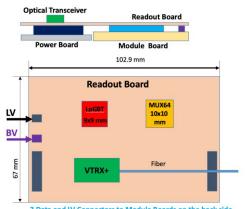

Status of the AC-LGAD Readout Chain PED

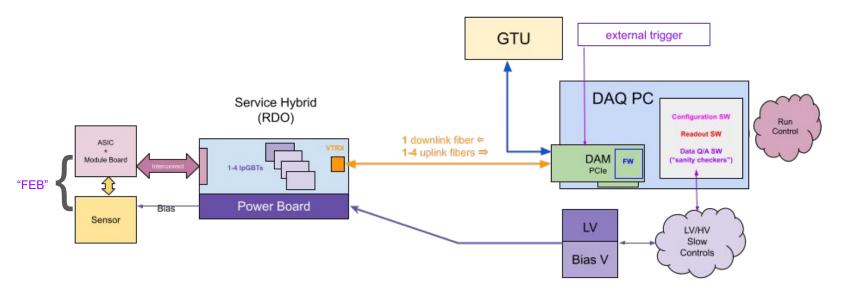

Oct 2, 2025

Tonko Ljubicic for Rice University, BNL, LBNL

Electronics Components Overview, using FTOF as an example

ETL FTOF Readout Board Prototype

LpGBT: 10Gbps Rad Hard Transceiver ASIC VTRX+: Rad Hard 4xTx (10Gbps) + 1Rx (2.56Gbps) MUX64: Rad Hard 64-channel analog multiplexor



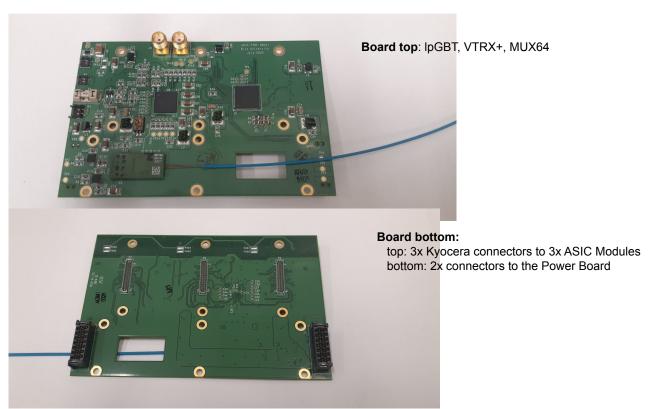
3 Data and LV Connectors to Module Boards on the back side 3 HV Connectors to Module Boards on the back side

Notes:

- 1) Power Board is mounted on the Cooling Manifold as is the Module (ASIC) Board for cooling efficiency
- 2) All connections to the outside must go through the RB which is on the outside: fiber, LV but also Bias Voltage (BV)
- 3) These are small boards, ≤ 10 cm per side

What's the AC-LGAD Readout Chain

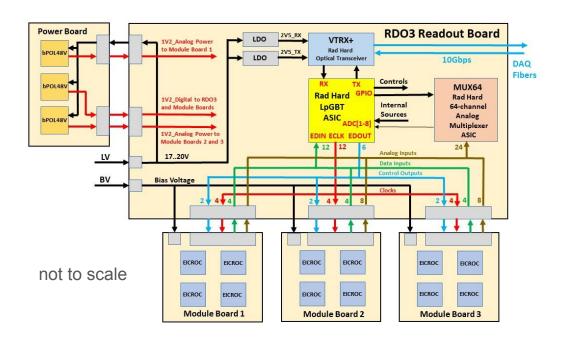
Deliverables of this PED


- AC-LGAD Readout Board RBv1 (Completed)
 - IpGBT & VTRX+ based
 - o can interface to up to 12 EICROC1[2] ASICs
 - o serves FTOF, Roman Pots, B0 and other pixel AC-LGAD friends
 - also serves as a V0 prototype for Barrel TOF
 - where it is expected to house 4 lpGBTs and to interface to FCFD ASICs
- Forward TOF Power Board PBv1 (Completed)
 - CERN bPOL48 as the main converter
 - serves also as V0 prototype for other AC-LGAD detectors
- Full Streaming Readout Chain over PCIe into DAQ using the Alinx AXAU15 DAM (Completed Stage 1 & 2)
 - equipped with an external trigger input, if required (completed) [Note: EICROC1 is still a triggered ASIC]
 - o equipped with William's GTU adaptor for immediate interfacing to the future GTU (in progress)
 - o can be used by any IpGBT-based detector
- Full measurement and compensation of jitter and other sources of clock drift (in progress)
 - very important for precise timing!
 - see later slides

