

200 MeV H- Linac RF Amplifier Upgrade Plan

U.S. DEPARTMENT of ENERGY

Freddy Severino

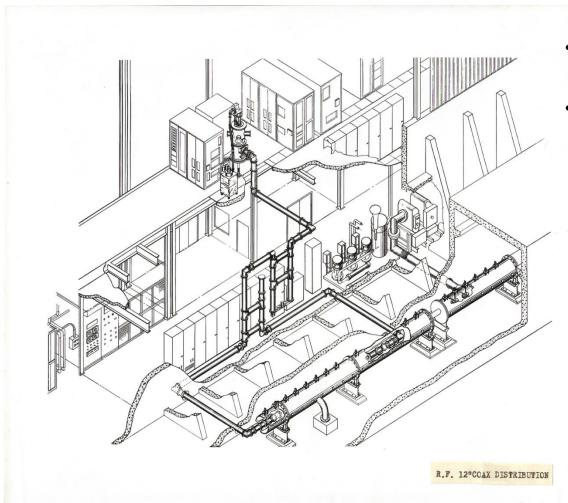
Head, RF Systems, Collider-Accelerator Department

C-AD Machine Advisory Committee December 2025

Presentation Outline

- Introduction
- Upgrade Justification
- Project Scope
- Upgrade Options Considered 40-Year Operations View
- Basis of Proposed Upgrade Path (Cost, Risks, and Vendor Estimates)
- Cost and Schedule for Demonstrator Unit
- Summary

Introduction


- The LINAC (200 MeV Linear Accelerator) has been in operation since November 1970, marking over five decades of continuous use in critical scientific research.
- The LINAC RF system consists of 9 RF Tanks, each powered by a 5 MW-pulsed RF power amplifier, with a 200 kW driver amplifier and 5 kW predriver.
 - These systems operate at a resonant frequency of 201.25 MHz and support key operations including BLIP, NSRL, RHIC, and future EIC operations for polarized proton beams.
- Over the years, critical upgrades have enhanced LINAC's reliability, but the system is still heavily reliant on legacy RF tube technology.
- **Urgency for Upgrade**: The current RF amplifier system, which uses **vacuum tubes**, faces **supply risks** and **decreasing reliability**. As the system ages, there is an **urgent need** to convert to **solid-state technology** to ensure the continued safe, efficient, and reliable operation of the LINAC.

Complete RF System Driver, 5 MW PA, Modulator

RF Systems View

- The LINAC RF system consists of 9 RF Tanks, each powered by a 5 MW pulsed RF power amplifier.
- Coax run from the PA through the phase shifter, 3 dB hybrid power divider, and feeding two loops in each tank (repeated for all 9 tanks)

Drift Tubes

Upgrade Justification- RF Tube Supply Risk

Aging Technology & Growing Supply Risk

- LINAC relies on two high-power RF tubes (4616 & 7835) for beam acceleration
- Originally developed in the 1950s for now-defunct systems, these tubes are now sole-sourced with uncertain long-term availability
- Modulator tubes (LPT32 & 8618) are also sole-source, with rebuilds as the only supply option

Tube Supply Status & Risks

- Inventory: ~6 years (BLIP @ 60 mA) / ~10 years (EIC/NSRL @ 400 μA))
- **Supply Risk**: Vendors may exit the business in **3–4 years** without large orders. Warranty issues if manufacturer exits the business.
- Quality concerns:
 - Shorter lifespans & declining reliability (new/rebuilt tubes)
 - Skilled labor loss affecting manufacturing consistency

Conclusion: Without intervention, LINAC operations face **significant risk** due to dwindling tube supply, unreliable rebuilds, and potential obsolescence of critical components.

