
Barrel Imaging Calorimeter – presented to PDR2025

BIC Scintillating Fibers

Zisis Papandreou
University of Regina
on behalf of the BIC DSC

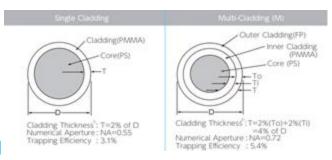
TIC Meeting October 6, 2025

Fiber Highlights

ePl

- Attenuated signals from showers reach both ends
 - Pb/SciFi layers probe shower radially (essentially a 3D profile but AstroPix gives 3D much more precisely)
 - Read both ends with light-guides and SiPMs enclosed in end-of-sector box (ESB)
 - Shower position extracted from both ends' TOA (in addition to AstroPix position information)
- First Article fibers testing at U Regina
 - Attenuation length, light output, spectral response, diameter
- Shifting to ANL
 - Testing procedures and QA/QC now at ANL
 - 4 Fiber test stations now at ANL

Fiber Tender Specifications

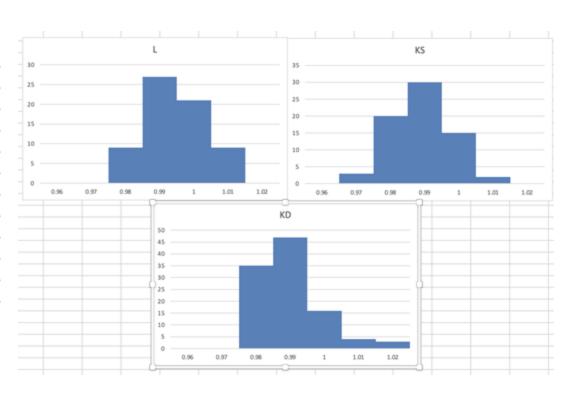

- A. Light yield: the average response to a Sr-90 source shall be greater than 3.5 photoelectrons measured using a bialkali photomultiplier tube 200 cm from the source, and the opposite end blackened (assessed via methods mutually acceptable to the BSA and Contractor). SiPM
- **B.** Diameter mean value and variation shall be 1.00 ± 0.01 mm, RMS ≤ 0.02 mm. Calliper
- C. Attenuation length for blue light > 4m. Photodiode
- **D.** Batch to batch or lot to lot variation of light yield <15%.
- **E.** Batch to batch or lot to lot variation of attenuation length <10%.
- F. Emission spectrum in blue-green light Spectrophotometer
- **G.** Scintillation decay time <3ns
- H. Total length 4900 km
- I. Delivery method in canes. Length of fibers 4.55 meters +/- 0.01m. Tape measure

Vendors submitted 100 fibers of 3 types: 2 single- and 1 double-clad

Task and Timelines

Workflow at U Regina

KD – Kuraray double-clad, **KS** – Kuraray single-clad **JS** – BCAL Kuraray double-clad, **L** – Luxium single-clad


- O Mar 20: 285 fibers arrive at Regina from ANL (95 KD, 95 KS, 95 L)
- O Mar 21, 24: Polishing station: 135 fibers double-ended, 15 single-ended
- Mar 25: Spectrophotometer station: 8 fibers (2 of each + 2 JS), 35 points; no grease
- Mar 26: 45 Caliper: diameter measurements at 75, 150, 225, 300, 375cm
- Mar 26-28: Photodiode station: 30 fibers (10 of each) + 5 JS
- Measured 12-400 cm, every 10cm to 300cm, then every 20cm, 35 points; optical grease
 - Opposite end polished and blackened
 - Bid/Tender Assessment: single-exp fit 100-300cm
- O Apr-May: Npe station: two 3x3mm^2 SiPMs on fiber end and for 90Sr trigger; no grease
- O June-July:
 - All fibers completed on photodiode, end-treatment, repeatability cross checks
 - Single- & double-exp analysis
 - Sample of fibers measured with spectrophotometer
 - Fibers returned to ANL; technical report to Zenodo this fall

Diameter Measurements

Digital Caliper

Number o	f fibers at e	each diame	ter:	
Diameter	L	KS	KD	
0.96	0	0	0	
0.97	0	3	0	
0.98	9	20	35	
0.99	27	30	47	
1	21	15	16	
1.01	9	2	4	
1.02	0	0	3	
	66	70	105	