External Boards to this PED

- William's GTU & Fiber Interface FMC card
 - for the AXAU15
 - obtained 2 pieces from JLab (thanks William & Dave!)
 - even without an actual GTU it enables a realistic clock propagation scheme
- EICROC1 Testboard (with an EICROC1)
 - via the EICROC1 Team
 - schematics obtained (thanks Kinann & Christophe!)
 - we plan to make a small adaptor card from the FMC connector of the Testboard to our Kyocera connector on RBv1 \rightarrow in progress

More on this later


Deliverable 1: Readout Board RBv1

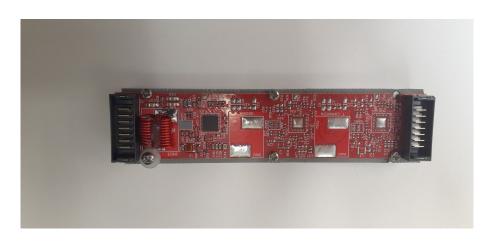
Board size 103 x 67 mm (small...)

6 boards assembled all 6 boards tested

Powering Scheme Reminder

Note: Power Board ("PB"; leftmost) requires 3x bPOL48s

2 for analog 1.2V to the ASICs

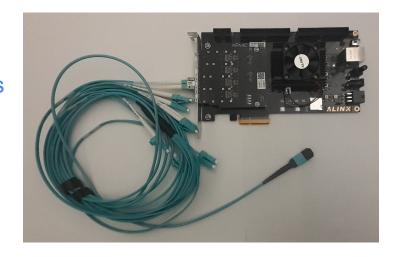

1 for digital 1.2V to the ASICs as well as the RB

We can power 12 EICROCs with this V1 flavor of the PB

Deliverable 2: PBv1 Board

Boards at BNL

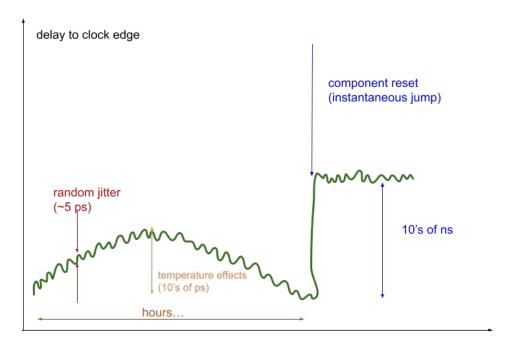
- we assembled 1 with 1 "analog"-channel **bPOL48** and tested the load
- we assembled 1 with 1 "digital"-channel bPOL48 and tested with our RBv1 at Rice [photos] – works and fits nicely!
- we assembled 1 with all 3 bPOL48 channels will be used for further testing & characterization at BNL
- NOTE: we only had 5 (five!) bPOL48s and have considerable problems in obtaining more due to EPIC-CERN interaction – HELP needed from the Project with small prototyping quantities (10 or so...)



Cooling fins above act as the detector's "Cooling Manifold" (slide 2)


FELIX-lite DAM (purchased)

- we are using Alinx AXAU15 with a Xilinx Ultrascale+ Artix
 - available, cheap but similar in functionality to the FELIX
 - 8 possible fiber links
 - PCIe x4 PC interface
 - or USB
 - William's GTU FMC interface was tested with it
- FW sends and receives data to IpGBT at 10 Gbs
 - configures lpGBT
 - reads Slow Controls data (ADCs)
 - writes Control values (GPIO)
 - o also to an ETROC "demonstrator" ASIC
- Streaming Readout into PC memory
 - o software, device drivers, etc complete
 - typical timeslice ~1 ms



ASIC Interface (EICROC1)