RCA 7835 Power Triode, 7 MW Peak Power

Project Scope

Scope: This project will initiate the transition of the LINAC RF Power Amplifiers to solid-state technology by upgrading one of nine high-power amplifiers currently utilizing legacy vacuum tubes (types 4616 and 7835). The scope includes developing technical specifications and a Statement of Work (SOW), evaluating vendor proposals, and selecting a solid-state solution based on performance metrics and system compatibility. One amplifier unit will be procured, factory-tested, and installed in LINAC Tank 9 to replace the existing tube-based amplifier. This upgrade will serve as a proof-of-concept, informing the future replacement strategy for the remaining eight RF amplifiers.

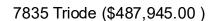
Out of Scope:

Replacement of the remaining LINAC RF amplifier units.
 (Future phases will convert 6 of 8 tanks; 2 low-power tanks remain tube-based.)

Assumptions:

- Existing infrastructure can support solid-state amplifier integration with minor adjustments.
- Technical experts are available for reviews and vendor evaluations.
- The selected vendor will meet all contractual technical and delivery requirements.

Upgrade Options - 40-years of Operations


Four options were evaluated for projected 40-years of operations for BLIP/NSRL & EIC:

Option 1: Keeping the same tube but stock for critical component for next 40 years.

- Present stockpiling of RF and modulator tubes is not sustainable
- Sole-source manufacturers of RF tubes is likely to exit the business
- Large tube order for 40 years within the next 3 to 4 years
- Critical material for tube manufacturing may not be available
- Large tube storage facility needed at BNL
- Large number of tubes to validate and test at BNL
- Warranty issues when manufacturer exits the business

Estimated material cost 40 Years (9 Tanks): \$96 M

4616 Tetrode (\$152,360.00)

	LINAC			Operating Years Available		TUBE COST (FY 2025 US DOLLARs)				
LINAC TUBE	AVERAGE TUBE LIFE	AVERAGE FAILURE-RATE PER YR	TUBE UNIT PRICE	Inventory and in process	1 YEAR	40 YEARS MINUS CURRENT INV	T INVENTORY			
	(Hrs)	FY-2006 to FY 2024	FY-2025	(# Years)						
4CW2500	23285.53	2.05	\$ 9,000.00	4.39	\$ 18,450.00	\$ 657,004.50				
8618	17782.252	8.42	\$ 24,000.00	4.87	\$ 202,080.00	\$ 7,099,070.40				
LPT32	17575.486	2.74	\$ 15,000.00	10.2	\$ 41,100.00	\$ 1,224,780.00				
4616	9910.75	4.63	\$ 152,360.00	7.99	\$ 705,426.80	\$ 22,580,711.87				
7835	13971.1	3.95	\$ 487,945.00	6.32	\$ 1,927,382.75	\$ 64,914,251.02				
				Total Material Cost	\$ 2,894,439.55	\$ 96,475,817.79				

Upgrade Options - 40-years of Operations

Four options evaluated for projected 40-years operations (BLIP/NSRL & EIC):

Option 2: Low power Diacrode tubes (Los Alamos) (Cost ~81 M + facility upgrades)

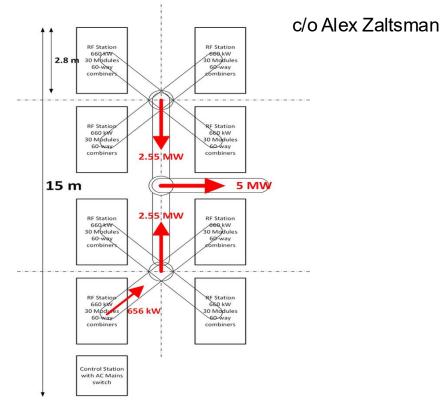
- **Description**: This option involves combining two **Diacrode tubes** to achieve **4 MW** of RF power
- Required Modifications:
 - Major Facility Modifications: The dual-amplifier design requires significant changes to the existing setup, including modifications to infrastructure and support systems.
 - Installation Time: Expected to result in 18 months of interruption to LINAC operations, impacting critical research schedules.
- Material Cost Estimate:
 - Estimated 40-year cost for 9 Tanks: ~\$81 M
 - Additional facility upgrades cost.

