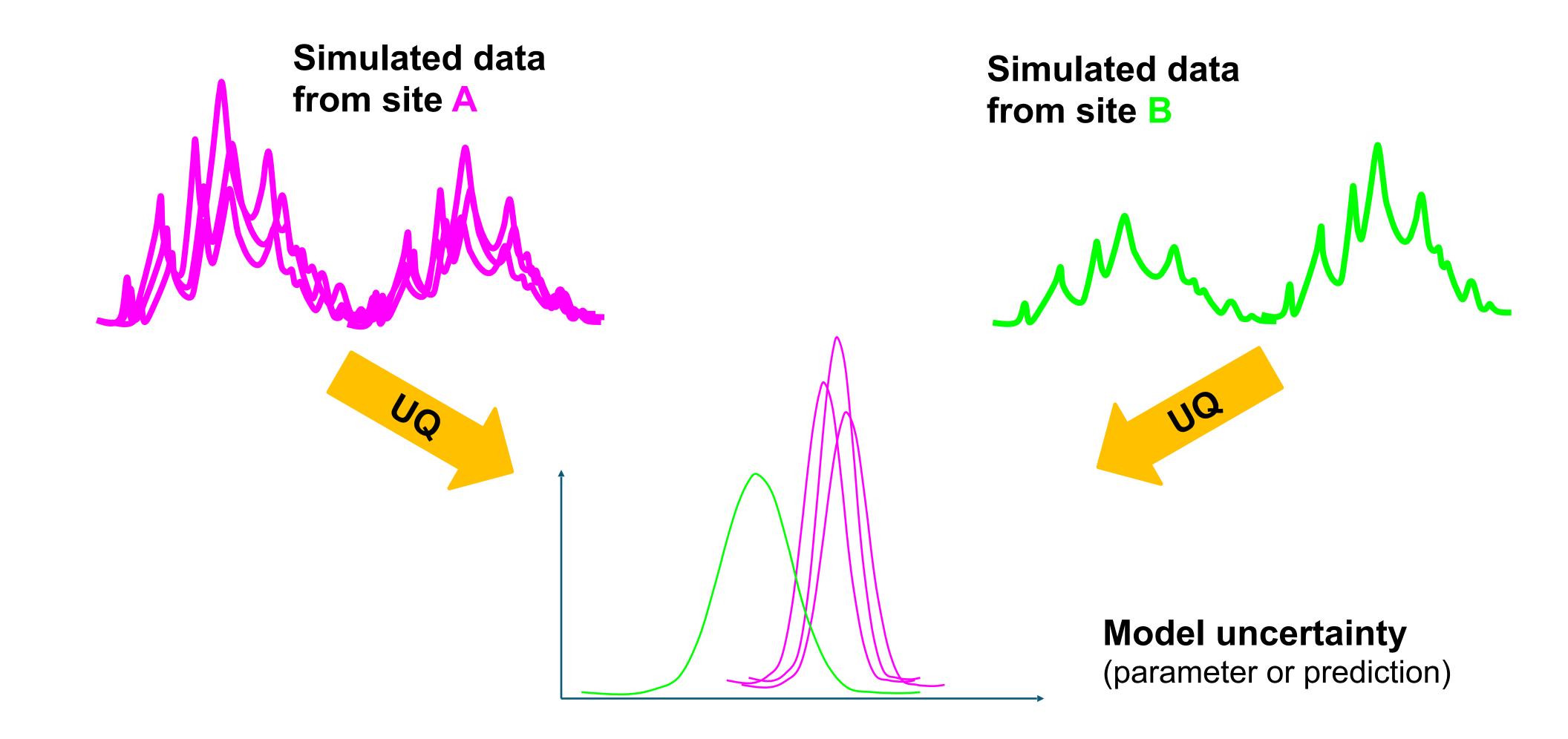
- Each simulated data set gives a simulated reduction in uncertainty
 - We pick the site that has the greatest average uncertainty reduction



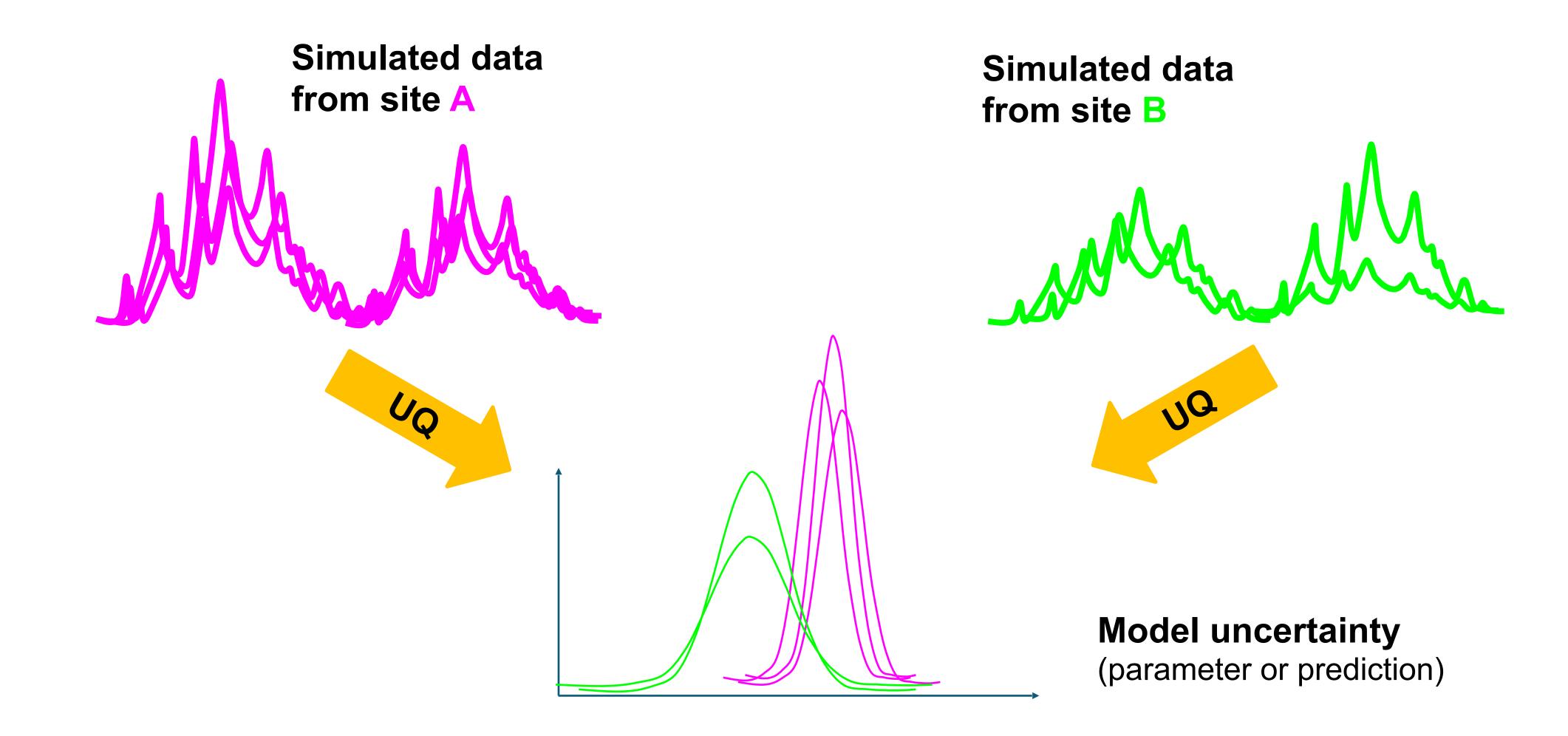
- Each simulated data set gives a simulated reduction in uncertainty
 - We pick the site that has the greatest average uncertainty reduction



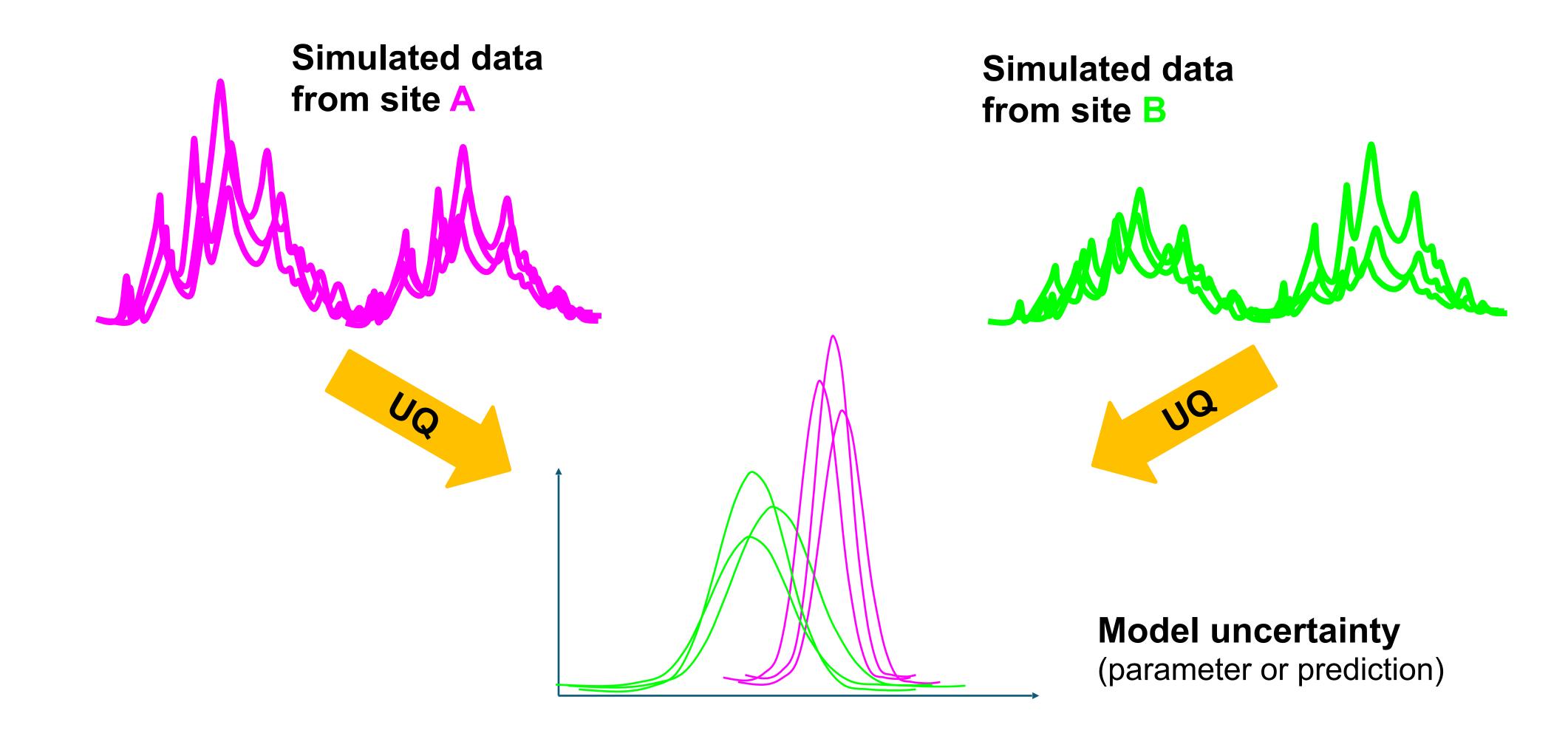
- Each simulated data set gives a simulated reduction in uncertainty
 - We pick the site that has the greatest average uncertainty reduction



- Each simulated data set gives a simulated reduction in uncertainty
 - We pick the site that has the greatest average uncertainty reduction



- Each simulated data set gives a simulated reduction in uncertainty
 - We pick the site that has the greatest average uncertainty reduction



Optimal experimental design: Mathematics

- Uncertainty about parameter distribution $p(\theta)$ given by entropy $H[\theta] = \mathbb{E}_{\theta}[\log p(\theta)]$
- What experiment d would most reduce the entropy (maximize information gain)
 - Possible experimental outcomes are random, with probability distribution $p(y | \theta, d)$
 - Observing an outcome y gives a new distribution $p(\theta | y)$ with entropy $H[\theta | y]$.
 - We want to maximize information gain (entropy reduction) $H[\theta] H[\theta \mid y]$
- The problem is, we don't know which outcome y we will measure
- Choose d to maximize expected information gain (EIG), averaged over possible outcomes

•
$$EIG = \mathbb{E}_{y|\theta,d} \left[H[\theta] - H[\theta|y] \right]$$

- Other formulations maximize predictive (instead of parameter) information gain
- Decision-theoretic OED optimizes the solution to an inner control problem

The importance of derivatives

- We have a model (digital twin) that makes predictions of outputs: $m_i(c;\theta)$
- Many modern algorithms require or benefit from access to derivatives of outputs
 - Gradients (∇m such as $\nabla_{\theta} m(c;\theta)$ or $\nabla_{c} m(c;\theta)$), Hessians ($\nabla \nabla m$), etc.
 - Hybrid Monte Carlo, variational inference, gradient descent, function approximation, control, reinforcement learning, other sampling- and optimization- based algorithms
 - Other algorithms try to approximate those derivatives if you don't have them (e.g., black-box optimization methods)
- This is often the main way to scale to high-dimensional problems
- A star example is backpropagation in machine learning, which enables training by stochastic gradient descent (optimization of neural net parameters)
- · This capability of SciBmad would be very useful for everything I've discussed

Differentiable programming

- How do you get the gradient of a model output with respect to an input?
- We know how to symbolically differentiate analytic formulas
- We know how to numerically differentiate code functions (e.g. finite differences)
- Third way: automatic differentiation (AD) or differentiable programming (3P)
 - Trace each function being executed, evaluate the derivatives of each primitive operation (e.g. +, sin, exp), and compose them via the chain rule
- AD applied to the loss function of a neural network is called backpropagation
 - Computes gradient of loss with respect to NN weights
 - Used in gradient descent step to minimize loss
 - PyTorch is "just" a giant AD library with efficient derivative code for many NNs

Differentiable programming and adjoint models: Fitting digital twins to data with backpropagation

- Neural networks are trained by gradient descent + backprop
 - · Calculate the network's error, and adjust its parameters to decrease the error
- We can fit a digital twin like Bmad the same way ("differentiable programming")
 - · We just need automatic differentiation to calculate the gradient of our DT
 - The gradient of a loss w.r.t a forward model solution is the adjoint model
 - The adjoint of a ODE is another ODE integrated backward in time
 - Chain rule / backprop in continuous time, not discrete layers!
 - But we can also autodiff a discrete time-stepper code

Adjoint model

Forward model
$$\frac{\mathrm{d}u}{\mathrm{d}t} = f(u(t); \theta)$$

$$\frac{\partial \mathcal{L}}{\partial u(t)} \equiv \lambda(t) = \lambda_T - \int_T^t \left(\partial_u f(u(s); \theta)\right)^T \lambda(s) \, ds$$

$$\frac{\partial \mathcal{L}}{\partial \theta} = \int_0^T \frac{\partial \mathcal{L}}{\partial u(t)} \, \frac{\partial u(t)}{\partial \theta} \, dt = -\int_T^0 \lambda(s)^T \, \partial_\theta f(u(s); \theta) \, ds$$

Differentiable programming and adjoint models: Fitting digital twins to data with backpropagation

- Neural networks are trained by gradient descent + backprop
 - · Calculate the network's error, and adjust its parameters to decrease the error
- We can fit a model to data the same way ("differentiable programming")