- We plan to produce a small adapter card from our Kyocera connector on RBv1 to the future EICROC1 Testboard's FMC
 - We obtained the schematics and are checking if this can be done
 - so far we are iterating with Omega on this subject but don't expect show-stoppers
- We are also considering making our own <u>ASIC Module</u> <u>Board</u> "MBv1" as we expect to have it in our FTOF design [ORNL] (see ⇒)
 - o this is under discussion...
 - ...but outside the scope of this PED
- We plan to be 100% ready for ASIC integration and testing once the EICROC1 is available [end of CY2025 or early CY2026?]
- Note that we have a "generic" connector to an ASIC Module so we can adapt other designs where the ASIC is further away via cables of flex PCBs
 - Roman Pots, B0, BTOF...
 - ...but outside of this PED

Critical Clock Delays – Measurement & Control

time

Sources of jitter and clock drift

- Random Jitter (the "proper" jitter)
 - 20-30 ps AC-LGAD sensor
 - ~10 ps ASIC internals + TDC resolution (estimated)
 - ~10 ps external clock to the ASIC
 - ~5 ps from lpGBT (measured but we will re-measure using our RBv1)
 - ~2-5 ps due to transmission medium/cable (guess)
 - longer cables increase iitter
 - this needs a more careful study for detectors with cables from the RDO to the ASIC depends on the particular cable & length
- Slow Variation (~hours)
 - CERN showed 10's of ps variation due to temperature changes of the (long!) fibers
 - CERN developed the "TCLink" firmware for Xilinx devices which measures and automatically compensates with <10ps variation ⇒ something we will use and are currently implementing in the AXAU15 board
 - NB: we don't expect significant (>2 °C) changes in temperature in EPIC (IMHO), however we would really like to have it continuously tracked and measured regardless
- Reset Jumps
 - Non-deterministic change of clock propagation delays at times of component reset (at startup, during auto-recoveries, etc)
 - Mostly in the fiber transceivers due to their internal nature (very manufacturer specific)
 - Coarse multiples of the 320 MHz parallel data clock
 - Fine multiples of the 10 GHz serial clock
 - Coarse
 - Observed with our Xilinx's MGTs ⇒ <10ish internal 320 MHz clock cycles change reset-to-reset
 - Easy to observe using the internal IpGBT loopback
 - even more so with the ASIC internal loopback (expected to be implemented in EICROC, CALOROC, etc)
 - Jumps are quantized to a few different values Solution: keep resetting the interface and stop when the most common value is observed
 - - this value becomes a configuration parameter of this specific link
 - Fine
- need TCLink's machinery to manipulate the "TX buffer status" in progress

Measurement plans

(Reminder: fiber parallel data clock is 315.2 MHz, same as the EICROC1 clock)

- 1. basic jitter measurement on the output of lpGBT (ECLKxx) which goes to the ASICs (315.2 MHz)
 - a. RBv1 is equipped with SMA connectors for this purpose
 - b. expect 4-8 ps
- 2. slow clock drift (temperature dependant) using a long 100m fiber
 - a. difference of the clock edges of the input clock to the DAM vs the lpGBT ECLK
 - i. we'll start with day vs night
 - b. with and without TCLink compensation
- 3. reset jumps aka difference of the edge of the DAM input clock and the lpGBT ECLK after board resets
 - a. reset RBv1, reset DAM, reset both ⇒ repeat many times, measure
 - b. with and without compensation

Mostly to be done at BNL with a fast modern scope

Future, not in PED: FELIX

- ...as stated, we plan to complete our full streaming readout chain using AXAU15
 - o ...and use it for beam tests, lab tests etc due to its convenience
- However, we would like to start with a real FELIX DAM
 - large amount of FW exists (a large group of CERN people involved)
 - we need to see what is available in the core FELIX FW and check if it meets our requirements
 - we (Rice) would like to do this in concert with the DAQ Group
 - what's the plan of the DAQ Group?
 - and what is the FELIX availability?

Summary

- We manufactured or received all components of the Readout Chain
 - apart from an ASIC module
- Firmware on the AXAU15 card in good shape
 - interface to IpGBT complete
 - streaming readout into the PC memory complete
 - software components in good progress
 - monitoring, slow controls and run-control in development
 - file formats and readers in progress
 - ASIC readout tested with ETROC module borrowed from CMS
 - Realistic GTU-like clocking in progress
 - using William's FMC card
- Jitter and clock stability measurements will start soon

Waiting for the EICROC1 ASIC!