Option 3: Replacing high power tubes with CPI Klystron (Fermi Lab) (Cost ~88 M + facility upgrades)

- **Description**: This option involves replacing the current high-power RF tubes with **CPI Klystron** technology.
- Required Modifications:
 - Major Facility Modifications: (Larger size of the CPI Klystron amplifiers)
 - Radiation Safety: The CPI Klystron system is a radiation-generating device, which adds complexity to safety measures and regulatory requirements.
 - Operational Impact: (24 Months of Disruption)
- Material Cost Estimate:
 - Estimated 40-year cost for 9 Tanks: ~\$88 M
 - Additional facility upgrade costs required for the larger amplifiers and safety modifications

Upgrade Options - 40-years of Operations

Option 4: Phase conversion to Solid-State RF Amplifier


Key Advantages:

- Eliminates single-source risk transition from aging tubes
- Proven, modern SSA technology
- Major cost savings power cut from 2.5–3 MW → ~800 kW
- Enhanced safety 50/100 V vs. 50 kV systems
- No civil construction required
- Non-disruptive rollout install during shutdowns
- Scalable & phased upgrade path
- Improved performance longer pulse length (1.2 ms)
- Better diagnostics & remote control

Estimated Material Costs:

• Estimated 40-year cost for 9 Tanks (Phase 1 & 2): ~\$80 M

Fits into existing building, No modification needed

5 MW Solid-State Amplifier to replace Complete RF System(Driver, RF PA, Modulator)

SSA CRE-3201A 201MHz, 5 MW, pulse, 1.2 ms, 1% duty cycle: 7.500.000 € per piece

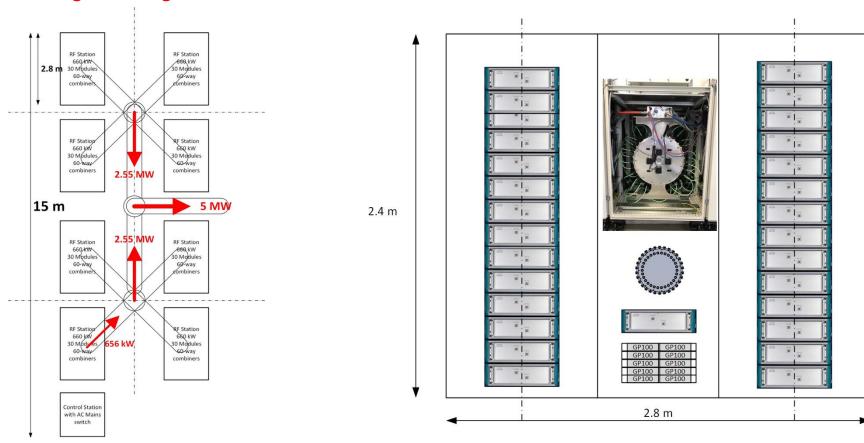
(Alex Zaltsman)

FY2024 Budgetary Quote 5 MW RF PA Unit Cost ~\$8.1 M

Benchmarking

- SSA pulsed systems: ~\\$1.62/Watt
- CW systems (e.g., EIC CW PA): ~\$7/Watt

This comparison demonstrates that the proposed SSA solution is highly cost-effective, delivering required performance at the fraction of \$/W of continuous-wave systems.


Wall-plug power consumption will be around 80-120 kW

RF output power, peak	[W]	5 000 000
DC/RF efficiency		69%
DC power during pulse	[W]	7 246 377
RF pulse lenght	[ms]	1.2
Switch on bias current before pulse starts	[ms]	1
Bias current	[A]	1
Drain voltage	[V]	65
Bias power for 1 ms before pulse starts	[W]	65
Qty of transistors		768
Bias power loss before each pulse	[W]	49 920
Repetion rate (1.2 ms, 1% duty cycle)	[Hz]	8.3
Total DC energy in pulse	[J]	8 696
Total DC energy before pulse	[J]	50
Total DC Energy in one second	[J]	72 880
Total DC power average	[W]	72 880
ACDC efficiency		92%
Total AC consumption	[W]	79 217
Additional consumption for Driver and Control	[W]	5 000
Total verage AC consumption		84 217

