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How do quarks and gluons combine to form the spin of the proton?




V2 =V2AY + AG+ Ly + L




SLAC : First € + p DIS experiments

E-80 and E-130

* Electron beams with energy 6-22 GeV and 50-80% polarization

e Butanol targets with ~60% proton polarization

* Electrons were detected in spectrometers located at End Station A.
* Mott and Moller polarimeters measure beam pol at source and ESA
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Allows for the first time the measurement
of electron scattering rates, as a function
of energy and scattering angle, when
beam and target helicities are aligned (A)
vs anti-aligned (4)!




SLAC : First e + p DIS experiments .

Aj = D(4; +n4y) =~ DA,

Quark Parton Model :

510 =5 ) 20 ()

q+q

Af(x) = f)" = f(x)~

X = momentum
fraction carried by
struck quark

E-80 Phys. Rev. Lett. 37 (1976) 1261
E-130 Phys. Rev. Lett. 51 (1983) 1135



EMC @ CERN : First fi + p DIS experiments

100-200 GeV Muon beams with energy 100-200 GeV
Pushes to higher Q? and lower x.
Muon polarization ~80% from PV pion decays

A s et s

Intensity of muon beam was low and large transverse width l ‘ ;7\-“-.';. : "“*’*z,m
Need a large target to maximize statistics -> 2m long i " o\ r..p SSa-
ammonia target | , ,,'..'_.__ sl = B\ | ‘ ‘;"f S
Target split in half and polarized in opposite directions to » = ————— rff N
remove need to normalize to incoming beam luminosity ‘ e = ' 3"_5.
Muons were detected in downstream spectrometers 7\— 2 ; — , R ', 7 : . i
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The plot that launched the “spin-crisis”

Conclusion was that quarks carry very
little of the spin of the proton ->
14 +9 + 21%!

The Ellis-Jaffe Sum Rule predicts a
value for the integral of g,(x) over all x
assuming:

1) No gluon contribution to the spin
of the proton

2) No strange sea contribution to spin
of the proton.

Confirmed quickly by SMC @ CERN and
additional SLAC experiments.

This generated a lot of discussion in
the high energy physics community.
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EMC Collaboration Nucl. Phys. B328, 1 (1989)



2030

2020

2010

2000

1990

1980

SLAC E142/143/154/155
CERN SMC
CERN EMC
SLAC E-130

SLAC E-80



2030

2020

2010

2000

1990

1980

Antiproton
accumu lator

ring

Main ring

SLAC E142/143/154/155
FNAL E581/704

CERN SMC

CERN EMC

SLAC E-130

SILAC E-0

Praton Linac / P
PRt
---- ”
== | B SRR L l,.
P P
. - . ¢
eutrino area g . A/./ P
~
Muoh area S "
‘h‘ .4"
Proton area .’.f‘ ‘:\._._’.".’7.-
800 GaV % 2 et e
- - P
. . .
TEYATROM ring Protons /,;’ ~ .. -~
'\. 'n"\
-
."h\ “.
- -
.’ \- .
ﬁ r \. ~
~ .
A .\. ‘\‘
\_;\
L ]
MP : Spin parame ter measuremen t (E704)
MC : CP winlation measurement using K-on a
M : direct photon measuremen t VIl’fUQl
ME : high-mass lepton pair measurement SOUI‘CC p

Fermilab Spin Physics Facility

* 800 GeV protons from the Tevatron impinge a beryllium target

« A+ Aareproduced and decay into protons (p) + m~ (™)

* Proton spin is tagged via momentum and position reconstruction from hodoscopes
in the beamline.

* Proton polarization flipped with spin rotators

* Result is 200 GeV protons beams with 45% polarization

* FNAL E851/E704 scattered polarized beam off LH2 and polarized pentanol target.



First measurement of A, and A, in high energy pp collisions

PLB 261 (1991), 197-200 PRL 61 (1988) 1918
I | | l | | | PLB 264 (1991) 462-466
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Where does the
remainder of the
proton spin reside?