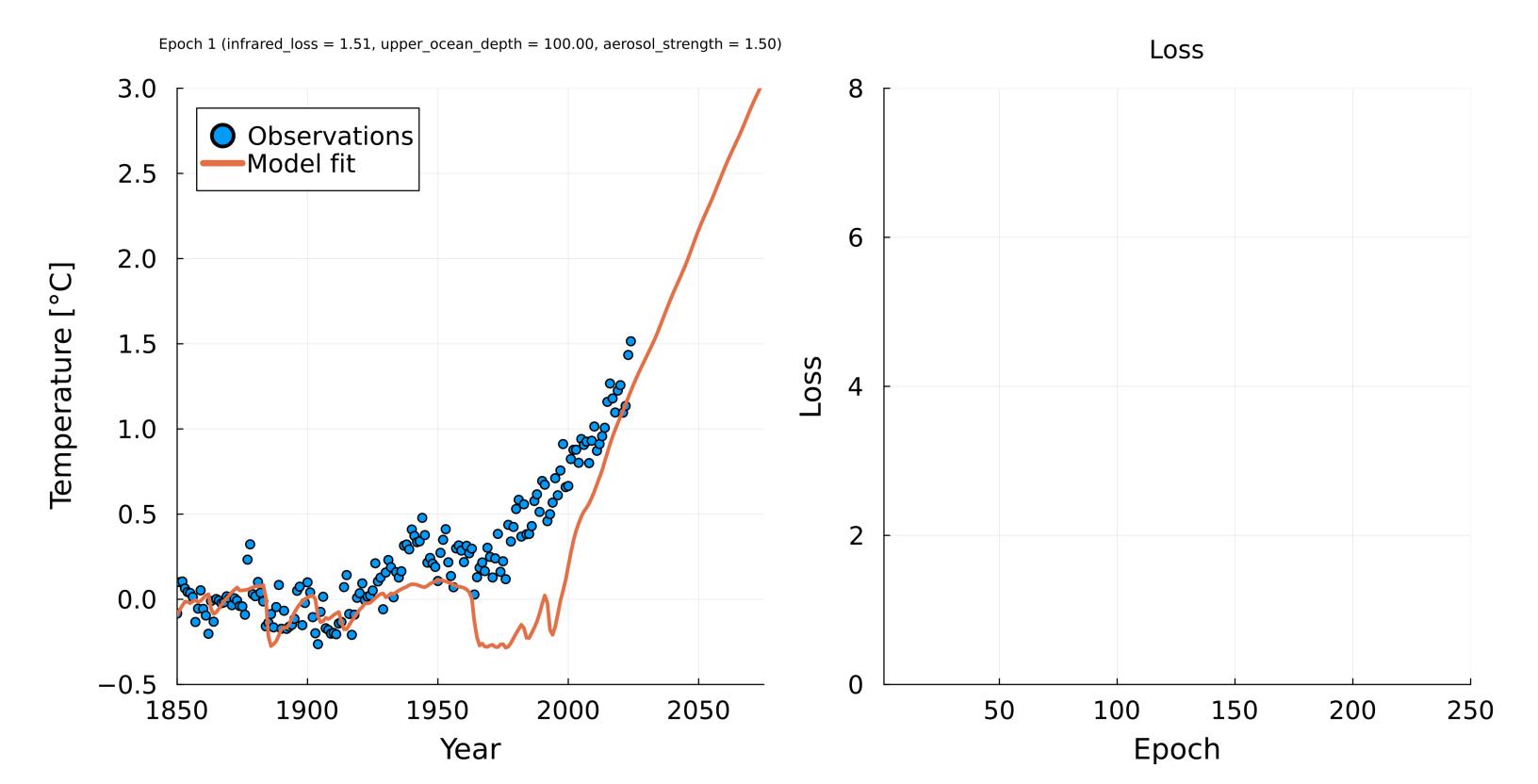
Gradient descent (first-order optimization)

```
loss(p) = sum((obs - model(p)).^2)

N = 250

η = 1e-2 (large step size)

for i = 1:N
    p = p - η * gradient(loss, p)
end
```

Differentiable programming and adjoint models: Fitting digital twins to data with backpropagation

- Neural networks are trained by gradient descent + backprop
 - · Calculate the network's error, and adjust its parameters to decrease the error
- · We can fit a model to data the same way ("differentiable programming")

```
Newton's method (second-order optimization)
```

```
loss(p) = sum((obs - model(p)).^2)

N = 250

for i = 1:N
    p = p - hessian(loss, p) \ gradient(loss, p)
end
```



250

Backpropagation: Calculating the gradient

- · We calculate gradients using the matrix chain rule
 - $\partial f(g(x))/\partial x = (\partial g/\partial x)^T(\partial f/\partial g)$
 - (being sloppy with gradient/Jacobian notation)
- We want gradient of loss w.r.t. the parameters of each layer
- ... start with gradient w.r.t. the ("pre-activation") output of each layer
- First, the gradient of the loss w.r.t. the last layer:

•
$$\partial \mathcal{L}/\partial z_5 \equiv \partial \mathcal{L}/\partial a_5 = 2(Y - a_5)$$

• Then the gradient of the loss w.r.t. the next-to-last layer's pre-activation:

$$z_{1} = W_{1}x + b_{1}, a_{1} = \sigma(z_{1})$$

$$z_{2} = W_{2}a_{1} + b_{2}, a_{2} = \sigma(z_{2})$$

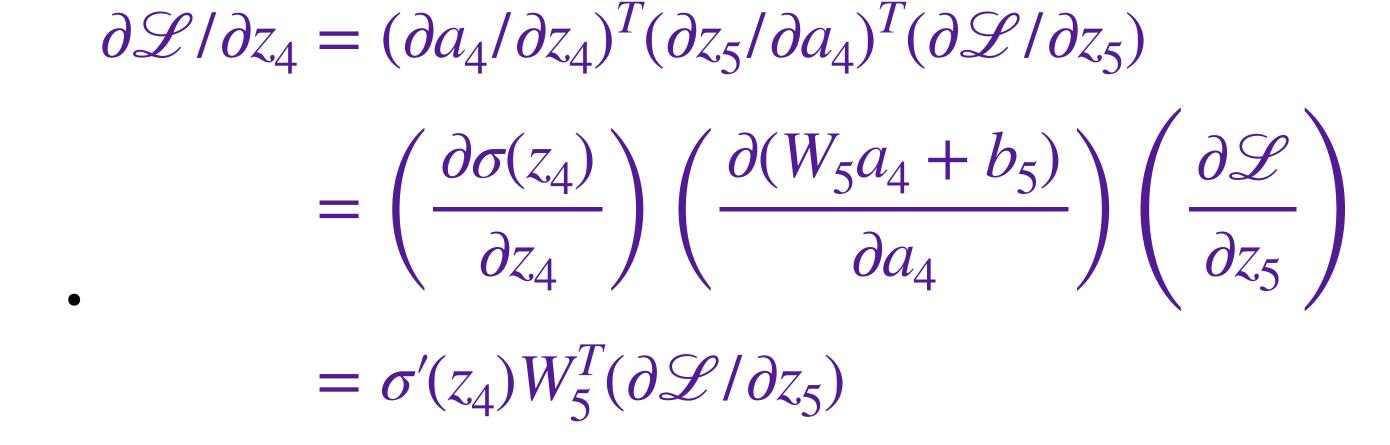
$$z_{3} = W_{3}a_{2} + b_{3}, a_{3} = \sigma(z_{3})$$

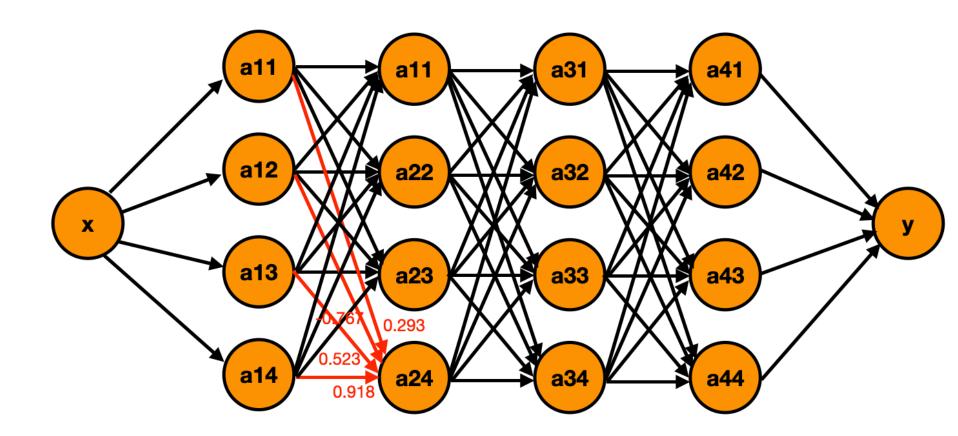
$$z_{4} = W_{4}a_{3} + b_{4}, a_{4} = \sigma(z_{4})$$

$$z_{5} = W_{5}a_{4} + b_{5}, a_{5} = z_{5}$$

$$\mathcal{L}[\theta] = (Y - a_{5})^{T}(Y - a_{5})$$

Deep neural network





Backpropagation: Calculating the gradient

- Neural network is composition of affine layers + pointwise nonlinearity (activation)
- Recursively derive gradient of loss with respect to each layer's activation from last layer to first (reverse-mode AD = backpropagation)

Forward pass

$$z_{1} = W_{1}x + b_{1}, a_{1} = \sigma(z_{1})$$

$$z_{2} = W_{2}a_{1} + b_{2}, a_{2} = \sigma(z_{2})$$

$$z_{3} = W_{3}a_{2} + b_{3}, a_{3} = \sigma(z_{3})$$

$$z_{4} = W_{4}a_{3} + b_{4}, a_{4} = \sigma(z_{4})$$

$$z_{5} = W_{5}a_{4} + b_{5}, a_{5} = z_{5}$$

$$\mathcal{L} = (Y - a_{5})^{T}(Y - a_{5})$$

Backward pass

$$\nabla_{z_5} \mathcal{L} = 2(z_5 - Y)$$

$$\nabla_{z_4} \mathcal{L} = (W_5^T \nabla_{z_5} \mathcal{L}) \circ \sigma'(z_4)$$

$$\nabla_{z_3} \mathcal{L} = (W_4^T \nabla_{z_4} \mathcal{L}) \circ \sigma'(z_3)$$

$$\nabla_{z_2} \mathcal{L} = (W_3^T \nabla_{z_3} \mathcal{L}) \circ \sigma'(z_2)$$

$$\nabla_{z_1} \mathcal{L} = (W_2^T \nabla_{z_2} \mathcal{L}) \circ \sigma'(z_1)$$

$$\nabla_{z_{5}}\mathcal{L} = 2(z_{5} - Y)$$

$$\nabla_{W_{5}}\mathcal{L} = (\nabla_{z_{5}}\mathcal{L}) a_{4}^{T}, \quad \nabla_{b_{5}}\mathcal{L} = \nabla_{z_{5}}\mathcal{L}$$

$$\nabla_{W_{4}}\mathcal{L} = (W_{5}^{T} \nabla_{z_{5}}\mathcal{L}) \circ \sigma'(z_{4})$$

$$\nabla_{W_{4}}\mathcal{L} = (\nabla_{z_{4}}\mathcal{L}) a_{3}^{T}, \quad \nabla_{b_{4}}\mathcal{L} = \nabla_{z_{4}}\mathcal{L}$$

$$\nabla_{W_{4}}\mathcal{L} = (\nabla_{z_{4}}\mathcal{L}) a_{3}^{T}, \quad \nabla_{b_{4}}\mathcal{L} = \nabla_{z_{4}}\mathcal{L}$$

$$\nabla_{W_{3}}\mathcal{L} = (\nabla_{z_{3}}\mathcal{L}) a_{2}^{T}, \quad \nabla_{b_{3}}\mathcal{L} = \nabla_{z_{3}}\mathcal{L}$$

$$\nabla_{W_{2}}\mathcal{L} = (W_{3}^{T} \nabla_{z_{3}}\mathcal{L}) \circ \sigma'(z_{2})$$

$$\nabla_{W_{2}}\mathcal{L} = (\nabla_{z_{2}}\mathcal{L}) a_{1}^{T}, \quad \nabla_{b_{2}}\mathcal{L} = \nabla_{z_{2}}\mathcal{L}$$

$$\nabla_{W_{1}}\mathcal{L} = (\nabla_{z_{1}}\mathcal{L}) x^{T}, \quad \nabla_{b_{1}}\mathcal{L} = \nabla_{z_{1}}\mathcal{L}$$

Backpropagation: Calculating the gradient

• Or in code:

Forward pass

```
a1 = \sigma. (W1*x + b1)

a2 = \sigma. (W2*a1 + b2)

a3 = \sigma. (W3*a2 + b3)

a4 = \sigma. (W4*a3 + b4)

a5 = W5*a4 + b5
```

Backward pass

```
\nabla z = 2*(a5 - Y)
\nabla z 4 = (W5' * \nabla z 5) .* \sigma'.(z 4)
\nabla z3 = (W4' * \nabla z4) .* \sigma'.(z3)
\nabla z^2 = (W3' * \nabla z^3) .* \sigma'.(z^2)
\nabla z 1 = (W2' * \nabla z 2) .* \sigma'.(z 1)
\nabla W5 = \nabla z5 * a4' ; \nabla b5 = \nabla z5
\nabla W4 = \nabla z4 * a3' ; \nabla b4 = \nabla z4
\nabla W3 = \nabla z3 * a2' ; \nabla b3 = \nabla z3
\nabla W2 = \nabla z2 * a1' ; \nabla b2 = \nabla z2
\nabla W1 = \nabla z1 * x' ; \nabla b1 = \nabla z1
```

Conclusions

- So far we have focused on "learning the machine": UQ for Bmad parameters encoding mismatch between the digital twin and the real machine
- We could do more of this larger part of the accelerator, more parameters, etc.
 - UQ becomes even more important with many parameters (non-identifiability)
- We could also consider other things:
 - Learning non-parametric uncertainties
 - Robust/risk-aware control is it different from deterministic control?
 - Optimal experimental design
- All these options greatly benefit from a differentiable model

RESERVE SLIDES

Differentiable programming and adjoint models: Fitting digital twins to data with backpropagation