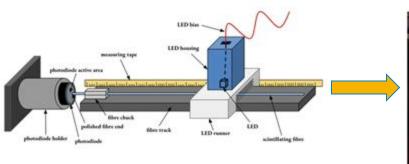
All fibers met diameter spec

Polishing Station: Polishing

135 fibers both ends, 15 fibers initially only one end

unpolished

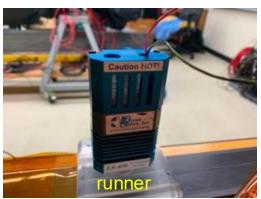
polished



polished

Photodiode Station: Setup

285 fibers tested; 15 with special end treatment



LED 370 nm; slides on acrylic runner

Optical grease at contact

Photodiode Station: λ and light output

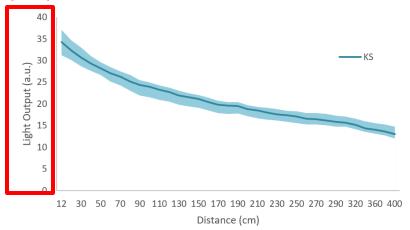
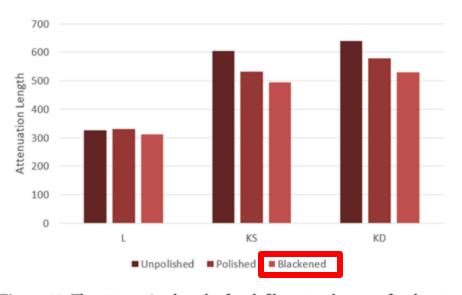


Table 2Average Fit Parameters

Attenuation Length

	$I(x) = I_0 \left(\alpha e^{-\frac{x}{\lambda_1}} + (1 - \alpha)e^{-\frac{x}{\lambda_2}}\right)$				$I(x) = I_0 e^{-\frac{x}{\lambda}} (>100 \text{ cm})$		
Fibre	I_0	α	λ_1	λ_2	I_0	λ	
L	21.5	0.4	44.1	343.2	13.9	315.5	
KS	36.3	0.3	55.5	574.3	8.1	508.0	
KD	39.8	0.3	139.7	750.7	36.2	539.1	

Light output (a.u.)



Solid line shows the average of all measured fibers; shaded line shows the spread

Kuraray KS selected; met spec for both λ and light output

Attenuation Length: End Treatment

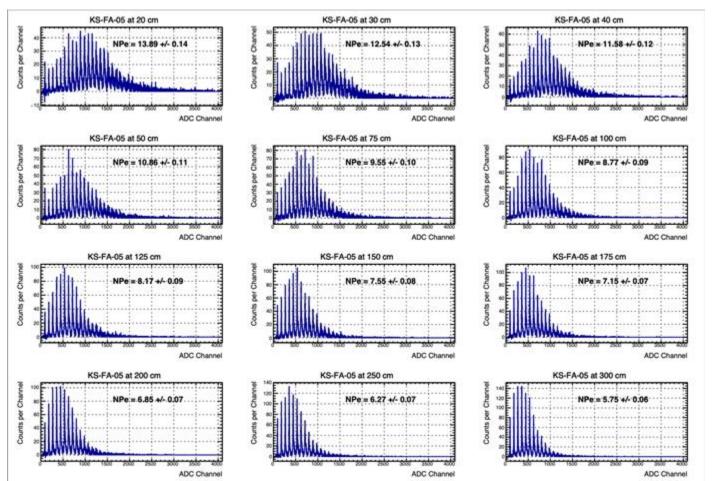
Figure 10. The attenuation length of each fibre at each stage of end treatment. The attenuation length comes from Eq. 2, from distances > 100 cm. As is visible, the attenuation length monotonically decreases as the fibre is polished and then blackened.

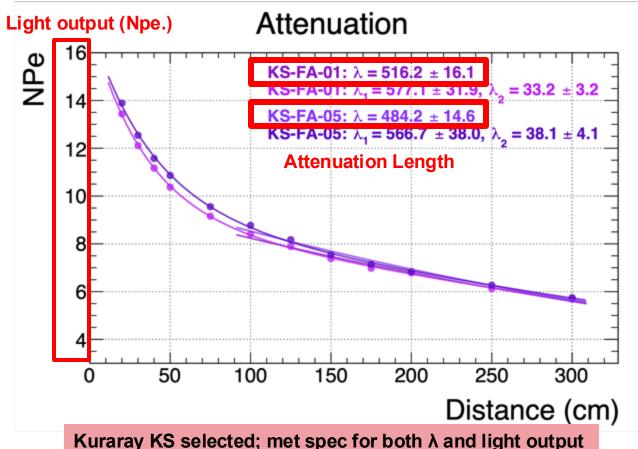
Blackened end emulates fiber reponse in BIC