The quark helicity
distribution is small

— how small? Is it
zero?

Gluon helicity? Strange
guarks? Partonic
orbital angular
momentum?

Can this newly minted
theory of Quantum
Chromodynamics
explain this

phenomena? What is the

mechanism behind
large meson

transverse single

5 : -
RHIC+STAR LOI Sspin asymmetries:
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B Abstract Colliding beams of 70% polarized protons atupto /s = 500 GeV, with
high luminosity, L =2 x 1032 cm™2 sec™!, will represent a new and unique laboratory
for studying the proton. RHIC-Spin will be the first polarized-proton collider and
will be capable of copious production of jets, directly produced photons, and # and
Z bosons. Features will include direct and precise measurements of the polarization
of the gluons and of %, d, u, and d quarks in a polarized proton. Parity violation
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at collider energies for the first time. These qualitatively new measurements can be
expected to deepen our understanding of the structure of matter and of the strong
interaction.
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will be capable of copious production of jets, directly produced photons, and # and
Z bosons. Features will include direct and precise measurements of the polarization

of the gluons and of %, d, u, and d quarks in a polarized proton. Parity violation

searches at the Fermilab Tevatron. Transverse spin will explore transversity for the

first time, as well as quark-gluon correlations in the proton. Spin dependence of the
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at collider energies for the first time. These qualitatively new measurements can be
expected to deepen our understanding of the structure of matter and of the strong
interaction.
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AG, Au, Au, Ad, Ad
via jet, pion and
W/Z production

First exploration
of transversity
and quark-gluon
correlations
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RELATIVISTIC HEAVY ION COLLIDER

§PHENIX A
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« Commissioning of OPPIS, snakes, rotators SPHENIX

* Operation modes developments

+ Improvement of injectors, beam controls
and polarimeters
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EIE'I':‘II;I ESSI\%NOA' Siberian snakes rotate proton spin vector by m,
CERN EMC preserving spin tune through energy ramp.
Derbenev and Kondratanko in 1970. i,
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Beam energies range from 30-250 GeV

with average polarization of 50-65%
SLAC E-80



AG in pp collisions @ RHIC

D AL Ay XAC 4y o X D
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* Interpretation of charged and neutral pion
A, requires additional uncertainties 0.2
associated with fragmentation functions

 Jetsdo notrely on FF ... nevertheless they Solid: ~ ¥5=200 GeV

Dotted: Ys=500 GeV

are not as simple as they seem. i N T T T TN P T T D T
0 0.05 0.1 0.15 0.2 0.25 0.2 0.35 0.4 0.45 0.5
Jet x_ (=2pT!'J§

\\ Anti-kT R=0.6
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0.1

Jets? At+/s = 200 GeV? ... from a bunch of fixed target people?



First jet A,

1) First significant A, combined 2003+2004
2) First longitudinal pp runs <P,.,.,> = 30/45%
3) Midpoint cone algorithm (pre-anti-kT!)
4) R =0.4 dueto half of barrel + TPC
5) High tower trigger results in strong pT
dependent bias
Emf— (@
ET - R s = e
0.8F .
: o of 0"
0.6F ﬂpﬁa 5.0<p;<6.2 GeVic wi 14.1<p< 17.3 GeVic
E LE ® HT STAR Data i —— HT Monte Carlo
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0.05 0.15 0.25 0.35 0.05 0.15 0.25 0.35
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Ruled out maximal case of Ag but need more
status to distinguish Ag = 0and Ag =-g.
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Phys. Rev. Lett. 97, 252001



Precision Mid-rapidity Jets
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Phys. Rev. Lett. 100, 232003

Mormalized Jet Yield

2005 <P,,.> = 52%

Introduced Jet Patch Triggers
Still midpoint cone R=0.4

1
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Phys. Rev. Lett. 100, 232003
2005 Midpoint Cone R=0.4

Phys. Rev. D 86, 032006
2006 Midpoint R =0.7

Precision Mid-rapidity Jets
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2009 jets -> 1%t evidence of significant AG

007 STAR 2009

0.06 p+p — Jet+ X
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Phys. Rev. Lett. 115, 092002



Inclusive Jet A,

Mid-rapidity Jets @ 510 GeV

0.02 - STAR 2012 @ 510 GeV
: pp —Jet+ X

L. Anti-k,R=0.5 |11<0.9
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Phys. Rev. D 105, 092011




Mid-rapidity Dijets

Inclusive jets sample broad range of
parton momentum fraction x.