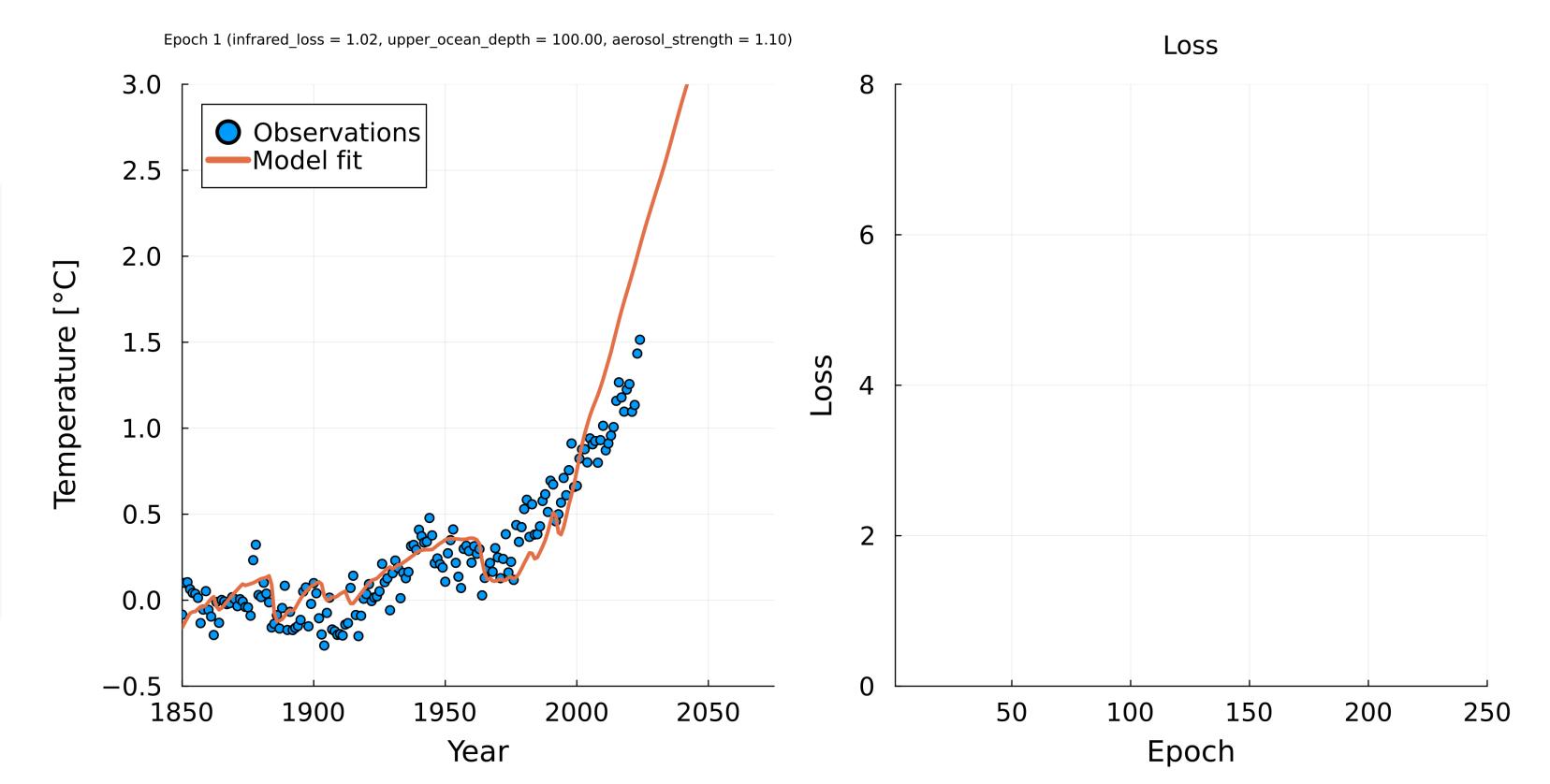
- Neural networks are trained by gradient descent + backprop
 - · Calculate the network's error, and adjust its parameters to decrease the error
- · We can fit a model to data the same way ("differentiable programming")

```
Gradient descent (first-order optimization)
```

```
loss(p) = sum((obs - model(p)).^2)

N = 250
η = 2e-3 (small step size)

for i = 1:N
    p = p - η * gradient(loss, p)
end
```

$$z_{1} = W_{1}x + b_{1}, \qquad a_{1} = \sigma(z_{1})$$

$$z_{2} = W_{2}a_{1} + b_{2}, \qquad a_{2} = \sigma(z_{2})$$
Write out our NN by hand:
$$z_{3} = W_{3}a_{2} + b_{3}, \qquad a_{3} = \sigma(z_{3})$$

$$z_{4} = W_{4}a_{3} + b_{4}, \qquad a_{4} = \sigma(z_{4})$$

$$z_{5} = W_{5}a_{4} + b_{5}, \qquad a_{5} = z_{5}$$

- with the loss $\mathcal{L}[\theta] = (Y a_5)^T (Y a_5)$
- We want the gradient of the loss with respect to parameters, $\nabla_{W_l}\mathscr{L}$ and $\nabla_{b_l}\mathscr{L}$
- •We calculate the gradient using the matrix chain rule (being sloppy with notation):
 - $\partial f(g(x))/\partial x = (\partial g/\partial x)^T(\partial f/\partial g)$

- We calculate gradients using the matrix chain rule
 - $\partial f(g(x))/\partial x = (\partial g/\partial x)^T(\partial f/\partial g)$
 - (being sloppy with gradient/Jacobian notation)
- · We want gradient of loss w.r.t. the parameters of each layer
- ... but start with the gradient w.r.t. the ("pre-activation") output of each layer
- First, the gradient of the loss w.r.t. the last layer:

•
$$\partial \mathcal{L}/\partial z_5 \equiv \partial \mathcal{L}/\partial a_5 = 2(Y - a_5)$$

Then the gradient of the loss w.r.t. the next-to-last layer's pre-activation:

$$\partial \mathcal{L}/\partial z_4 = (\partial a_4/\partial z_4)^T (\partial z_5/\partial a_4)^T (\partial \mathcal{L}/\partial z_5)$$

$$= \left(\frac{\partial \sigma(z_4)}{\partial z_4}\right) \left(\frac{\partial (W_5 a_4 + b_5)}{\partial a_4}\right) \left(\frac{\partial \mathcal{L}}{\partial z_5}\right)$$

$$= \sigma'(z_4) W_5^T(\partial \mathcal{L}/\partial z_5)$$

$$z_1 = W_1 x + b_1,$$
 $a_1 = \sigma(z_1)$
 $z_2 = W_2 a_1 + b_2,$ $a_2 = \sigma(z_2)$
 $z_3 = W_3 a_2 + b_3,$ $a_3 = \sigma(z_3)$
 $z_4 = W_4 a_3 + b_4,$ $a_4 = \sigma(z_4)$
 $z_5 = W_5 a_4 + b_5,$ $a_5 = z_5$
 $\mathscr{L}[\theta] = (Y - a_5)^T (Y - a_5)$

 We can keep working backwards recursively to get gradients for each layer

$$\partial \mathcal{L}/\partial z_4 = (\partial a_4/\partial z_4)^T (\partial z_5/\partial a_4)^T (\partial \mathcal{L}/\partial z_5)$$

$$= \left(\frac{\partial \sigma(z_4)}{\partial z_4}\right) \left(\frac{\partial (W_5 a_4 + b_5)}{\partial a_4}\right) \left(\frac{\partial \mathcal{L}}{\partial z_5}\right)$$

$$= \sigma'(z_4) W_5^T(\partial \mathcal{L}/\partial z_5)$$

$$\partial \mathcal{L}/\partial z_3 = (\partial a_3/\partial z_3)^T (\partial z_4/\partial a_3)^T (\partial \mathcal{L}/\partial z_4)$$

$$= \left(\frac{\partial \sigma(z_3)}{\partial z_3}\right) \left(\frac{\partial (W_4 a_3 + b_4)}{\partial a_3}\right) \left(\frac{\partial \mathcal{L}}{\partial z_4}\right)$$

$$= \sigma'(z_3) W_4^T (\partial \mathcal{L}/\partial z_4)$$

$$z_1 = W_1 x + b_1,$$
 $a_1 = \sigma(z_1)$
 $z_2 = W_2 a_1 + b_2,$ $a_2 = \sigma(z_2)$
 $z_3 = W_3 a_2 + b_3,$ $a_3 = \sigma(z_3)$
 $z_4 = W_4 a_3 + b_4,$ $a_4 = \sigma(z_4)$
 $z_5 = W_5 a_4 + b_5,$ $a_5 = z_5$
 $\mathscr{L}[\theta] = (Y - a_5)^T (Y - a_5)$

More compactly, we get:

Forward pass

$$z_{1} = W_{1}x + b_{1}, a_{1} = \sigma(z_{1})$$

$$z_{2} = W_{2}a_{1} + b_{2}, a_{2} = \sigma(z_{2})$$

$$z_{3} = W_{3}a_{2} + b_{3}, a_{3} = \sigma(z_{3})$$

$$z_{4} = W_{4}a_{3} + b_{4}, a_{4} = \sigma(z_{4})$$

$$z_{5} = W_{5}a_{4} + b_{5}, a_{5} = z_{5}$$

$$\mathcal{L} = (Y - a_{5})^{T}(Y - a_{5})$$

Backward pass

$$\nabla_{z_5} \mathcal{L} = 2(z_5 - Y)$$

$$\nabla_{z_4} \mathcal{L} = (W_5^T \nabla_{z_5} \mathcal{L}) \circ \sigma'(z_4)$$

$$\nabla_{z_3} \mathcal{L} = (W_4^T \nabla_{z_4} \mathcal{L}) \circ \sigma'(z_3)$$

$$\nabla_{z_2} \mathcal{L} = (W_3^T \nabla_{z_3} \mathcal{L}) \circ \sigma'(z_2)$$

$$\nabla_{z_1} \mathcal{L} = (W_2^T \nabla_{z_2} \mathcal{L}) \circ \sigma'(z_1)$$

Now we're ready to compute the gradients w.r.t. parameters

$$\frac{\partial \mathcal{L}}{\partial W_5} = \left(\frac{\partial z_5}{\partial W_5}\right)^T \frac{\partial \mathcal{L}}{\partial z_5}$$

$$= \left(\frac{\partial (W_5 a_4 + b_5)}{\partial W_5}\right)^T \frac{\partial \mathcal{L}}{\partial z_5}$$

$$= \frac{\partial \mathcal{L}}{\partial z_5} a_4^T$$

$$\frac{\partial \mathcal{L}}{\partial b_5} = \left(\frac{\partial z_5}{\partial b_5}\right)^T \frac{\partial \mathcal{L}}{\partial z_5}$$

$$= \left(\frac{\partial (W_5 a_4 + b_5)}{\partial b_5}\right)^T \frac{\partial \mathcal{L}}{\partial z_5}$$

$$= \frac{\partial \mathcal{L}}{\partial z_5}$$

$$z_{1} = W_{1}x + b_{1}, a_{1} = \sigma(z_{1})$$

$$z_{2} = W_{2}a_{1} + b_{2}, a_{2} = \sigma(z_{2})$$

$$z_{3} = W_{3}a_{2} + b_{3}, a_{3} = \sigma(z_{3})$$

$$z_{4} = W_{4}a_{3} + b_{4}, a_{4} = \sigma(z_{4})$$

$$z_{5} = W_{5}a_{4} + b_{5}, a_{5} = z_{5}$$

$$\mathcal{L}[\theta] = (Y - a_{5})^{T}(Y - a_{5})$$

More compactly, we get:

Forward pass

$$z_{1} = W_{1}x + b_{1}, a_{1} = \sigma(z_{1})$$

$$z_{2} = W_{2}a_{1} + b_{2}, a_{2} = \sigma(z_{2})$$

$$z_{3} = W_{3}a_{2} + b_{3}, a_{3} = \sigma(z_{3})$$

$$z_{4} = W_{4}a_{3} + b_{4}, a_{4} = \sigma(z_{4})$$

$$z_{5} = W_{5}a_{4} + b_{5}, a_{5} = z_{5}$$

$$\mathcal{L} = (Y - a_{5})^{T}(Y - a_{5})$$

Backward pass

$$\nabla_{z_5} \mathcal{L} = 2(z_5 - Y)$$

$$\nabla_{z_4} \mathcal{L} = (W_5^T \nabla_{z_5} \mathcal{L}) \circ \sigma'(z_4)$$

$$\nabla_{z_3} \mathcal{L} = (W_4^T \nabla_{z_4} \mathcal{L}) \circ \sigma'(z_3)$$

$$\nabla_{z_2} \mathcal{L} = (W_3^T \nabla_{z_3} \mathcal{L}) \circ \sigma'(z_2)$$

$$\nabla_{z_1} \mathcal{L} = (W_2^T \nabla_{z_2} \mathcal{L}) \circ \sigma'(z_1)$$

$$\nabla_{W_5} \mathcal{L} = (\nabla_{z_5} \mathcal{L}) a_4^T, \quad \nabla_{b_5} \mathcal{L} = \nabla_{z_5} \mathcal{L}$$

$$\nabla_{W_4} \mathcal{L} = (\nabla_{z_4} \mathcal{L}) a_3^T, \quad \nabla_{b_4} \mathcal{L} = \nabla_{z_4} \mathcal{L}$$

$$\nabla_{W_3} \mathcal{L} = (\nabla_{z_3} \mathcal{L}) a_2^T, \quad \nabla_{b_3} \mathcal{L} = \nabla_{z_3} \mathcal{L}$$

$$\nabla_{W_2} \mathcal{L} = (\nabla_{z_2} \mathcal{L}) a_1^T, \quad \nabla_{b_2} \mathcal{L} = \nabla_{z_2} \mathcal{L}$$

$$\nabla_{W_1} \mathcal{L} = (\nabla_{z_1} \mathcal{L}) x^T, \quad \nabla_{b_1} \mathcal{L} = \nabla_{z_1} \mathcal{L}$$

• Or in code:

Forward pass

```
a1 = \sigma. (W1*x + b1)

a2 = \sigma. (W2*a1 + b2)

a3 = \sigma. (W3*a2 + b3)

a4 = \sigma. (W4*a3 + b4)

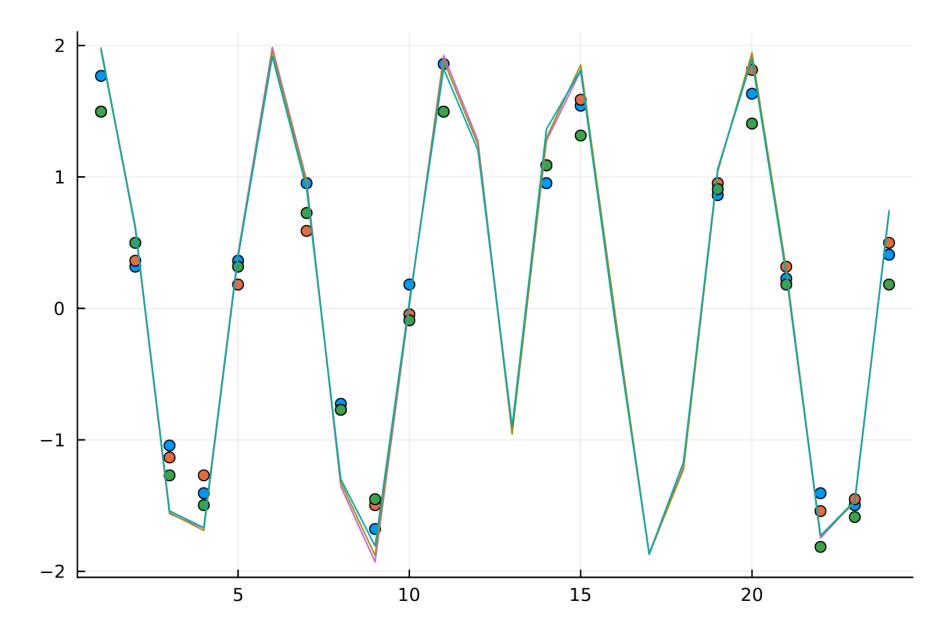
a5 = W5*a4 + b5
```

Backward pass

```
\nabla z = 2*(a5 - Y)
\nabla z 4 = (W5' * \nabla z 5) .* \sigma'.(z 4)
\nabla z3 = (W4' * \nabla z4) .* \sigma'.(z3)
\nabla z^2 = (W3' * \nabla z^3) .* \sigma'.(z^2)
\nabla z 1 = (W2' * \nabla z 2) .* \sigma'.(z 1)
\nabla W5 = \nabla z5 * a4' ; \nabla b5 = \nabla z5
\nabla W4 = \nabla z4 * a3' ; \nabla b4 = \nabla z4
\nabla W3 = \nabla z3 * a2' ; \nabla b3 = \nabla z3
\nabla W2 = \nabla z2 * a1' ; \nabla b2 = \nabla z2
\nabla W1 = \nabla z1 * x' ; \nabla b1 = \nabla z1
```