Npe Station: Setup

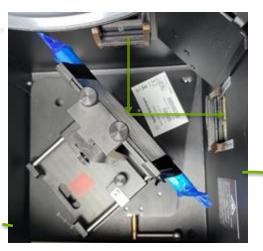
еРІ

⁹⁰Sr source

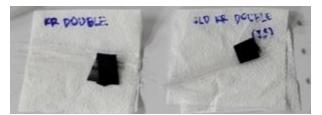

- Complete darkness
- Two 3x3mm² SiPMs
- Fiber along plank
- Coincidence with SiPM
- ⁹⁰Sr with trigger scintillator
- Scan ⁹⁰Sr from 20-300cm
- Fit spectrum extract Npe

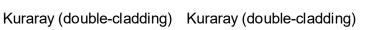

Npe Station: Peaks

Npe Station: λ and light output

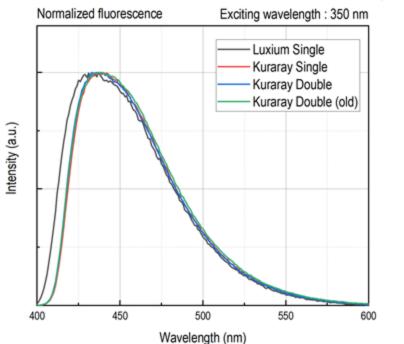

Fiber Emission Measurement

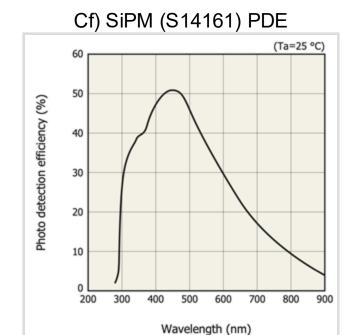
Wavelength Response – KNU (**)





~150 fibers bundled for measurement




Kuraray (single-cladding) Luxium (single-cladding)

Fiber Emission Spectra

 Fiber emission spectra match well with SiPM PDE, with no significant dependence on manufacturer or cladding type.

Fiber spectra met wavelength spec

QC for Fibers

Procedures

- QC Procedure from BCAL; updated for BIC by U Regina
- Evaluate (ca. 1%?) random fibers to meet BIC specifications
- Spectral shape, diameter uniformity, long attenuation length, light output
- Fiber usage in the build: batch variation does not affect build

ePIC-BIC Scintillating Fiber Specifications Assessment Protocol

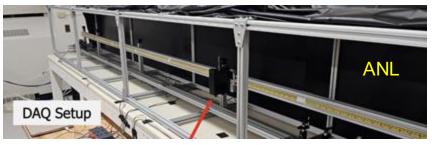
Tegan Beattie, Aram Teymurazyan, Zisis Papandreou Department of Physics, University of Regina, Regina, SK S4S 0A2 Canada April 2025

A description of the handling and assessment protocols for first article scintillating fibers for the BIC at the University of R

Recommendation: finalize QA/QC procedures before the start of full component production.

Response: completed

EH&S for Fibers


Procedures

- Safety standards and documentation from BCAL → 2025 code
- Fibers:
 - Scintillating fibers (polystyrene) are flammable.
 - The total mass of fibers for BIC is 3.9 tons. Adequate safety measures are needed to store this mass of fibers.
 - Fibers will be received, stored and processed into PbSciFi matrices at ANL.
 GLUEX EXPERIMENT DOCUMENT 1573-v4
 - Fibre Attenuation Length Measurement Procedures (FibreProcedures-AttenLen_v2.pdf, 71.3 kB)
 - <u>Fibre Number of Photoelectron Measurement Procedures</u> (FibreProcedures-Photoelectrons_v2.pdf, 89.7 kB)
 - <u>Lead Handling and Swaging Procedures</u> (LeadHandling-Instructions_v2.pdf, 108.2 kB)
 - Quality Assurance Plan (QAPlan_v4.pdf, 227.4 kB)
 - Risk Assessment/Safety (Construction-RiskAssessment_v1.pdf, 73.6 kB)
 - <u>Updated Construction Manual (Draft)</u> (Updated Construction Manual (Draft).doc, 145.2 MB)

Summary

- Extensively tested KD, KS and L (first article) and JS (old GlueX)
 - Diameters: all fibers met spec
 - Spectrum: all fibers met spec
 - Fiber comparison for λ and light output
 - Photodiode: λ_{KS}>4m
 - Npe: λ_{KS} >4m (all λ shift somewhat to larger numbers)
 - Technical report in progress
- Kuraray SCSF-78 contract expected to be signed in October.
- Fiber QC/Safety: extensive testing QA/QC protocols; sent to ANL
- Setup and procedures established at the production site ANL

