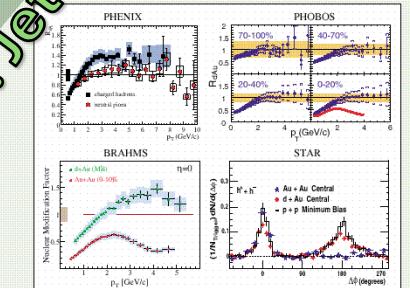

QCD Phase diagram


25 years of STAR: sQGP revealed, the QCD map redrawn, antimatter discovered, and QCD probed from vorticity to gluon imaging.

Anti-matter and CPT tests

QGP: Perfect fluid and partonic collectivity

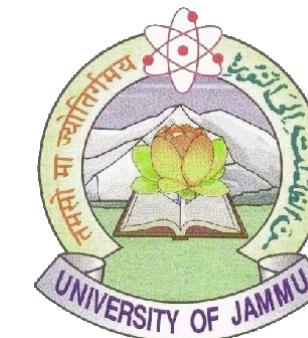
Indian Participation in STAR

NISER, Jatni

IISER Berhampur

University of Rajasthan, Jaipur

Indian Institute of Technology, Bombay


IISER Tirupati

IIT Patna

University of Jammu, Jammu

VECC, Kolkata

IOP, Bhubaneswar

NIT Durgapur

Panjab University, Chandigarh

Bedanga Mohanty
NISER, INDIA, 17 Dec 2025

LPU, Punjab

Indian Participation in STAR

It all formally started

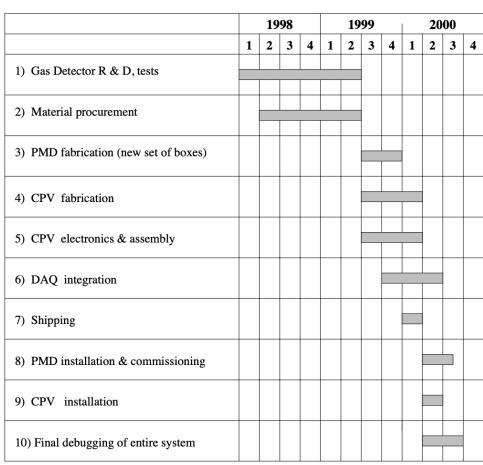
¹In continuation
of the proposal
Submitted in
July 1994 and in
October 1996

²Only permanent
members are list.
In addition, there
are several
graduate students

PHOTON MULTIPLICITY MEASUREMENTS IN THE STAR DETECTOR AT RHIC

A Proposal for Upgrade of STAR¹

Bhubaneswar - Calcutta - Chandigarh - Jaipur - Jammu -
Mumbai


VECC/EXP/QGP/97-04
STARNOTEΔ#310ΔOct. 1997

Science goals

It is proposed to integrate the WA98 preshower Photon Multiplicity Detector (PMD) with some modifications into the STAR experiment to study photon production and isospin fluctuations in nucleus-nucleus collisions at RHIC energy in order to investigate the formation of Quark-Gluon Plasma (QGP), the dynamics of hadronization process, the characteristics of the hot hadron gas and to search for Disoriented Chiral Condensates (DCCs). The PMD, to be mounted at 7 m from vertex, will have fine granularity and almost full azimuthal coverage in the pseudo-rapidity region $2.0 \leq \eta \leq 3.8$. Simulation results are presented to describe the effectiveness of the proposed detector to measure photon multiplicity on event-by-event basis in the actual environment of the STAR experiment. Background problems caused by material in front of the PMD are also investigated and the efforts to reduce the background by implementing a charged particle veto are described. Coupled with the Forward TPC measuring charged particles, the PMD should become an ideal tool to search for any physical processes leading to charge-neutral fluctuations. In the given environment one can achieve photon counting efficiency of better than 65% and the associated background from all sources amount to less than 35%. The event-to-event fluctuation of the measured N_γ/N_{ch} ratio will be better than 10%. We show that the PMD can provide reasonable selection on low p_T photons suitable for DCC searches and also estimates of global transverse electromagnetic energy.

Timeline

Pert Chart for STAR PMD fabrication & installation

Due to some geo-political reasons we waited till .. **2001**
First contacts – John Harris, Tim Hallman, Hans Georg Ritter, Bill Christe and Pavel Neveski