Accelerator control

- For this talk: use Bmad model to predict beam position in response to operator inputs
 - Can control other quantities (polarization, emittance, luminosity, "figure of merit", ...)
- Actual beam position measured (with error) at 24 BPMs
- Bmad can be used in an optimizer to find inputs that better control the beam
 - If Bmad is an accurate "twin" of the real machine
 - Model accuracy depends on assumed, but unknown characteristics of the machine



Parameter estimation (tuning)

- Controls c: known inputs that the operator specifies (currents, ...)
- Parameters θ: fixed but unknown system properties (misalignments, current biases, ...)
- Model $m(c;\theta)$: response of the system to its controls, assuming parameters are known
 - e.g., predicted beam position due to currents, if we knew all machine characteristics
 - Here we use Bmad as a "digital twin"
- Measurements y(c): observed system response to the control
- Estimate parameters by fitting model to measurements, e.g. by least squares:

$$\hat{\theta} = \arg\min_{\theta} \sum_{i} (y_i - m_i(c; \theta))^2$$

Parameter estimation (inference)

• In parameter fitting, the goal is to find the best-fitting set of parameters

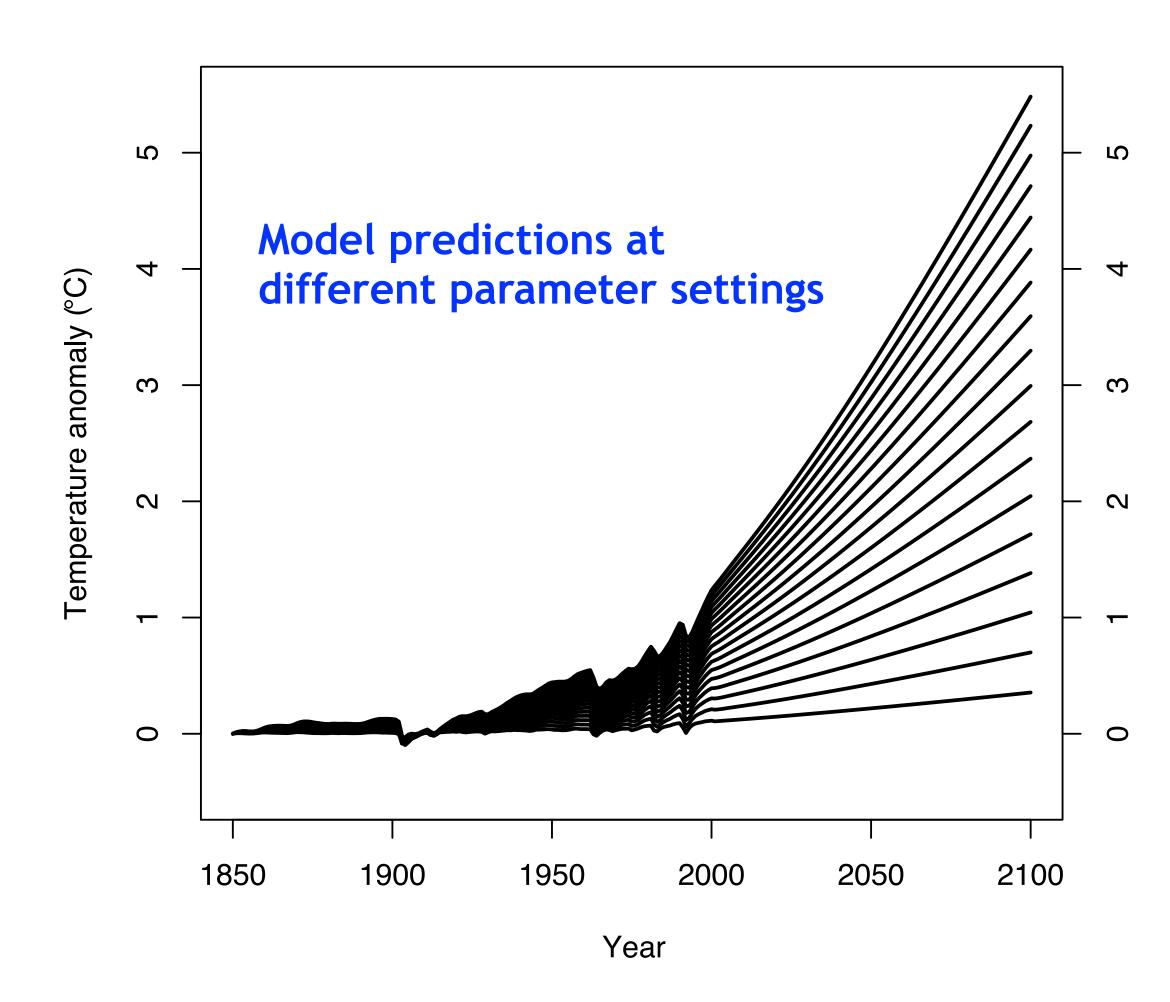
 $\hat{\theta}$

- In Bayesian uncertainty quantification (UQ), the goal is to estimate a probability distribution
 over the unknown parameters, not just a single point estimate (best fit).
 - Posterior distribution (probability of unknown parameters, conditional on measurements):

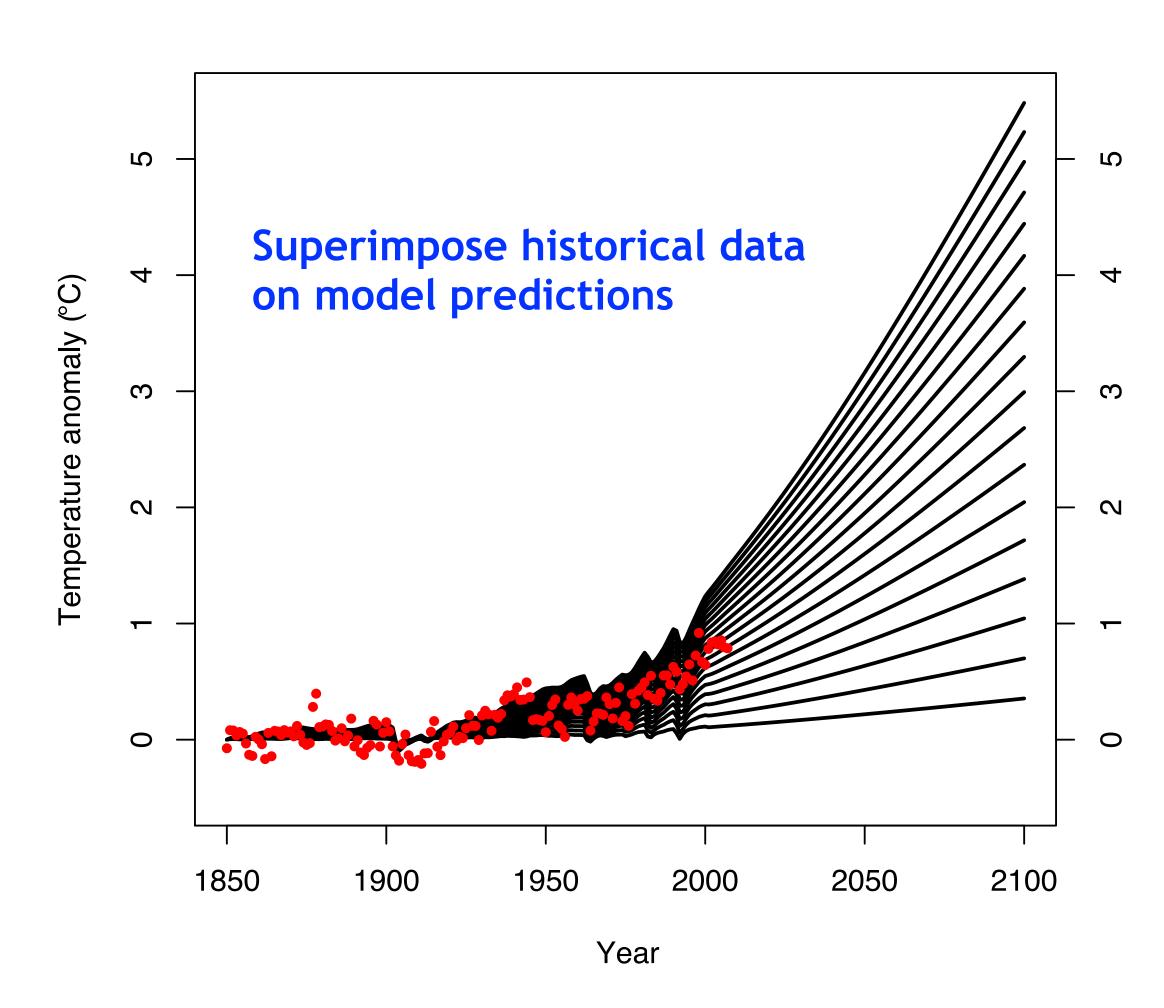
$$p(\theta | y)$$

- When do you want to go to the trouble of UQ?
 - May be many "best fits", with different implications for predicted behavior
 - (in pure science) To put error bars on predictions (e.g., compare theory and experiment)
 - (in control) Nonlinear response / non-Gaussian errors mean that best fit parameters don't correspond to controller with best average performance
 - (in control) We might want to know the expected reliability of a control policy

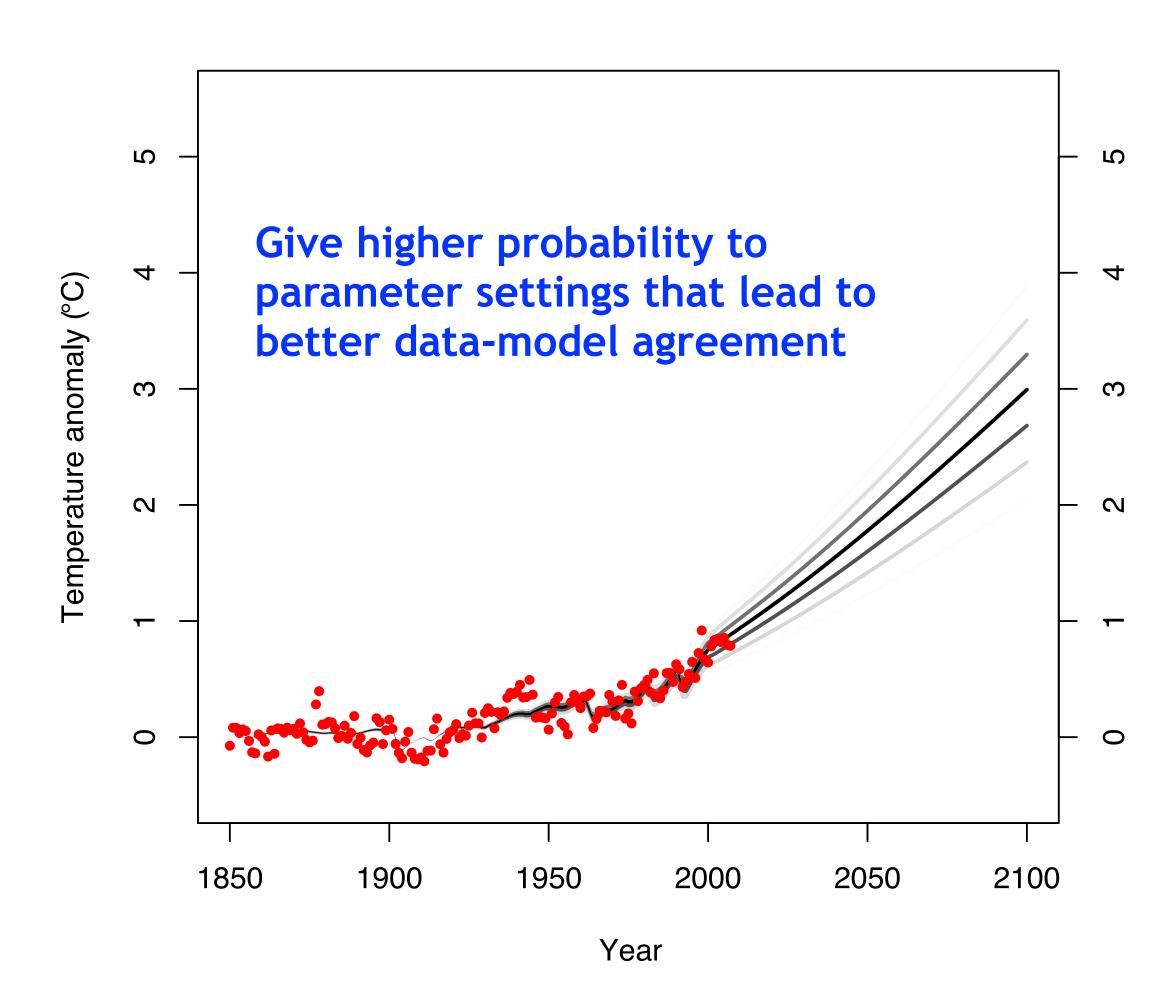
- Example of a 3-parameter model from climate science
- Could tune these parameters to data
- But rather than a point estimate, we can assign each parameter value a probability weight
 - Weight given by "goodness of fit"
- It is (probabilistic, nonlinear) regression



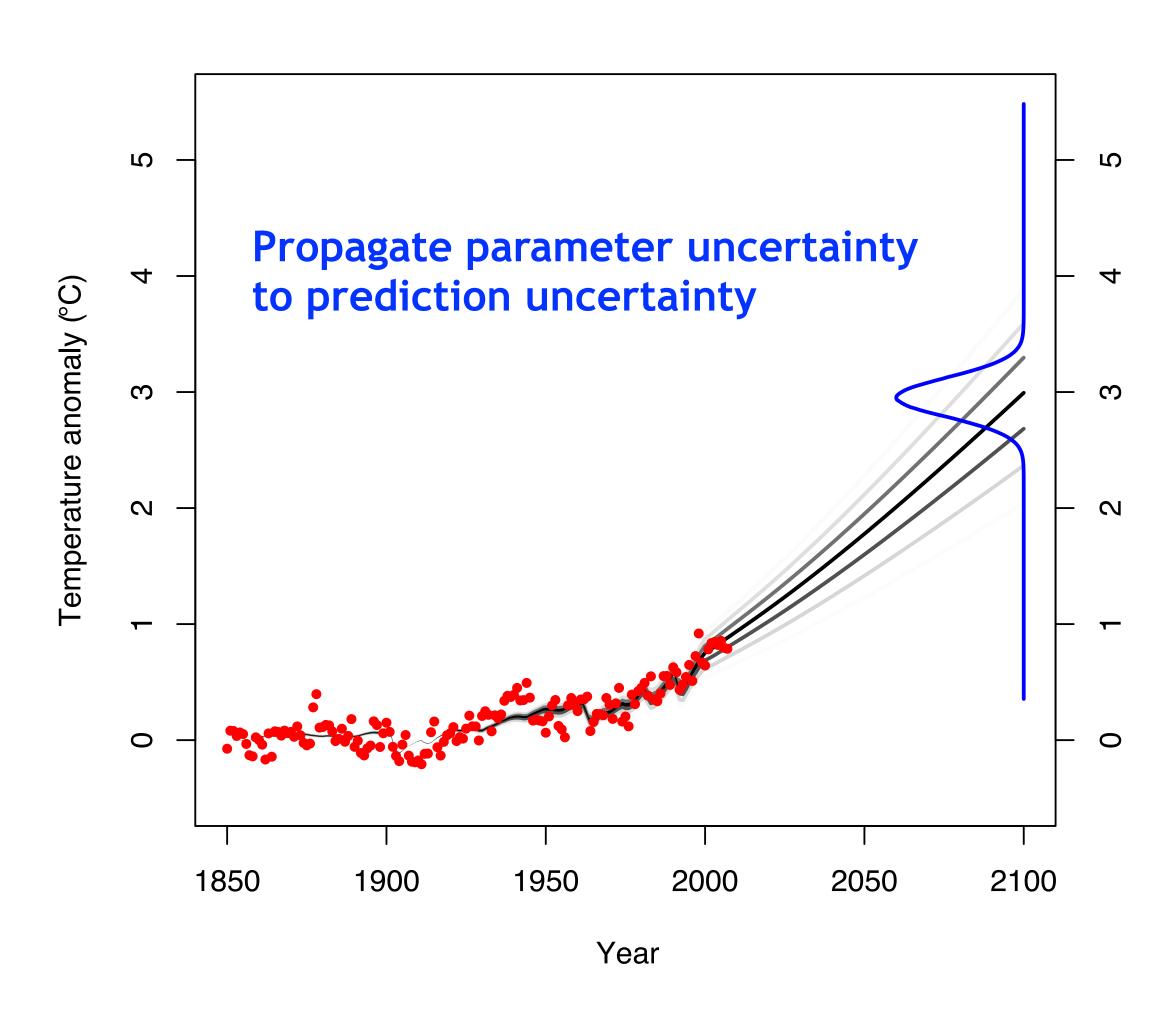
- Example of a 3-parameter model from climate science
- Could tune these parameters to data
- But rather than a point estimate, we can assign each parameter value a probability weight
 - Weight given by "goodness of fit"
- It is (probabilistic, nonlinear) regression