This limits constraints on the functional
form of Ag(x) and increases

uncertainty at lower x.

Dijets allow for reconstruction of the
initial parton x; and x, at leading order.
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Mid-rapidity Dijets

Normalized Yield

Normalized Yield

0.9 19-0 <M < 23.0 GeVic® Sign(n1) = Sign(nz)
0.8 8.4<pT< 11.7 GeVic

..... Dijet x_ Sign(n) = Sign(n,)

0.8 Inclusive x (/20) | < 0.8

0.6 : I's = 200 GeV

Phys. Rev. D 95, 071103
Phys. Rev. D 103, L091103
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AG in pp collisions @ RHIC
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Global QCD Analyses : AG T T T T T T

|« DSSV08 ‘
| ¢ DSSV14 i
* Inclusive DIS fixed target data do not cover a | HSDSSVI14+RHIC giozz) ]

wide enough kinematic range to really constrain [ O0%CL. fmit contours) - |

the gluon helicity distribution. [ DSSV Preliminary |

* Inclusive jet and pion A, results from RHIC USRS

have steadily narrowed the contribution from < I

gluon for x > 0.05. 5 -

=t ;

* Dijetand prompt photon A, show clearly that 0 IRt Sl

AG is positive. i | |
* Large uncertainties remain for the low-x gluons I 4
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* High x gluons appear to contribute 40% to a - Q=10 GeV ? T
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2030 What about quark helicity?
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What about quark helicity?
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Global Analysis : Helicity Distributions

* Total Quark Contribution to
proton 25% at Q%2 = 10 GeV

* Precision is driven by existing
DIS + SIDS data

e Quark helicities evolve slowly
with Q2 -> lots of room for
additional contributions from
strange quarks, gluons,
orbital angular momentum....
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ccessing polarized sea with W/
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How does it all add up?

Look at most recent NNLO analysis by DSSV24

* RHIC data definitively shows that the gluon
contribution to the spin puzzle is positive..

* 60% of proton spin in region x > 0.01 comes from
gluons. Error bars grow substantially x < 0.001.

e 20% of the proton spin originates with the quarks
(@ Q%=10 GeV?) Note this is consistent with
original EMCresult 14 +£9 4+ 21%!

* To date, only quantitative estimate of OAM comes
from the remainder of the gluon and quark
helicity distributions

V2 =T2AY + AG+ Ly + L

DSSV24 Phys. Rev. Lett. 133, 151901
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Postcard credit : CERN

Thank you!
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Four experimental programs & 25 vears later
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Also, semi-inclusive DIS

Allows for flavor tagging and extraction of
information about individual quark helicity
distributions. Requires information about

associated fragmentation functions.
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Need NLO theoretical framework to
interpret data and extract the helicity

Global QCD Analysis : inclusive + SIDIS

distributions,

DSSV
PRL 101 (2008) 072001

PRD 80 (2009) 034030
PRL 113 (2014) 012001
PRD 100 (2019) 114027

JAM

PRD 93 (2016) 074005
PRL 119 (2017) 132001
PRD 104 (2021) L031501

NNPDF *only inclusive
NPB 874 (2013) 36
NPB 887 (2014) 276

arXiv: 1510.04248
arXiv : 1702.05077
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Sivers Effect in DIJET Production
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Jet Flavor “TaGGING”

Tag associated jets to enhance the purities
of u-quarks and d-quarks separately.

STAR 2012+2015 p-p 200 GeV

+7 & -z beam combined

dijet P> 6 GeV/c & 4 GeV/e
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https://arxiv.org/abs/2305.10359
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