Layout of the system

Fits into existing building, No modification needed

RF Circulator 201MHz, 5 MW, pulse, 1.2 ms, 1% duty cycle: \$280,000.00 per piece

FY2024 Budgetary Quote Single Unit

Specification 1-0020120100-206
Circulator 201MHz 5MWp Cx 9 3/16"

Author Revision Release Page 00 30.03.2022

Parameter	Value	Unit	Remark				
Parameter	value	Unit	Remark				
Footprint Drawing No.	t.b.d.						
Product Type	Circulator	Circulator					
Configuration	3-Port	3-Port					
Type of Transmission Line	Coaxial	Coaxial					
Set Up	3-Port T-J	3-Port T-Junction					
Orientation of Rotation	clockwise	clockwise					
Center Frequency f ₀	201	MHz					
Bandwidth BW	± 1	MHz					
Forward Peak Power	5000	kW	max.				
Forward Average Power	50	kW	max.				
Reverse Peak Power	5000	kW	max., at any phase				
Reverse Average Power	50	kW	max.				
Pulse Width	1	ms					
Duty Cycle	1	%					
Insertion Loss (all ports matched)	≤ 0.15	dB	at fo				
	≤ 0.2	dB	in BW				
Return Loss (all ports matched)	≥ 26	dB	at f ₀				
	≥ 20	dB	in BW				
Isolation (all ports matched)	≥ 26	dB	at f ₀				
	≥ 20	dB	in BW				
RF Waveguide (Size)	Coaxial 9	Coaxial 9 3/16", 50 Ω					
RF Flange / Connector	3x 9 3/16	$3x$ 9 $3/16$ ", male connector, $50~\Omega$, gas-pressure sealed					
Cooling System							

Cost Estimate: Equipment Cost

- \$8.8M Equipment Cost (Tank 9 Solid-State Conversion)
 - Based on FY24 budgetary quotes for one unit

Material Cost	Estimated Cost
SOLID-STATE RF AMPLIFIER 201MHz, 5 MW, pulse, 1.2 ms, 1% duty cycle	\$8,100,000
RF Circulator 201MHz, 5 MW, pulse, 1.2 ms, 1% duty cycle	\$280,000
RF Load, 201 MHz, 5 MW, Pulse, 1% duty cycle	\$100,000
RF Components (Directional Couplers, Cables, Adapter)	\$20,000
Critical Spares (Estimated)	\$300,000
Equipment Total Cost	\$8,800,000

Key Technical Specifications

Parameter	Nominal	Units	Range
Frequency	201.25	MHz	
Output Power	> 5	MW	@ 1.0 dB compression
Bandwidth	> 2	MHz	@ 1 dB
RF Pulse Width	1.2	ms	
Duty Cycle	1.0	%	
Pulse Rise/Fall Time	< 1	us	
Efficiency	> 60	%	From AC to RF
Group Delay	< 250	ns	
DC Level	50 - 100	V	

Technical Specifications & SOW

We have begun collecting the technical specifications and are consolidating all system requirements. To support the design effort, we will host a seminar with experts from the high-power RF community to review lessons learned, evaluate solid-state amplifier technology options, and obtain guidance on long-term reliability considerations.