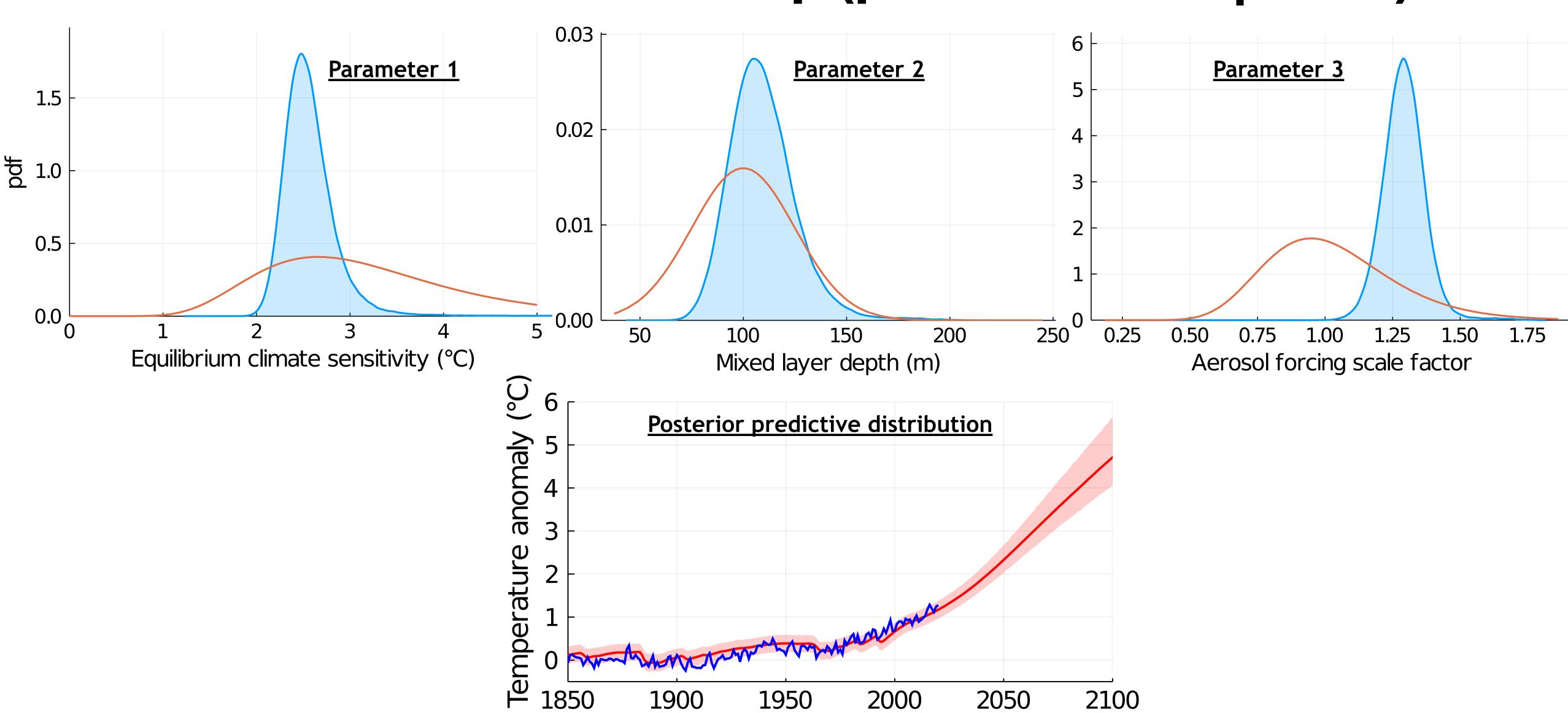
- Example of a 3-parameter model from climate science
- Could tune these parameters to data
- But rather than a point estimate, we can assign each parameter value a probability weight
 - Weight given by "goodness of fit"
- It is (probabilistic, nonlinear) regression



- Example of a 3-parameter model from climate science
- Could tune these parameters to data
- But rather than a point estimate, we can assign each parameter value a probability weight
 - Weight given by "goodness of fit"
- It is (probabilistic, nonlinear) regression



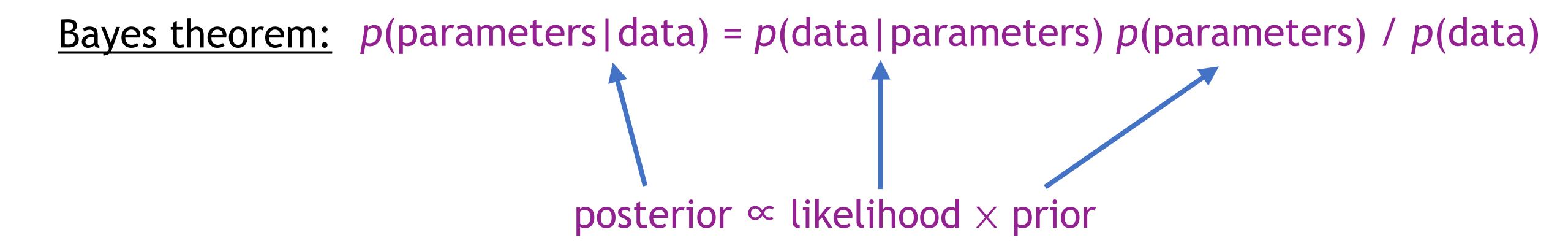
Posterior distribution: p(parameters|data)



Year

Bayesian inference (probabilistic parameter estimation)

- Goal: infer parameter probability density functions (PDFs) from data
 - Conditional inference: infer parameter uncertainties from known data



To infer <u>posterior</u> PDF, need to know <u>likelihood function</u> (data-generating distribution) and <u>prior</u> distribution (beliefs about parameters before seeing the data). Bayesian uncertainty quantifies "ignorance" about the true parameter values.

Prior distribution: p(parameters)

- What you believe about the parameters before you've seen the data
 - Use outside information (physical predictions, other data sources)
 - Priors <u>must</u> be independent of conditioning data (no double-counting)
 - Can use posterior inferred from other data as prior (sequential Bayesian update)
- Elicit booster prior uncertainties from operators
 - trim current errors $\approx \pm 10^{-3} (1-\sigma)$
 - magnet misalignments informed from previous surveys
 - transfer function coefficient ranges harder to elicit (not directly measured)

Likelihood function: p(data|parameters)

Assume data is distributed randomly (additively) around an accelerator model (e.g. Bmad):

Measurements(BPM location i) = Model(control; parameters) + Noise

$$y_i = m(c; \theta) + \varepsilon$$

Assume noise process is noise process (ε) is normal (independent and identically distributed, or *iid*), zero mean: $\varepsilon \sim N(0, \sigma^2)$ $y_i \sim N(\mu = m_i(c; \theta), \sigma^2)$

(Likelihood: one observation)

$$p(y_i | \theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left[-\frac{1}{2} \frac{(y_i - m_i(c; \theta))^2}{\sigma^2} \right]$$

(Likelihood: all observations)

$$p(y | \theta) = \Pi_i p(y_i | \theta) = \frac{1}{\left(\prod_i \sqrt{2\pi\sigma_i^2}\right)} \exp \left[-\frac{1}{2} \frac{\sum_i (y_i - m_i(c; \theta))^2}{\sigma^2}\right]$$

Likelihood function: p(data|parameters)

Note: for an *iid* normal likelihood model, the *maximum likelihood estimate* (MLE) for θ is the same as a *least squares* or *minimum* χ^2 fit.

(Likelihood: all observations)

$$(p(y|\theta)) = \Pi_i p(y_i|\theta) = \frac{1}{\left(\prod_i \sqrt{2\pi\sigma_i^2}\right)} \exp \left[-\frac{1}{2} \frac{\sum_i (y_i - m_i(c;\theta))^2}{\sigma^2}\right] \left(\propto \exp(-\chi^2/2)\right)$$

Assume noise process is noise process (ε) is normal (independent and identically distributed, or *iid*), zero mean: $\varepsilon \sim N(0, \sigma^2)$

$$y_i \sim N(\mu = m_i(c; \theta), \sigma^2)$$

Posterior distribution: p(parameters|data)

The posterior is proportional to the product of the likelihood and prior (which we will assume is independent for each parameter).

$$p(\theta | y) \propto p(y | \theta) p(\theta) = \frac{1}{\left(\prod_{i} \sqrt{2\pi\sigma_{i}^{2}}\right)} \exp\left[-\frac{1}{2} \frac{\sum_{i=1}^{N} (y_{i} - m_{i}(c; \theta))^{2}}{\sigma_{i}^{2}}\right] \times \prod_{k=1}^{K} p(\theta_{k})$$

The log posterior is like a "regularized" least squares fit. If the priors are assumed normal around some typical mean, $\theta_k \sim N(\bar{\theta}_k, \nu_k^2)$, then the "maximum a posteriori" (MAP) estimate arises from minimizing a least squares term with an additional "penalty" term on the parameters.

$$-\log p(\theta | y) \propto \sum_{i=1}^{N} \frac{(y_i - m_i(c; \theta))^2}{\sigma^2} + \sum_{k=1}^{K} \frac{(\theta_k - \bar{\theta}_k)^2}{\nu^2} + const$$

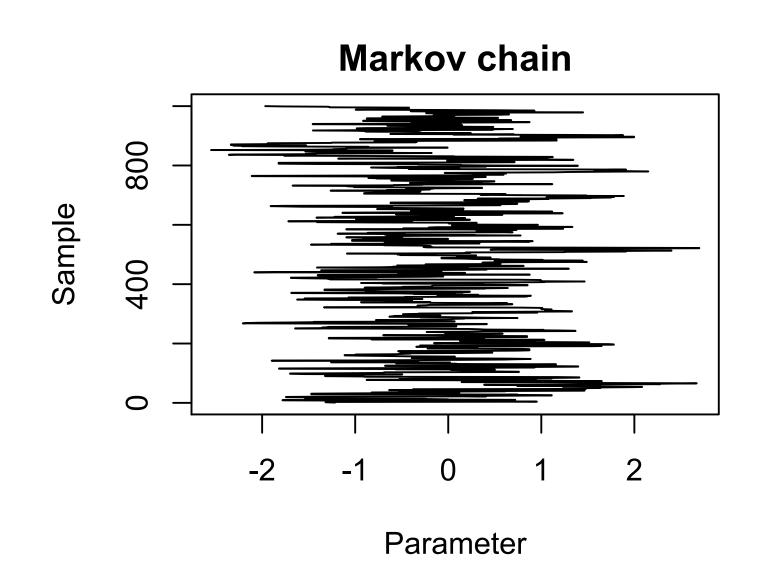
Posterior distribution: p(parameters|data)

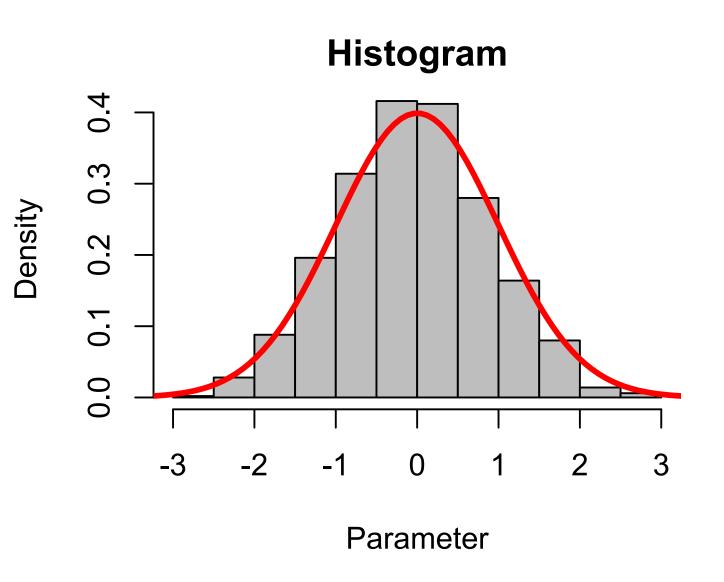
- However: These relationships are just to connect to some familiar concepts.
- In UQ, we usually are not interested in point estimates.
 - (and if we do make a point estimate, it's usually the posterior mean, not MAP)
- Our real goal is uncertianty, which means the full posterior distribution
- Its mean, variance, and all higher moments

$$p(\theta | y) \propto p(y | \theta) p(\theta) = \frac{1}{\left(\prod_{i} \sqrt{2\pi\sigma_{i}^{2}}\right)} \exp\left[-\frac{1}{2} \frac{\sum_{i=1}^{N} (y_{i} - m_{i}(c; \theta))^{2}}{\sigma_{i}^{2}}\right] \times \prod_{k=1}^{K} p(\theta_{k})$$

Markov chain Monte Carlo (MCMC) sampling

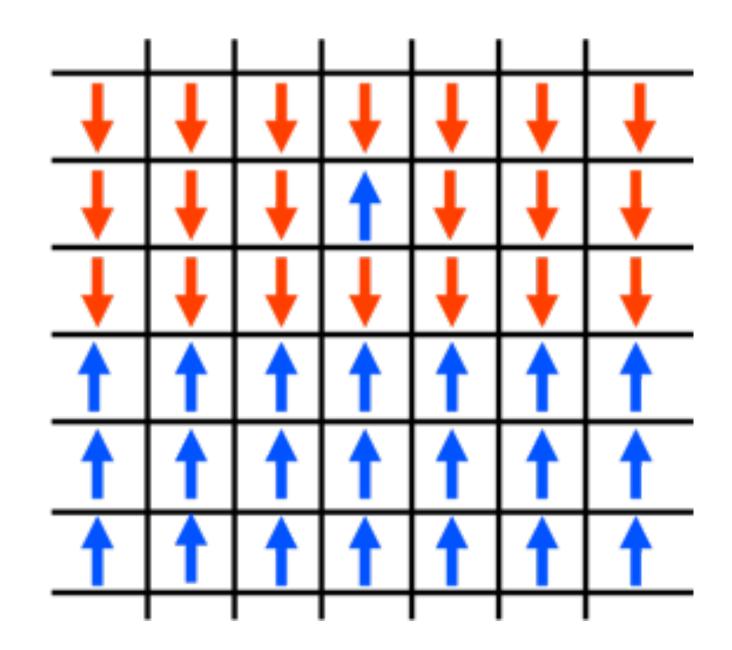
- We want to calculate the posterior distribution. In high dimensions, Monte Carlo sampling works best.
 - sampling converges like $1/\sqrt{N}$, where N is # of samples
- How to sample from an arbitrary distribution?
- Approach: <u>importance-biased random walk</u>
 - spend more time sampling high-probability regions
 - (note: samples from a random walk are not independent)