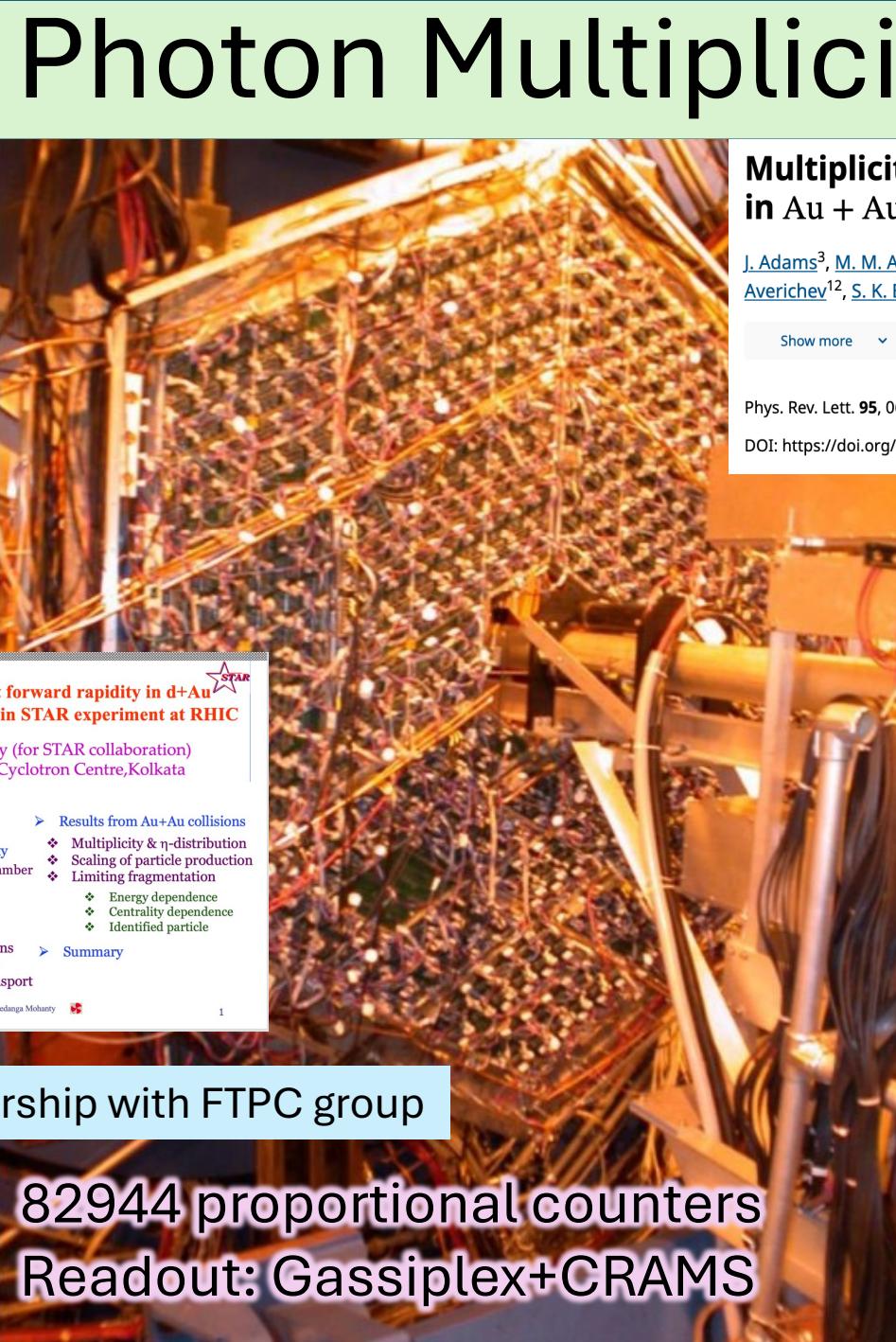
The Photon Multiplicity Detector (PMD) was finally **installed** in the STAR experiment at Brookhaven National Laboratory (BNL) in **2003**. The device was used to detect forward inclusive photons during data collection and was **operational until 2011**.

List of Collaborators²

Institute of Physics, Bhubaneswar
D.P. Mahapatra, S.C. Phatak

Variable Energy Cyclotron Centre, Calcutta
S. Chattopadhyay, M.R. Dutta Mazumdar, Murthy S. Ganti, T.K. Nayak, S. Ramanarain, Bikash Sinha, M.D. Trivedi, Y.P. Viyogi³

Panjab University, Chandigarh
M.M. Aggarwal, V.S. Bhatia


University of Rajasthan, Jaipur
K.B. Bhalla, V. Kumar, R. Raniwala, S. Raniwala

University of Jammu, Jammu
P.V.K.S. Baba, S.K. Badyal, N.K. Rao, S.S. Sambyal

Indian Institute of Technology, Mumbai
R. Varma

6 to 73

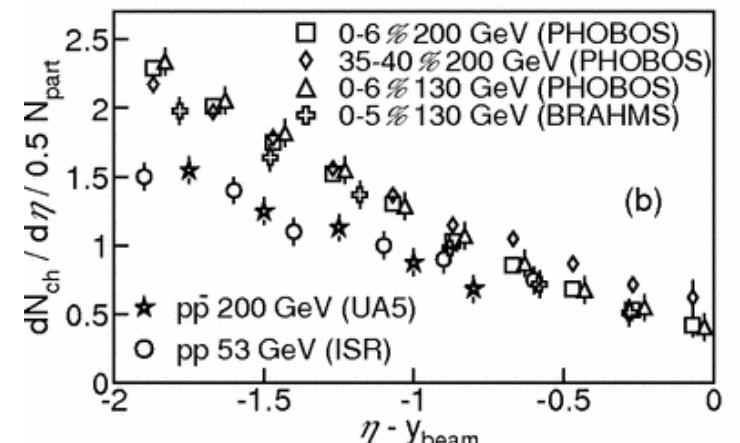
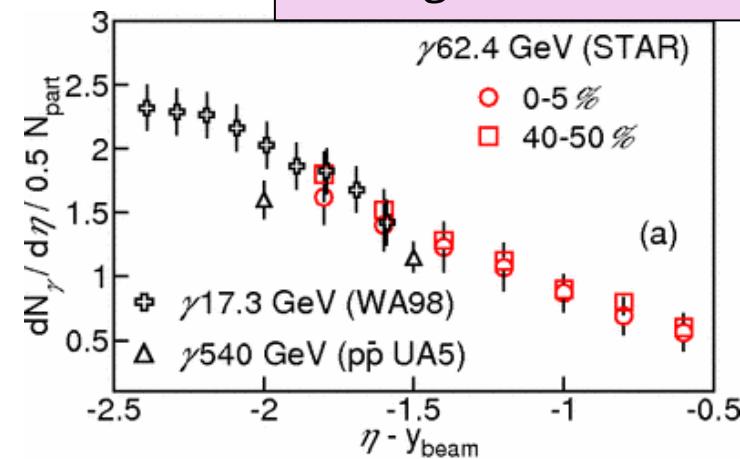
Photon Multiplicity Detector 4/15

Fruitful partnership with FTPC group

82944 proportional counters Readout: Gassiplex+CRAMS

Phys. Rev. Lett. 95 (2005) 062301
Phys. Rev. C 73 (2006) 034906
Nucl. Phys. A 832 (2010) 134-147
Phys. Rev. C 91 (2015) 3, 034905
Nucl. Instrum. Meth. A 499 (2003)

