Beam Envelope Studies Update

Preet Mann, Wenliang (Bill) Li Mississippi State University

Beam Simulator:

- Full Documentation: <u>GitHub</u>
 - > Requirements
 - Python 3.x
 - ROOT (Python bindings must be available, e.g., import ROOT should work)

Features:

- Generate synthetic particle events with randomized momenta and vertices
- Save events in HepMC v3 ASCII format
- Parse and visualize vertex and momentum distributions using ROOT for testing
- > Fit distributions
- ➤ Interactive plotting interface
- Customizable to different kinematic ranges and particle types, this generated event file can be used in beam envelope studies
- Generated hepmc file can be used in conjunction w. ddsim or other simulations provided geometry

Running Procedure:

- python3 envelope_b.py
 - Generates an output .hepmc file

Optionally the following parameters can be adjusted...

within def __init__:

 $self.min\ mom = 3.0 \ \# \ Lower\ limit\ of\ momentum\ - 3\ G/eV$ $self.max\ mom = 10.0 \ \# \ Upper\ limit\ of\ momentum\ - 10\ G/eV$ $self.square\ side = 300.0 \ \# \ Limits\ vertex\ region$

within def main():

 $\underline{output_file} = "flat_particle_ascii.hepmc" \# Edit name of output file$ $\underline{n_events} = 10000 \# Edit \ the \ number \ of \ events$

The number of events should additionally be reflected in <u>def_init_(self, output_file, n_events=10000):</u>

```
Options:

1. Pion

2. Kaon

3. Proton

4. Mixed Generation

5. Deuteron (D2 nucleus)

6. Alpha (He4 nucleus)

Enter your choice: 4

Wrote 10000 events to flat_particle_ascii.hepmc

Plot Options:

1. Unfitted Distributions

2. Fitted Distributions

0. Exit

Enter your choice: 0

Exiting...
```

Application/Next Steps:

The program provides the initial events to be used in upcoming beam envelope study, where the program output can be used in a full simulation to see how the beam evolves with fields and other variables.

Moving forward:

- Refining details regarding kinematics and momentum
- QOL improvements/comments to delineate editable sections
- ➤ Introducing physics parameters to begin beam envelope studies