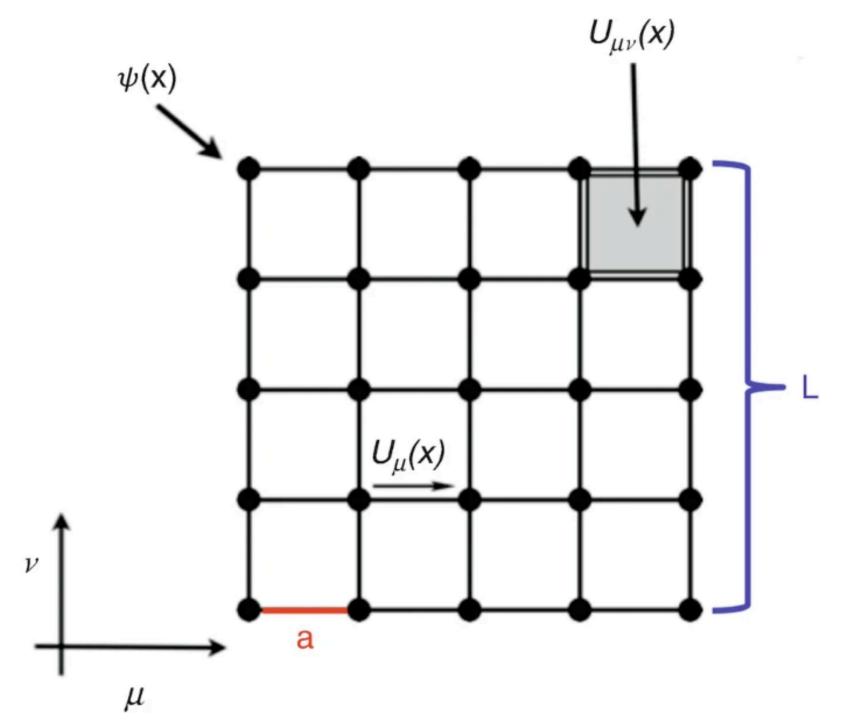




Physics note: MCMC

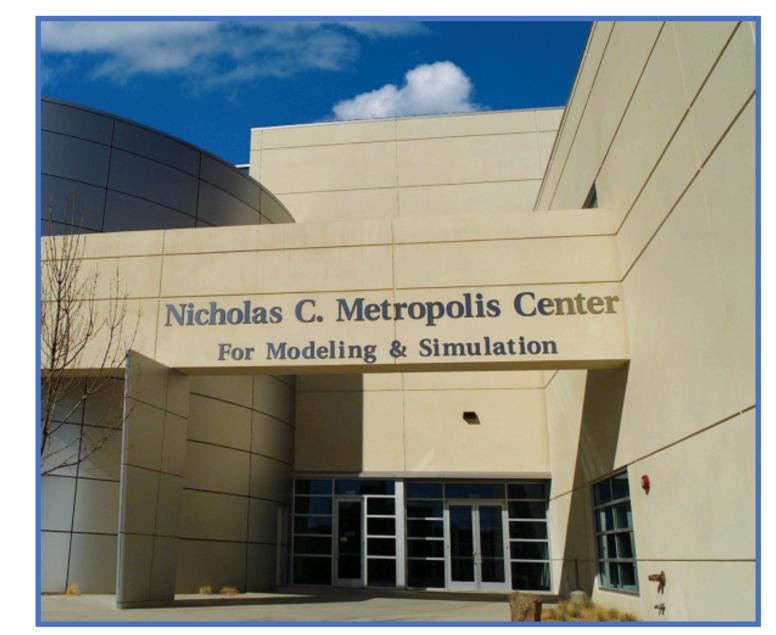
- Sampling from a probability distribution p(x) is directly analogous to statistical mechanics
 - Sample Boltzmann distribution $p(x) \propto e^{-\beta E(x)}$
 - $-\log p(x)$ is analogous to potential energy
- Or lattice gauge theory
 - $p(x) \propto e^{-S[x]}$
 - $-\log p(x)$ is analogous to the action
- Advanced Bayesian inference uses hybrid Monte Carlo (HMC), just like lattice QCD
 - Requires calculating gradient of p(x)
 - Which for us means the gradient of the model output (e.g., Bmad beam position) w.r.t. the parameters
 - Differentiable Bmad would be very helpful





Metropolis MCMC algorithm

- Let the target distribution $\pi(\theta)$ be the posterior, $p(\theta|y)$
- Construct a random walk as follows:
 - 1. Start at point *θ*
 - 2. Propose moving to a new point θ' randomly, according to some easy to sample symmetric distribution $t(\theta'|\theta)$ (e.g., a Gaussian perturbation)
 - 3. If this moves us to a <u>higher</u> probability point, $\pi(\theta') > \pi(\theta)$, <u>accept</u> the move to θ'
 - 4. If this moves us to a <u>lower</u> probability point, <u>accept randomly with probability</u> $\pi(\theta')/\pi(\theta)$; else reject and stay at the same point θ
 - 5. Either way, record the point you end up at to construct the Markov chain
 - 6. Repeat



LANL

Code for Bayesian regression

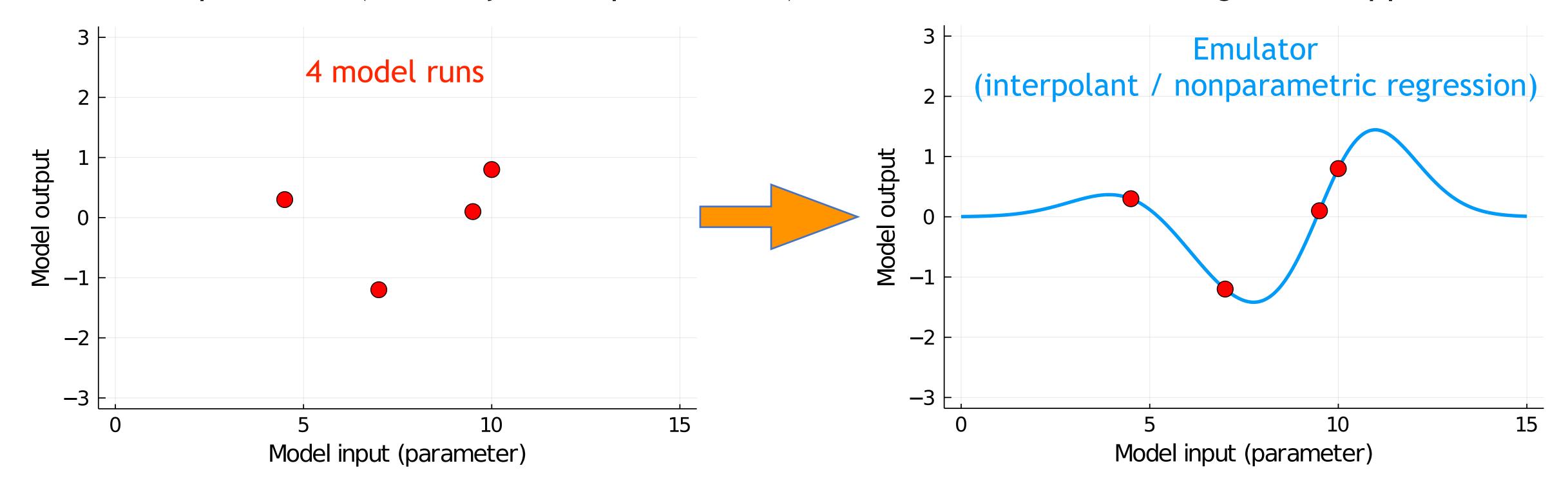
```
julia
```

```
function metropolis(lpdf, num_iter, x₀, step)
    D = length(x_0)
    chain = zeros(num_iter, D)
    chain[1,:] = x_0
    x, lp = x_0, lpdf(x_0)
    num_accept = 0
    for i = 2:num_iter
        x' = x + step .* randn(D) # proposal
        lp' = lpdf(x')
        if log(rand()) < lp' - lp # Metropolis</pre>
            x, lp = x', lp'
            num_accept = num_accept + 1
        end
        chain[i,:] = x
    end
    return (chain, num_accept/num_iter)
end
```

```
function log_posterior(p)
    \lambda, d, \alpha, T_0 = p
    log post = -Inf
    if \lambda > 0 && d > 0 && \alpha > 0 # parameters in range
         F2xCO_2 = 4.0 \# forcing for doubled CO_2 [W/m^2]
         lpri_\lambda = logpdf(LogNormal(log(3), log(2)/2), F2xCO_2/\lambda)
           + log(F2xCO<sub>2</sub>/\lambda^2) # ECS prior + Jacobian (ECS = F2xCO_2/\lambda)
         lpri d = logpdf(Normal(100, 25), d)
         lpri \alpha = logpdf(LogNormal(log(1), log(1.5)/2), \alpha)
         lpri T_0 = 0
         log_pri = lpri_λ + lpri_d + lpri_α + lpri_T<sub>0</sub> # prior
         \sigma = 0.1 \# observational noise standard deviation [K]
         r = temp obs - model(p)[midx] # data-model residual
         log lik = sum(logpdf.(Normal(0,\sigma), r)) # likelihood
         log post = log lik + log pri # posterior
    end
    return log_post
end
```

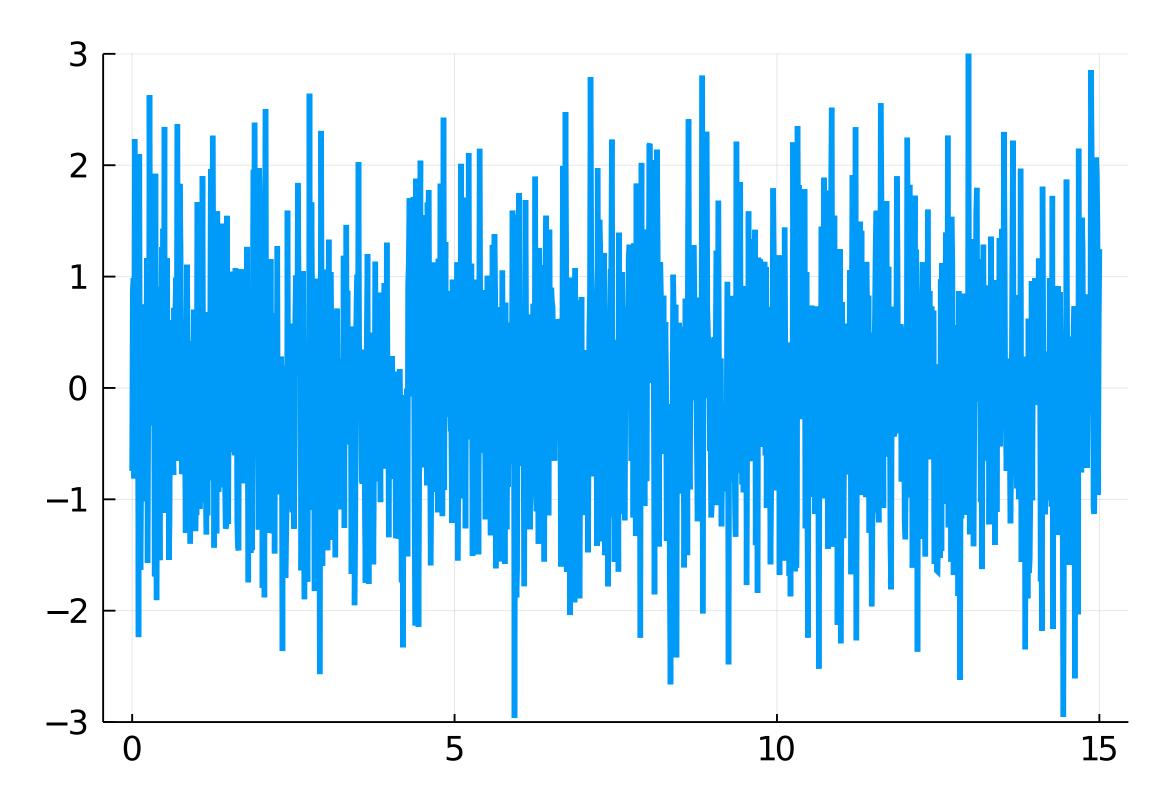
Model emulation

- We can only afford a limited number of Bmad simulations; hard to embed in Monte Carlo sampler where many evaluations are required
- Can we estimate "what the model would have predicted at a new parameter setting" from an ensemble of training simulation output, without actually running the model?
- "Response surface" emulation: interpolation to the rescue
 - Gaussian processes (as in Bayesian optimization), neural networks, other regression approaches



- A Gaussian processes is a probability distribution on a space of functions
- Can be used for *probabilistic* interpolation / regression
- Draw, say, 1000 Gaussian random samples and plot them over "space":