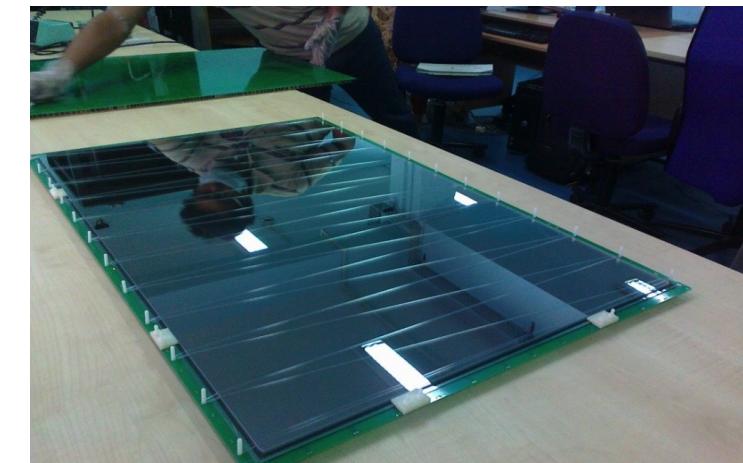
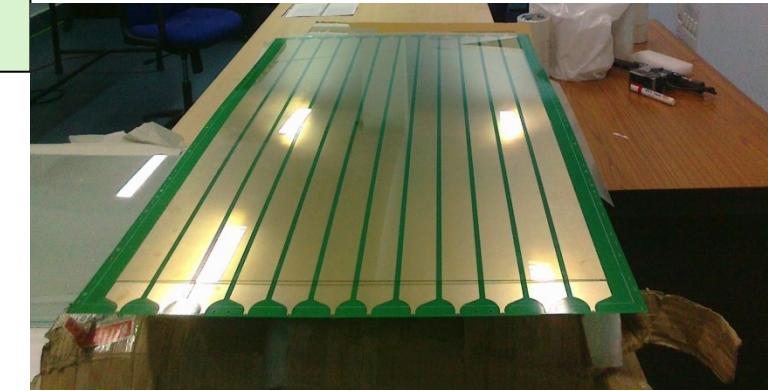
Multiplicity and Pseudorapidity Distributions of Photons in Au + Au Collisions at $\sqrt{s_{NN}} = 62.4$ GeV



J. Adams³, M. M. Aggarwal²⁹, Z. Ahmed⁴³, J. Amonett²⁰, B. D. Anderson²⁰, D. Arkhipkin¹³, G. S. Averichev¹², S. K. Badyal¹⁹, Y. Bai²⁷ *et al.* (STAR Collaboration)

Show more

Phys. Rev. Lett. 95, 062301 – Published 5 August, 2005

DOI: <https://doi.org/10.1103/PhysRevLett.95.062301>



*First identified
particle longitudinal
scaling at RHIC*

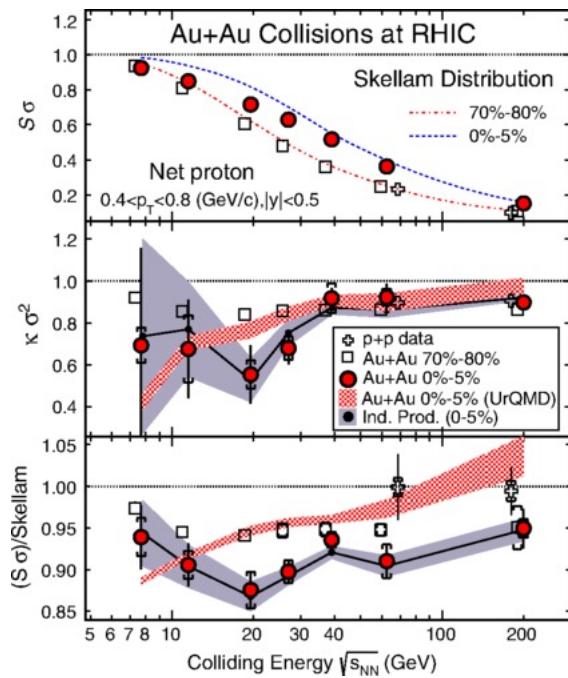
Muon Telescope Detector

Contribution: ~10% (12 out of 120)
modules of the MRPC modules in
STAR-MTD.

First batch delivered in June 2013

Pick-up strip

Graphite coated
outer glass

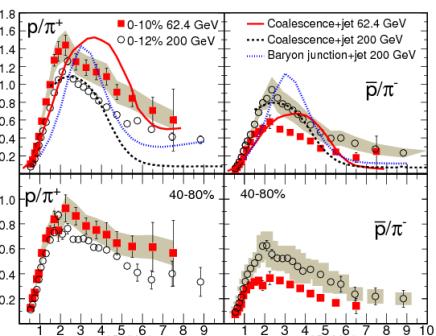

250 μ m Fishing
lines

Major Science Contributions

(Selected list, jointly with others)

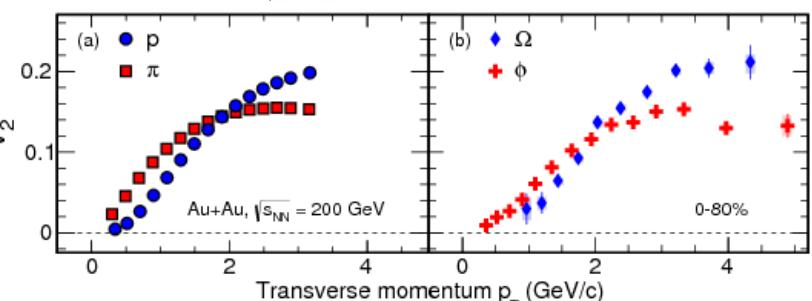
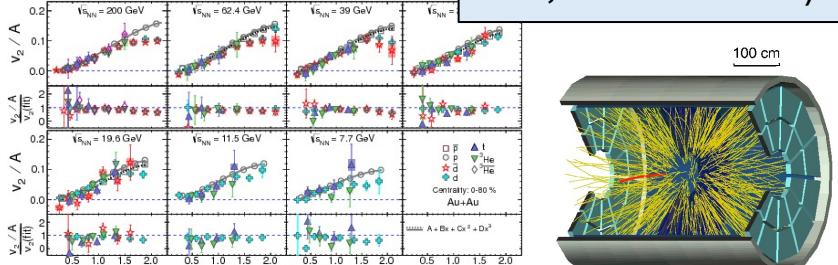
Critical Point Search

(Phys. Rev. Lett. 112 (2014) 032302; 597 citations)