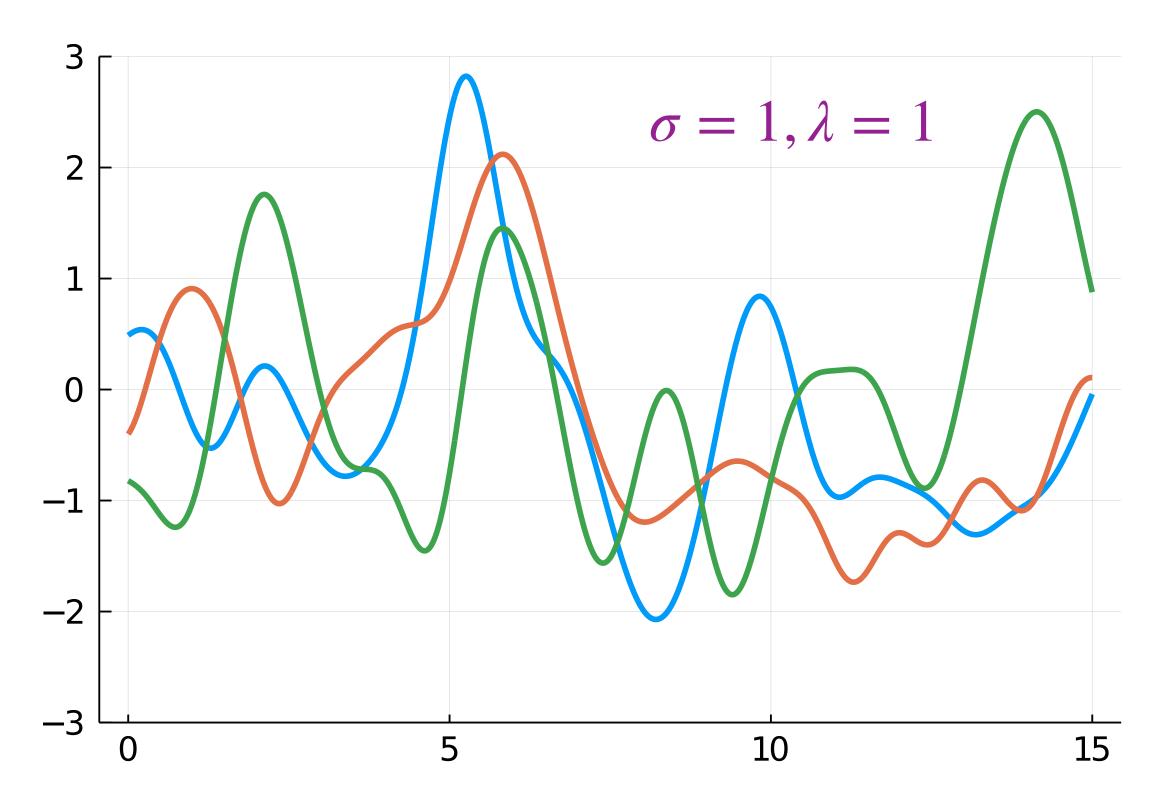
 $Y_i \sim N(0,1)$



- A Gaussian processes is a probability distribution on a space of functions
- Can be used for probabilistic interpolation / regression
- Draw 1000 random variables, but correlated with each other; here are 3 draws:

$$Y \sim N(0, \Sigma), \qquad \Sigma_{ij} = \text{Cov}(Y_i, Y_j)$$

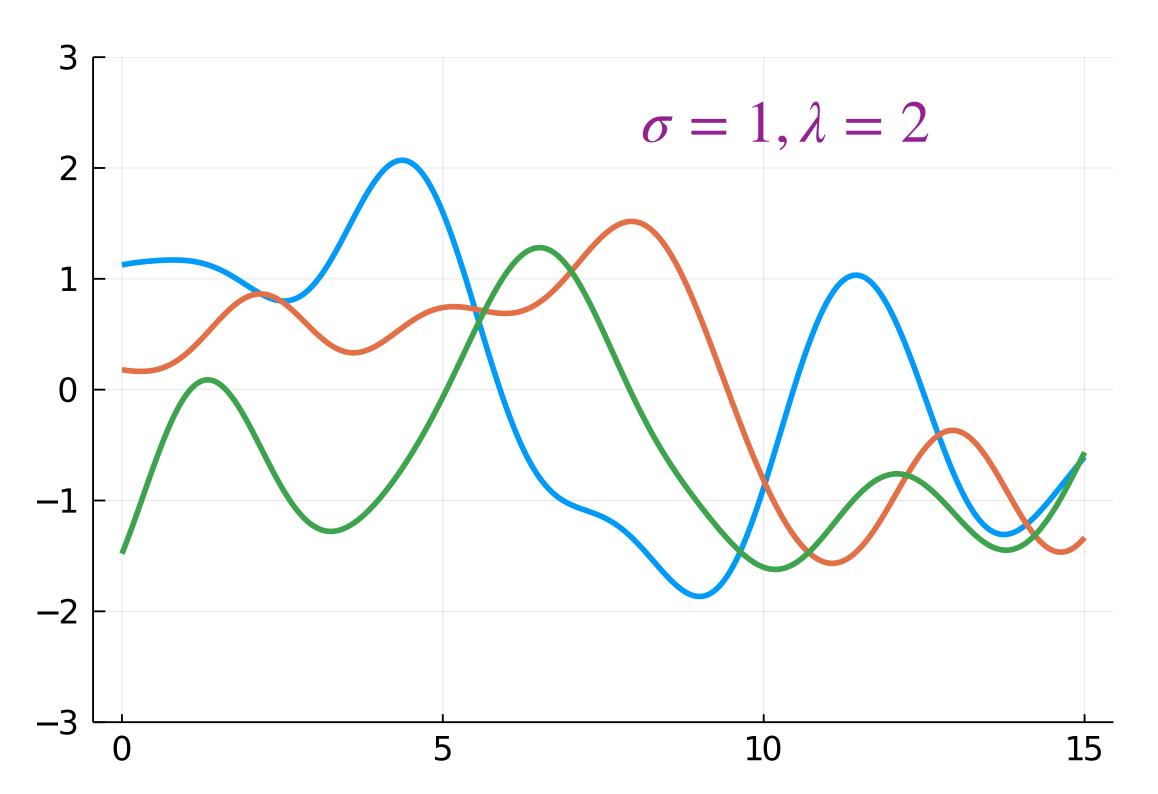
$$Cov(Y_i, Y_j) = \sigma^2 \exp \left[-\left(\frac{X_i - X_j}{\lambda}\right)^2 \right]$$



- A Gaussian processes is a probability distribution on a space of functions
- Can be used for *probabilistic* interpolation / regression
- Draw 1000 random variables, but correlated with each other; here are 3 draws:

$$Y \sim N(0, \Sigma), \qquad \Sigma_{ij} = \text{Cov}(Y_i, Y_j)$$

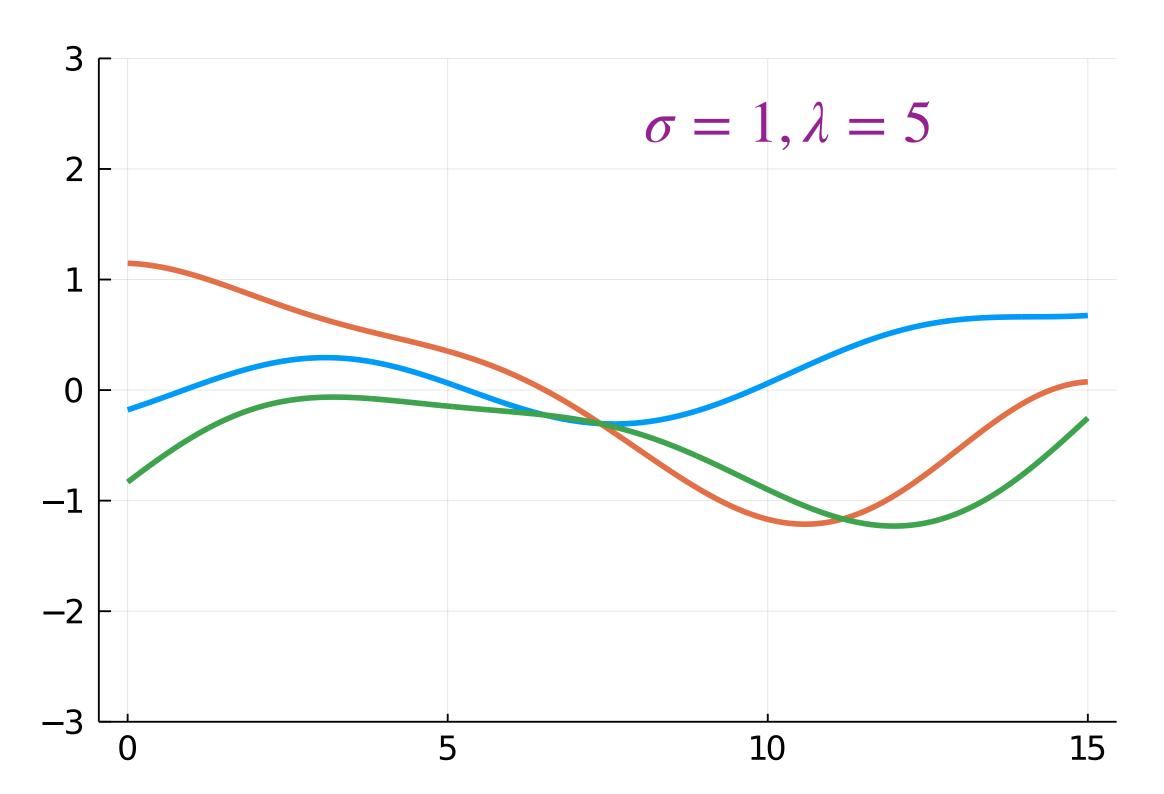
$$Cov(Y_i, Y_j) = \sigma^2 \exp \left[-\left(\frac{X_i - X_j}{\lambda}\right)^2 \right]$$



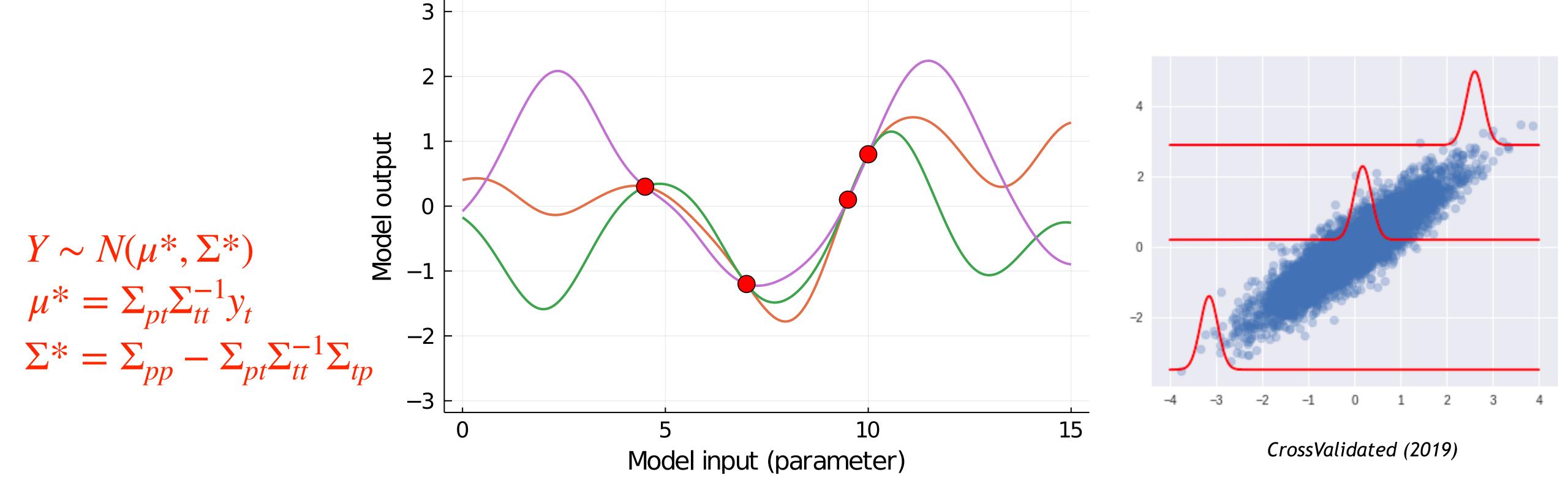
- A Gaussian processes is a probability distribution on a space of functions
- Can be used for probabilistic interpolation / regression
- Draw 1000 random variables, but correlated with each other; here are 3 draws:

$$Y \sim N(0,\Sigma), \qquad \Sigma_{ij} = \text{Cov}(Y_i, Y_j)$$

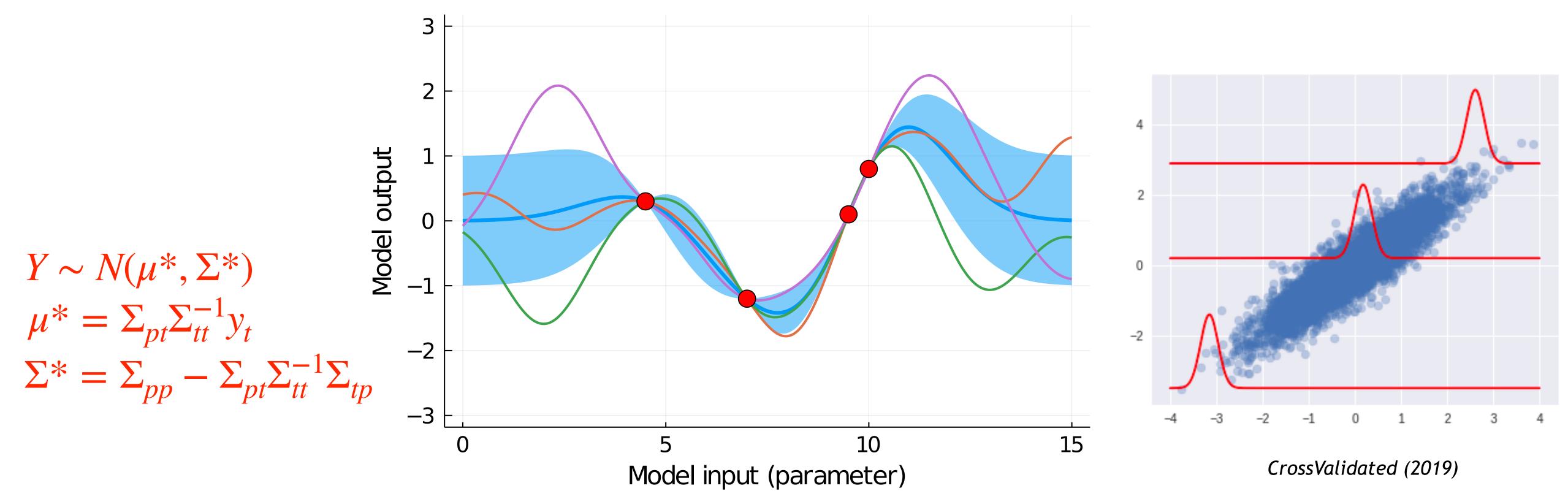
$$Cov(Y_i, Y_j) = \sigma^2 \exp \left[-\left(\frac{X_i - X_j}{\lambda}\right)^2 \right]$$



- We have seen that we can draw random vectors that have smooth behavior by imposing a correlation over space (nearer points are more correlated)
- A Gaussian process is the continuum limit of this idea to random functions
- We can be Bayesian, and condition on "observed" data to get a posterior:



- We have seen that we can draw random vectors that have smooth behavior by imposing a correlation over space (nearer points are more correlated)
- A Gaussian process is the continuum limit of this idea to random functions
- We can be Bayesian, and condition on "observed" data to get a posterior:



Errors in variables

- We have assumed that the controls (e.g., currents) are perfectly known, because we set them
- But what if the true control is unknown (currents fluctuate randomly, or there is a persistent but unknown bias between set point and realized current)?
 - The model has noisy inputs in addition to noisy outputs
- We can treat the "true" controls as parameters to infer ("latent variables")
 - Probability model for set current as random perturbation of true current: $\tilde{c}_d \sim N(c_d, \varsigma_d^2)$
 - Find joint posterior for parameters and true currents $p(\theta, c | y, \tilde{c})$

$$p(\theta, c | y, \tilde{c}) \propto p(y | \theta) p(c | \tilde{c}) p(\theta) p(c)$$

$$\propto \exp \left[-\frac{1}{2} \frac{\sum_{i=1}^{N} (y_i - m_i(c; \theta))^2}{\sigma_i^2} \right] \times \prod_{k=1}^{K} \frac{(\theta_k - \bar{\theta}_k)^2}{\nu_i^2} \times \prod_{d=1}^{D} \frac{(\tilde{c}_d - c_d)^2}{\varsigma_d^2}$$