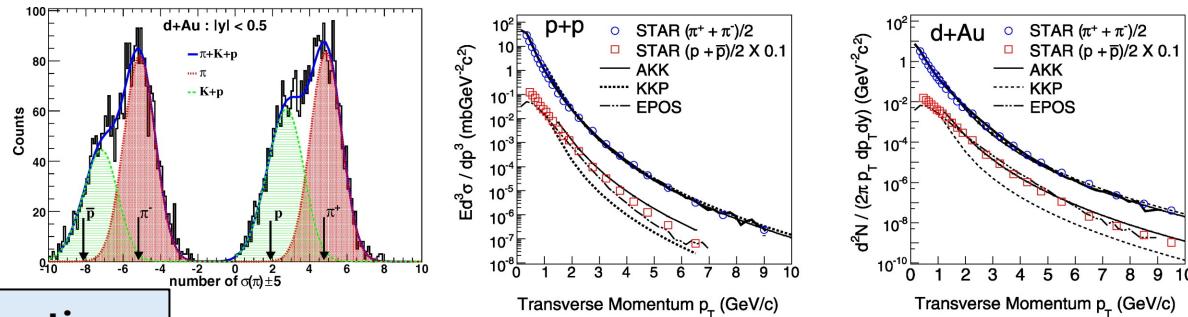

Defining the observable to making measurements

Partonic Collectivity

(Phys. Rev. Lett. 116 (2016) 062301, 110 citations)



Baryon-to-meson enhancement

(Physics Letters B 655 (2007) 104-113; 244 citations)



Nuclei production

(Phys. Rev. C 94 (2016) 3, 034908, 103 citations;
 Nature 473 (2011) 353, 219 citations)

Relativistic rise of dE/dx measured in TPC to identify hadrons at **high p_T** and test of **pQCD**
 (Phys. Lett. B 637 (2006) 161-169, 368 citations)

Thanks to STAR and collaborators for the opportunity

Bulk properties and Freeze-out dynamics

(Phys. Rev. C 96 (2017) 4, 044904; 767 citations)

PhD students and impact from/in India

Selected list here

40

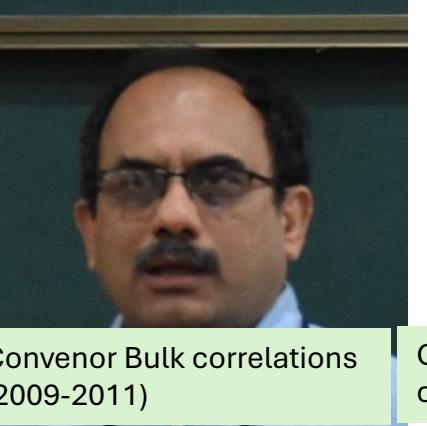
Driving scientific program
in our field in India

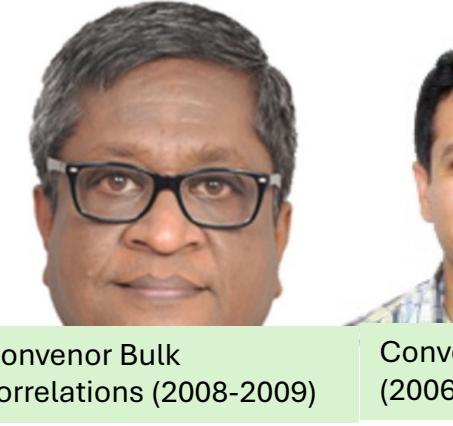
Name (Area, Year)	Currently (Experiment)	7/15
Mriganka M. Mondal (jets, 2011)	Faculty at LPU, Panjab (STAR, EPIC)	
Navneet K. Pruthi (v_3 , 2011)	Faculty at DAV College, Chandigarh (STAR)	
Chitrasen Jena (nuclei, 2012)	Faculty at IISER Tirupati (STAR, EPIC)	
Prabhat Kumar Pujahari (rho-meson, 2012)	Faculty at IIT Madras (CMS, EPIC)	
Nihar Ranjan Sahoo (fluctuations, 2013)	Faculty at IISER Tirupati (STAR)	
Prithwish Tribedy (DCC, 2014)	Faculty at Brookhaven National Laboratory, USA (STAR)	
Md. Nasim (flow, 2014)	Faculty at IISER Berhampur (STAR, EPIC)	
Rihan Haque (nuclei flow, 2015)	Faculty at Government College, WB	
Sabita Das (spectra, 2015)	Faculty at K.K.S Womens College, Balasore (teaching)	
Amal Sarkar (fluc, 2015)	Faculty at IIT Mandi (CMS, EPIC)	
Arghya Chatterjee (fluc, 2019)	Faculty at NIT Durgapur (STAR)	

Name (Area, Year)	Currently (Experiment)
Anand Kumar Dubey (Detector, 2004)	Faculty at VECC, Kolkata (CBM)
Supriya Das (K/pi fluctuations, 2005)	Faculty at Bose Institute (CBM, ALICE)
Dipak Kumar Mishra (Resonance, 2006)	Faculty at BARC, Mumbai (PHENIX and CMS)
Raghunath Sahoo (E_T 2007)	Faculty at IIT Indore (ALICE)
Pawan K. Netrakanti (PMD, Spectra, 2008)	Faculty at BARC, Mumbai (CMS and Neutrino)
Debasish Das (HBT, 2008)	Faculty at SINP, Kolkata (ALICE)
Sunil M. Dogra (DCC, 2009)	Faculty at Kyungpook National University (CMS)
Lokesh Kumar (spectra and p_T fluc, 2010)	Faculty at Panjab University (STAR and ALICE)
Sadhana Dash (resonance, 2010)	Faculty at IIT Bombay (ALICE, EPIC)

Scientific leadership roles (selected)

Deputy Spokesperson
(2011-2014)
Physics Analysis
Coordinator (2008-2010)


Physics Working Group Convenors


Convenor Light flavour spectra (2020-2022)

Convenor Light flavour spectra (2011-2016)

Convenor Bulk correlations (2009-2011)

Convenor Bulk correlations (2008-2009)

Convenor Spectra WG (2006-2008)

PMD
project
leader

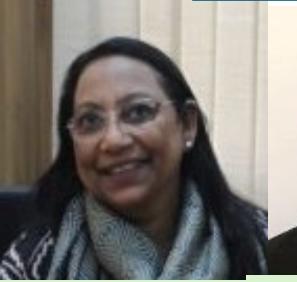
GPC Member (Paper committee)

~85

Primary Author

~51

Non overlapping : GPC: ~ 21 % of STAR paper and ~ 13% of STAR published paper


PAC – 10 hours time difference; 7800 miles

- New PWG structure
- Publication Policy – STAR Notes and codes in CVS
- Decadal Plan.
- BES Program.
- First submissions to Science and Nature journals.
- 3-QM's : 2008, 2009, 2011.
- W-spin asymmetry

STAR Talks Committee Members

(2020-2022)

(2018-2020)

(2013-2015)

(2011-2013)

(2008-2010)

(2006-2008)

Trigger and QA Boards

Member Trigger Board (2008-2010)
Member BUR Committee (2008-2010)

STAR-QA board (2020-2022)

Role in Beam Energy Scan Program @ STAR-RHIC

STAR: Beam User Request 2008:

“Start the energy scan program within $\text{root}(s_{NN}) = 39 - 6.1 \text{ GeV}$. This is to search for the QCD phase boundary and the possible critical point in the diagram.”

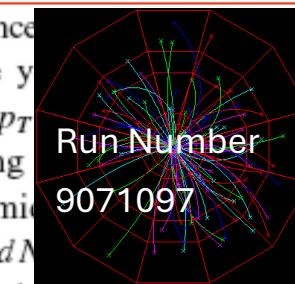
Nuclear & Particle Physics Program Advisory Committee – **STAR proposal NOT accepted**.

(A) “...the experimental capabilities, in particular at sub-injection energies (i.e. below the normal AGS injection energy), are quite different for the two experiments, due to overall acceptance and triggering issues.”

--- **Demonstrate STAR (designed for 200 GeV) can run at low energy**

(B) “To date, however, the PAC has not seen a compelling presentation of the key observables and their potential physics impact for this measurement program.observables need to be identified, their measurements simulated and luminosity requirements established.” -- **Establish a proper observable**

PHYSICAL REVIEW C 81, 024911 (2010)

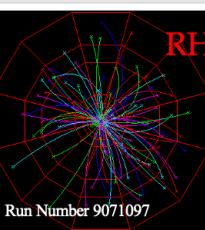
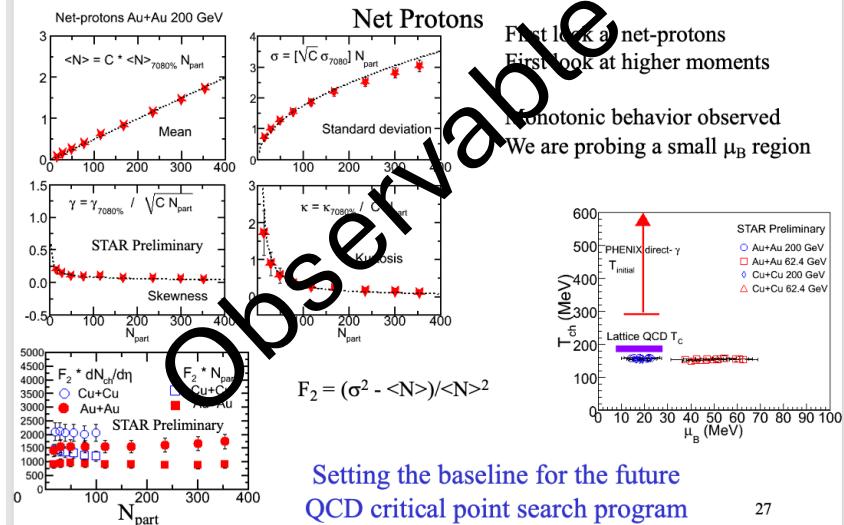

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au + Au collisions at $\sqrt{s_{NN}} = 9.2 \text{ GeV}$

We present the first measurements of identified hadron production, azimuthal anisotropy, and interferometry from Au + Au collisions below the nominal injection energy at the BNL Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at RHIC (STAR) at $\sqrt{s_{NN}} = 9.2 \text{ GeV}$ from a test run of the collider in the year 2007. The results on multiplicity density dN/dy in rapidity y , average transverse momentum $\langle p_T \rangle$, and Hanbury-Brown-Twiss (HBT) radii are consistent with the corresponding fixed-target experiments. Directed flow measurements are presented for both mid-rapidity and rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy and particle ratios are discussed. These results also demonstrate that the capabilities of the STAR detector, although optimized for $\sqrt{s_{NN}} = 200 \text{ GeV}$, are suitable for the proposed QCD critical-point search and exploration of the QCD phase diagram at RHIC.

PRL 105, 022302 (2010)

PHYSICAL REVIEW LETTERS

week ending
9 JULY 2010

Higher Moments of Net Proton Multiplicity Distributions at RHIC

at μ_B values $\leq 200 \text{ MeV}$ in the QCD phase plane. The RHIC beam energy ($100 < \mu_B < 550 \text{ MeV}$) scan will look for nonmonotonic variation of $\kappa\sigma^2$ for net protons as a function of $\sqrt{s_{NN}}$ to locate the CP.

417 citations

Experimental Results on Higher Moments

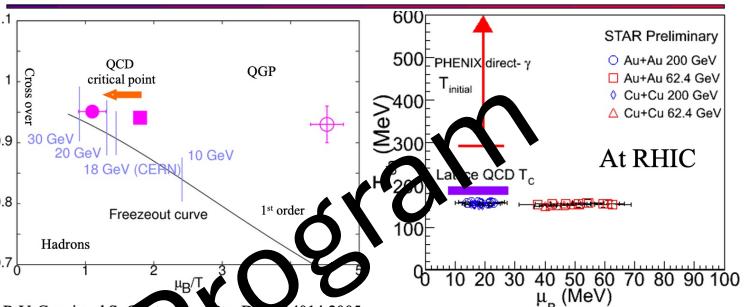
RHIC Critical Point Search - Future Plans

Experiments have proposed the following plan

May a good idea to start with energies common to both experiments

Beam Energy (GeV)	PHENIX	STAR	Event count	Realistic time scales (days)
5.0			100K	7
6.1		✓	1M	23
8.6		✓	2M	20
12.3		✓	5M	15
17.3		✓	10M	12
22.4	✓			
27.0	✓	✓	10M	7
39.0	✓	✓	10M	6
62.4	✓			