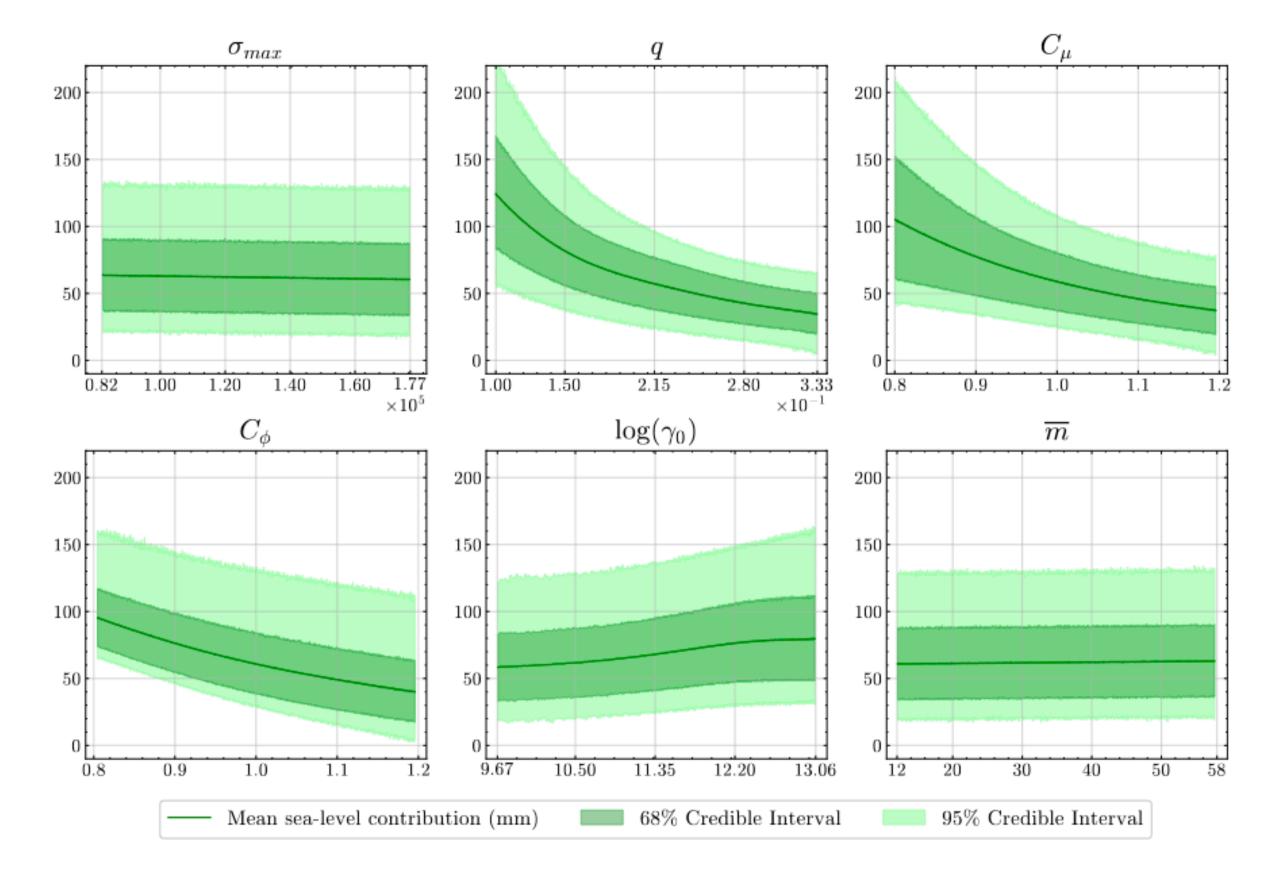
Obtain parameter posterior by integrating out ("marginalizing over") latent variables: $p(\theta | y, \tilde{c}) = \int p(\theta, c | y, \tilde{c}) dc$

Do any of these uncertainties matter?

- So far we've been proceeding under the assumption that we know which parameters are responsible for beam positioning, or Bmad model misfit
 - We just have to quantify their effects
- What if we don't know what matters?
 - Magnet misalignments, transfer function, trim currents
- Can we go through a list of suspects, and identify or quantify their importance?
 - In terms of influence on model prediction, or data-model misfit
- Characterizing the response of outputs to inputs is known as sensitivity analysis
- Traditional approach: "one-at-a-time" (OAT) parameter scan
 - Pick a parameter, change its value over a range (fixing all other parameters at nominal)
 - Doesn't pick up any interactions between parameters
 - Can be sample-inefficient (most of the time you aren't learning about most parameters)
 - Be aware of overconfidence: exploring parameters and stopping when one shows an effect

Accounting for uncertainty in sensitivity analysis

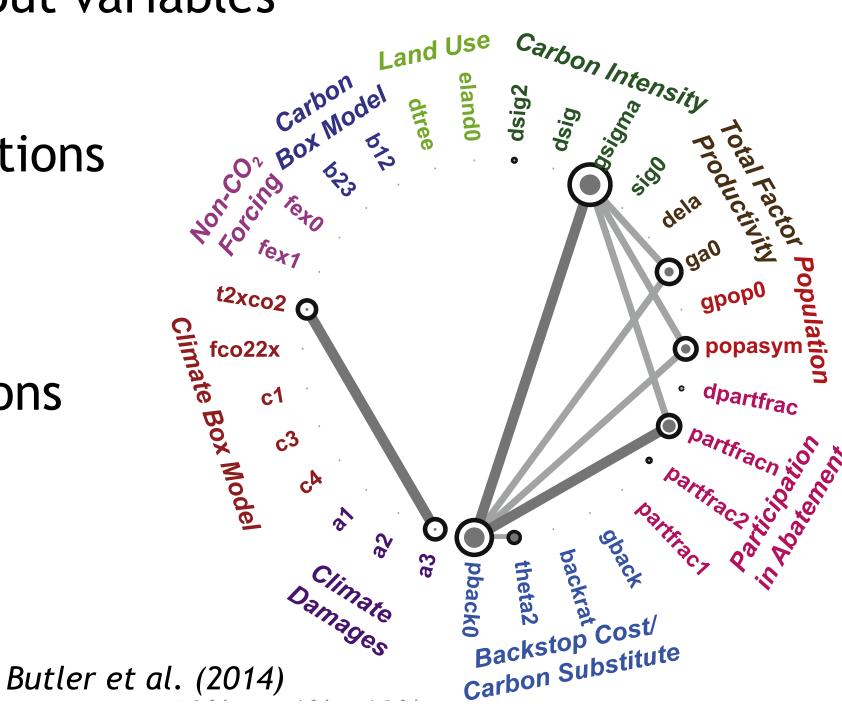
- OAT: change one parameter, holding all others fixed
- Alternative: change one parameter, sampling randomly over all other parameters (given a distribution)
 - Accounts for uncertainty in the response of one parameter, due to variability in other parameters



Jantre et al. (2024)

Variance-based global sensitivity analysis (GSA)

- Sobol' decomposition: Analysis-of-variance (ANOVA) to construct a model's "uncertainty budget"
 - Requires user to specify a probability distribution over uncertain inputs
- How much of the output uncertainty can be attributed to the uncertainty in a particular input?
 - Or, how much could we reduce output uncertainty if we learned the true value of an input?
- · How much does an input contribute directly, and indirectly through correlations with other inputs?
 - Quantifies importance of (2-way, 3-way, ...) interactions between input variables
- Contrast with "one-at-a-time" parameter scans
 - Don't identify contributions to output uncertainty, or detect interactions
- Specific advantages when GSA is coupled with an emulator:
 - Fast, closed-form analytic solutions for sensitivity metrics
 - Change assumptions about input uncertainties without new simulations



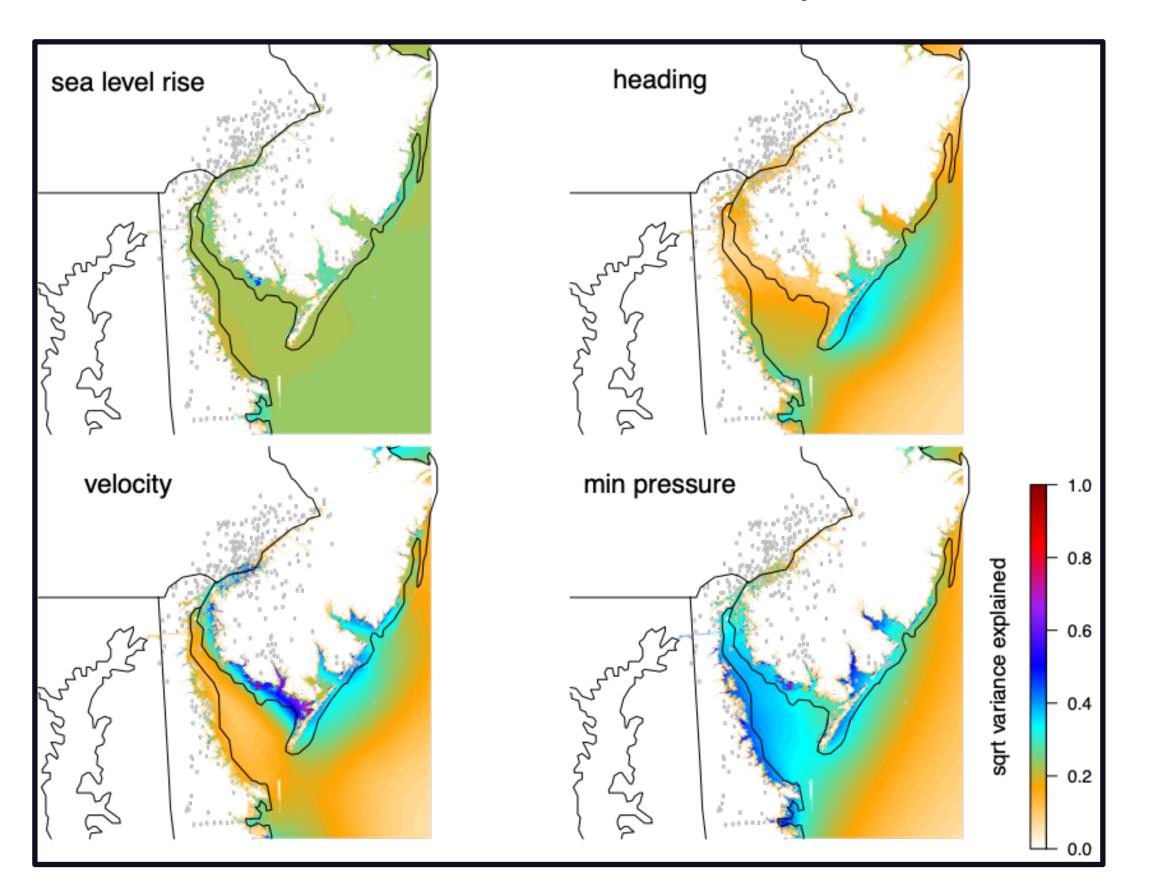
Global sensitivity analysis, quantitatively

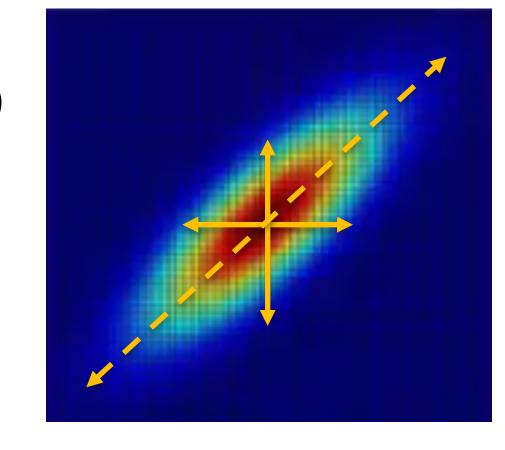
- How much would we reduce uncertainty in output Y, if we learned the value of the ith input, X_i ?
 - Difficulty: we don't know the true value of X_i
- Uncertainty in output due to uncertainty in all inputs = Var(Y)
- Uncertainty in output, after learning the true value x of input $X_i = Var_{\sim i}(Y | X_i = x)$
- Expected output uncertainty after learning true input, averaged over input uncertainty = $E_i(Var_{i}(Y|X_i))$
- Expected reduction in uncertainty after learning input $i = Var(Y) E_i(Var_{i}(Y | X_i))$
 - Also equal to $Var_i(E_{i}(Y|X_i))$, via law of total variance
- Normalizing by the output variance gives the first-order sensitivity index, $S_i = Var_i(E_{-i}(Y|X_i)) / Var(Y)$
- Nested expectations calculated by sampling, or (sometimes) analytically with an emulator of Y(X)
- We can define similar indices for *interactions* between pairs of variables, S_{ij}
- The sum of first-order and interaction sensitivities is the total sensitivity index, $T_i = E_{-i}(Var_i(Y|X_{-i}))$ / Var(Y)
- A large first-order sensitivity means it would be valuable to reduce uncertainty in that variable
- A small total sensitivity means that variable's uncertainty is negligible (it does not influence output uncertainty either directly, or indirectly through its interactions with other variables)

Code for global sensitivity analysis

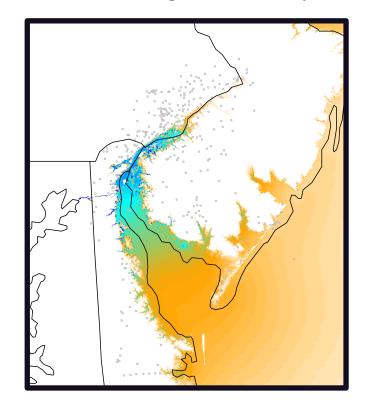
Global sensitivity analysis example

- Sensitivity of flooding to sea level rise and hurricane direction, speed, and intensity
- This does not mean these two inputs are correlated with each other (though they can be)
- Rather, nonlinear variations in the output may occur when two variables change together
- These effects would be invisible if the inputs were varied one-at-a-time





heading × velocity



Francom et al. LA-UR-19-27244

Optimizing control inputs

- Control c: currents or other inputs that the operator can specify
- Model m(c): the modeled system response to inputs (e.g., beam position)
- Objective: a metric of system performance (e.g., a loss function) to optimize
 - $\mathscr{L}(m(c)) = \sum_{i} (\bar{z}_i m_i(c))^2$ (deviation of beam position from target position at BPMs)
 - (e.g., $\bar{z}_i = 0$)
- Find control that optimizes objective:

$$c^* = \arg\min_{c} \mathscr{L}(m(c))$$

Solve using standard optimization algorithms (quasi-Newton, gradient descent, ...)

On optimal control methods

- There are many optimization methods floating around
 - Bayesian optimization, gradient descent, quasi-Newton methods, ...
- There are many ways to formulate beam control as an optimization problem
 - Nonlinear loss minimization, expected utility maximization (with chance constraints), robust optimization/control, classical control theory, reinforcement learning
- Probably a digression to discuss pros/cons in this talk, but we should discuss in the project
- The methods discussed here are adapted for this setting:
 - There is a physical system model, which is much cheaper than real experiments
 - We can solve control policies offline using the physical model (digital twin)
 - The model is imperfect, but imperfections are learnable via data-model comparisons
 - There are many variables to control; maybe many uncertain system parameters
 - Decisions are one-off / non-sequential (if sequential, can extend to RL-like approaches)

What next?

- We need to identify controls (and their ranges) that matter to the beam position
 - More expert elicitation, sensitivity analysis / parameter screening, ...
- Perform UQ
 - Are results Gaussian? Correlated? May inform approximations we make in the future
- Stochastic optimization
 - Minimize expected loss via BFGS, gradient descent, BO, ...
- Optimal experimental design
- How important are Bmad structural errors (biases, missing physics, ...?)
 - Keep adding things to Bmad? Some other approach
- Sequential / realtime decision making?
 - Amortized myopic optimization (precompute policy: optimal solution conditional on state)
 - Reinforcement learning (accounting for future decisions in present actions)
 - RL with UQ: all state variables become belief states (infinite-dimensional distributions)