First paper from RHIC was based on ~ few thousand events; PHOBOS : PRL 85 (2000) 3100

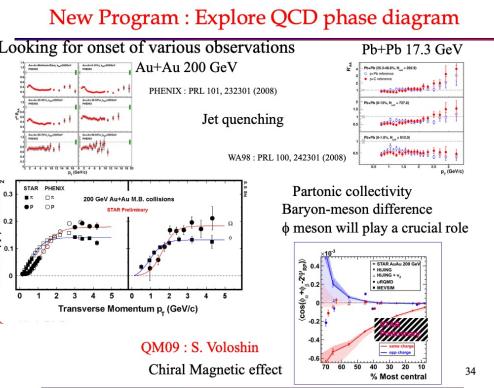

"The measurements shown here represent the first step towards the development of a full picture of the dynamical evolution of nucleus-nucleus collisions at RHIC energies."

The results shown at QM2009 from RHIC low energy test running :

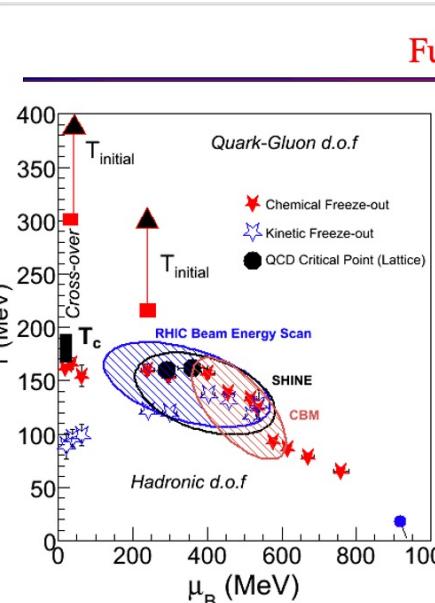
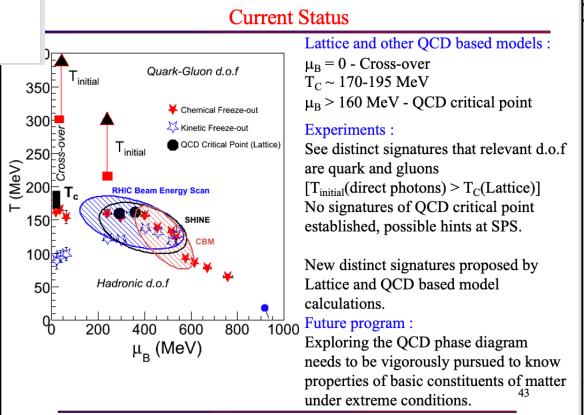
"These measurements shown here could become the first step towards a detailed study of the QCD phase diagram at RHIC"

40

New Program : Look for QCD critical point


Need a beam energy scan program - but fixed target experiments were there ..

The real voyage of discovery consists not in seeking new lands but seeing with new eyes.



-- Marcel Proust, French novelist, 1871-1922.

35

QM2009 Summary talk (March-April 2009)

Gathered the community support for BES program

Future

With the starting of LHC ($\mu_B \sim 0$) - we have unique opportunity to understand the properties of matter governed by quark-gluon degrees of freedom at unprecedented initial temperatures achieved in the collisions.

To make the QCD phase diagram a reality equal attention needs to be given to high baryon density region.

These two complementary programs will make our understanding clearer on

- ✓ characterization of quark-gluon matter at varying baryon density
- ✓ finding the QCD critical point and
- ✓ locating the QCD phase boundary

44

Beam Energy Scan Program required

Beam Energy Scan Program @ STAR-RHIC

Experimental Study of the QCD Phase Diagram and Search for the Critical Point: Selected Arguments for the Run-10 Beam Energy Scan at RHIC. The STAR Collaboration (B. I. Abelev et al.); **Jun. 4, 2009**

"We present an overview of the main ideas that have emerged from discussions within STAR for the Beam Energy Scan (BES)."

15-16, June 2009, Nuclear & Particle Physics Program Advisory Committee **recommends for Run 10 BES**

..... 12 weeks for a beam energy scan (BES) with Au-Au collisions..... is justified by the strong attention given in the RHIC community to the potential for a landmark observation in this energy range..... In arriving at its recommendations for the BES, the PAC has given priority to careful measurements of the energy dependence of fluctuation and correlation observables associated with the CEP search,.....

STAR Results from Beam Energy Scan Program at RHIC

Bedanga Mohanty
(For the STAR Collaboration)
VECC, Kolkata

STAR

Outline:

- BES program at RHIC (2010 - 2011)
- Freeze-out conditions
- Partonic vs. hadronic degrees of freedom
- Search for the signatures of the phase boundary
- Search for the signatures of the critical point
- Summary

QM2009: Summary Talk - "Exploring the QCD phase diagram needs to be vigorously pursued to know properties of basic constituents of matter under extreme conditions. To make the QCD phase diagram a reality equal attention needs to be given to high baryon density region."

QM2011

QM2011

Bedanga Mohanty

Summary

Successful RHIC BES Program from Collider/Accelerator and experimental side

New observations:

- Identified hadron production & freeze-out parameters reveals high net-baryon density at these energies. Effect on several observables seen.
- Hadronic interactions at low energy. Small ϕ meson v_2 at 11.5 GeV. Disappearance of dynamical charge correlations
- Interesting trends for observables related to softening of EOS. Non-monotonic variation of freeze-out eccentricity. Change in sign of proton v_1 with energy and centrality.
- Large acceptance & excellent PID allows for fluctuations measurements. Deviations from HRG and Poisson statistics. Is being used to study structure of the QCD phase diagram.

Need to complete the first phase of BES program

QM2011

Bedanga Mohanty

20

Section	Observables	Collision Energies (GeV)					
		5	7.7	11.5	17.3	27	39
A1	n_0 scaling $\pi/K/p/\Lambda$ ($m_1 - m_0$)/ $n < 2$ GeV	8.5	6	5	5	4.5	4.5
A1	ϕ/Ω up to $p_T/n_0 = 2$ GeV/c		56	25	18	13	12
A2	R_{CP} up to $p_T \sim 4.5$ GeV/c (at 17.3)				15	33	24
A3	5.5 (at 27) & 6 GeV/c (at 39)			27	13	8	6
A4	untriggered ridge correlations				5	5	5
	parity violation						
B1	v_2 (up to ~ 1.5 GeV/c)	0.3	0.2	0.1	0.1	0.1	0.1
B1	v_1	0.5	0.5	0.5	0.5	0.5	0.5
B2	Azimuthally sensitive HBT	4	4	3.5	3.5	3	3
B3	PID fluctuations (K/π)	1	1	1	1	1	1
B3	net-proton kurtosis	5	5	5	5	5	5
B3	differential corr & fluct vs. centrality	5	5	5	5	5	5
	integrated p_T fluct (7 fluct)						

Millions of Events Needed

See[1]: charge-photon fluctuations (DCC)
kink/step/horn
 v_2 fluctuations
HBT (R_L , R_S / R_S)
Jet/ridge 2 < trig < 4, 1 < assoc < trig
Jet/ridge 3 < trig < 6, 1.5 < assoc < trig
Baryon-Strangeness cor (hypernuc)
Forward π^+ yield (rapidity scaling)
Forw. $\gamma(\pi^0)$ yield (rapidity scaling)
Long-range forward-backward corr.
Other PID fluctuations (esp. K/p)
Particle ratios (many examples)
 p_T spectra
Prod. of light nuclei & antinuclei
Yields of species & stat. model fits

Table 2: Observables and statistics needed for the first BES run. The observables in the yellow-shaded area relate to the search for a critical point in the QCD phase diagram at higher RHIC energies (see section A). The observables in the blue-shaded area, search for a phase transition or critical point (see section B), are numbered in boldface above. All are within reach (nominally require no more than 1.5 times the proposed statistics) in the first BES run plan as set out in Table 1. The remaining numbers (not boldface) will need to wait for higher statistics in a subsequent run. The white part above is briefly introduced in this document, and is explained in detail in Ref. [1].

First results from STAR BES presented in 2011 Quark Matter, Annecy, France

https://webcast.in2p3.fr/video/star_results_from_the_beam_energy_scan_program

Success of BES program (some measures)

Kept STAR physics running and community active for another decade

Topic	Paper	Citations	Topic	Paper	Citations
Directed, Elliptic and Triangular Flow and flow fluctuations	<i>Phys.Rev.C</i> 86 (2012) 054908 <i>Phys.Rev.C</i> 88 (2013) 014902 <i>Phys.Rev.Lett.</i> 110 (2013) 14, 142301 <i>Phys.Rev.Lett.</i> 112 (2014) 16, 162301 <i>Phys.Rev.C</i> 94 (2016) 3, 034908 <i>Phys.Rev.C</i> 93 (2016) 1, 014907 <i>Phys.Rev.Lett.</i> 116 (2016) 11, 112302 <i>Phys.Rev.C</i> 98 (2018) 3, 034918 <i>Phys.Rev.Lett.</i> 120 (2018) 6, 062301 <i>Phys.Lett.B</i> 784 (2018) 26-32 <i>Phys.Rev.C</i> 102 (2020) 4, 044906 <i>Phys.Rev.Lett.</i> 129 (2022) 25, 252301 <i>Phys.Lett.B</i> 839 (2023) 137755 <i>Phys.Lett.B</i> 862 (2025) 139245 <i>Phys.Rev.C</i> 111 (2025) 1, 014906	215 244 135 313 103 111 83 58 136 15 22 19 11 11 3	Multi-strange and Nuclei	<i>Phys.Rev.C</i> 93 (2016) 2, 021903 <i>Phys.Rev.C</i> 97 (2018) 5, 054909 <i>Phys.Rev.C</i> 102 (2020) 3, 034909 <i>Phys.Rev.C</i> 99 (2019) 6, 064905 <i>Phys.Rev.C</i> 107 (2023) 2, 024912 <i>Phys.Rev.Lett.</i> 130 (2023) 202301 <i>Phys.Lett.B</i> 855 (2024) 138560	75 91 159 130 14 73 6
Fluctuations	<i>Phys.Rev.Lett.</i> 112 (2014) 032302 <i>Phys.Rev.Lett.</i> 113 (2014) 092301 <i>Phys.Rev.C</i> 92 (2015) 2, 021901 <i>Phys.Lett.B</i> 785 (2018) 551-560 <i>Phys.Rev.C</i> 100 (2019) 1, 014902, <i>Phys.Rev.C</i> 102 (2020) 2, 024903 <i>Phys.Rev.Lett.</i> 126 (2021) 9, 092301, <i>Phys.Rev.C</i> 104 (2021) 2, 024902 <i>Phys.Rev.Lett.</i> 127 (2021) 26, 262301 <i>Phys.Rev.Lett.</i> 130 (2023) 8, 082301, <i>Phys.Rev.Lett.</i> 135 (2025) 14, 142301	597 396 34 168 58 30 340 192 67 54 40	Chirality and Polarization	<i>Phys.Rev.Lett.</i> 113 (2014) 052302 <i>Phys.Rev.Lett.</i> 114 (2015) 25, 252302 <i>Nature</i> 548 (2017) 62-65 <i>Phys. Rev. C</i> 108 (2023) 14908 <i>Nature</i> 614 (2023) 7947, 244-248 <i>Phys.Rev.Lett.</i> 126 (2021) 16, 162301, <i>Phys.Lett.B</i> 839 (2023) 137779 <i>Phys.Rev.C</i> 108 (2023) 1, 014910 <i>Phys.Rev.C</i> 108 (2023) 1, 014909	266 147 962 12 171 123 26 41 3
HBT and correlations	<i>Phys.Rev.C</i> 92 (2015) 1, 014904 <i>Phys.Rev.C</i> 94 (2016) 2, 024909 <i>Phys.Rev.C</i> 101 (2020) 1, 014916 <i>Phys.Lett.B</i> 845 (2023) 138165	153 30 15 28	Electron and di-electron and Heavy Flavour	<i>Phys.Rev.C</i> 95 (2017) 3, 034907 <i>Phys.Lett.B</i> 750 (2015) 64-71 <i>Phys.Lett.B</i> 771 (2017) 13-20 <i>Phys. Rev. C</i> 107 (2023) L061901 <i>Phys.Lett.B</i> 844 (2023) 138071 <i>Nature Commun.</i> 16 (2025) 1, 9098	74 71 68 6 27
			Spectra, resonance and R_{CP}	<i>Phys.Rev.C</i> 96 (2017) 4, 044904 <i>Phys.Rev.Lett.</i> 121 (2018) 3, 032301 <i>Phys.Rev.C</i> 101 (2020) 2, 024905 <i>Phys.Rev.C</i> 107 (2023) 3, 034907	767 77 59 19

PRL ~ 14; Nature group ~ 3; Citations ~ 7098

STAR: A truly *international* experiment with one of the finest detectors at an exceptional facility (RHIC)

Deep scientific discoveries

1. Recreated early-universe temperature and matter conditions in the laboratory.
2. Formed the Quark–Gluon Plasma, measured its properties — e.g., viscosity, vorticity — at unprecedented values.
3. Made foundational contributions to mapping the QCD phase diagram.
4. Discovered never-before-seen anti-matter nuclei.
5. Explored novel QCD phenomena across a remarkable range of possibilities.
6. Enabled the development of relativistic magneto-spin hydrodynamics through precision measurements.
7. Found that gluons provide a significant share of the proton's spin.

25 years, countless collisions, one extraordinary legacy

1. We turned microseconds after the Big Bang into measurable reality.
2. We found antimatter born anew.
3. We mapped a phase space once thought unreachable.
4. We tested ideas that may yet change textbooks.

"I am reminded of a famous remark of Napoleon. Whenever he was presented with a young man for military advancement, he invariably asked the question: Is he lucky?

This was by no means a casual inquiry. The important quality for which he was seeking was does this man put himself in a situation where he can be lucky? If you fail to put yourself in a situation where it is possible to have good fortune then you cannot have any success; if you do, you may.

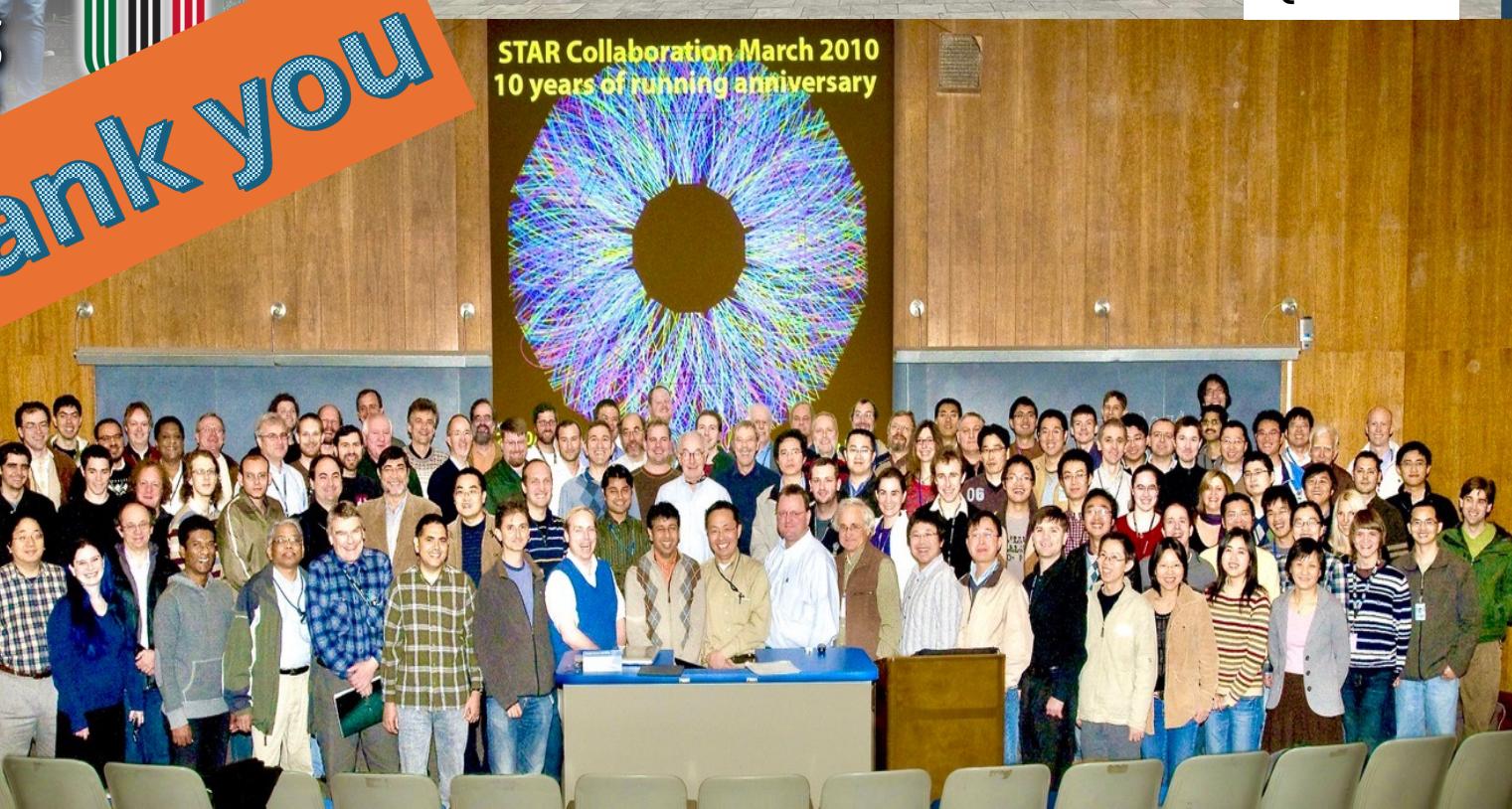
-- Powell in after dinner talk at St. Cergue after-may."

STAR has been lucky — because its people have been creative. Express our gratitude for the privilege of being part of this extraordinary chapter.

STAR Collaboration Meeting
19-23 August 2019, AGH UST, Kraków, Poland

QM2006

Truly an international enterprise



Thank you

The STAR experiment

at the Relativistic Heavy Ion Collider, Brookhaven National Laboratory