TECHNICAL SPEC	IFICAT										
		Collider-Accelerator Department, Brookhaven National Laboratory			Collider-Accelerator Department, Brookhaven National Laboratory						
for the		No. 333	Author	M. Sowinski	Effective Date: xxx	Doc No. XXX	Author: M. Sowinski	Effective Date: 3	88	Review Freq	quency: N/A
201.25 MHz RF Ampl	ecification Title: 201.25 MHz RF Amplifier System			Specification Title: 201.25 MHz RF Amplifier Systems Revision: P1				L			
201.23 WHZ KI Ampi	inici Sys						1				
Quality Classification		Table of Contents			IEC 61000-6-2 Immunity Testing of Industrial Equipment						
		LIST	OF ACRONYMS			IEC 61000-6-4	Emission Standard for In	idustrial En	vironments		
Prepared By:	1 SCOPE					0 10.0. 177 14.0. 1 1 1010.0.1 77 1					
• •		1.1 Background			29 CFR 1910 Subpart S	Occupational Safety and Health Standards 1910 Subpart S - Electrical					
			1.2 Definitions			I NEPA 70E-2021	Standard for Electrical S	afety in the	Workplace		
	Date:	2					Articles 340, 350, 360				
M. Sowinski, High Power RF Engineer		3	REQUIREMENTS			· UL 508	S. 4 40 T 4 1146				
					eristics		Standard for Industrial C	ontrol Equi	pment		
Reviewed By:											
J			3.1.1 RF Amplifier System Characteristics		3 REQUIREMENTS						
	Date:										
M. Hoffmann Wallner, High Power RF Engineer	Date.	3.1.3 Forward Power Degradation vs Load VSWR									
, 5						-	be met across the entire ba	ndwidth of t	he RF ampli	her system	-
				-		3.1.1 KF Amplifier 3	System Characteristics				
	D-4		3.1.6 Power Supplies								
A. Zaltsman, High Power RF Engineer	Date:					be Pulsed. The operating class shall be AB.					eration shai
A. Zaitsman, High Fower Kir Engineer											
			3.1.9 RF Hardy	vare Requiremen	ts	. Regardless of the RF or	tput power requirement, th	e RF amplif	ier systems s	hall fulfill t	he following
			3.1.10 Environmental Conditions 3.1.11 Water Cooling		ıs	specific requirements. These characteristics are shown in Table 1:					
T. 71.	Date:				Table 1: RF Amplifier System Characteristics						
J. Zipper, Quality Assurance			3.1.12 Air Cool	ir Cooling							
			3.1.13 External	Signals and Inte	ernal / External Connections		rameter	Min	Nominal	Max	Unit
	Date:		3.1.14 Protection	ns			ing frequency r Rated Output Power)	200.25 -1.5	201.25	202.25 +1.5	MHz dBm
C. Schaefer, ESH	Date.		3.1.15 Status ar	nd External Inter	locks		near Pulse Power	5			MW
,			3.1.16 Switches	s		Gain (over 60	dB Dynamic Range)1	95.5	97	98.5	
					n	RF o	n/off ratio ²	97		\longrightarrow	
	Date:		_			Phase Linearity ((60dB Dynamic Range)	0.01	1.2	30	0
C. Galdamez, Procurement Liaison Engineer							Outv Cvcle	0.01	1.2	2.0	ms %
					Protocol	. D	ise Time			0.5	μs
Approved By:						F	all Time			0.5	μs
					guration	1 6150 1211117	max pulse width)			0.5	dB
					1S	Terrent / Or	ulse (@ max pulse width) stput Impedance		50	2.5	Ω
	Date:		3.1.23 Remote	Status Monitorir	g and Reporting		ut VSWR		50	1.5:1	52
F. Severino, RF Group Leader				Pa	ge 4 of 23						

Page 8 of 23

Key Design Requirements

System Overview

- \triangleright Replace existing amplifier chain (pre-driver \rightarrow 200 kW driver \rightarrow HP tube PA) with a 5 MW solid-state system.
- Focus on high efficiency and high operational reliability.

Modular Architecture

- > ≥20% power overhead; full rated output with up to 20% modules offline.
- Fail-safe behavior: no cascading failures; continued operation until scheduled maintenance.

Protection & Fault Tolerance

- No damage under RF short, open, arc, or high-reflection conditions
- Defined VSWR tolerance; robust arc/reflection protection.
- Redundant critical power supplies—no single-point failure.

Maintainability

- Plug-in, field-replaceable RF modules.
- Clear fault indication (front-panel LED + control-system reporting).

Diagnostics & Integration

- Comprehensive temperature and health monitoring.
- > Full monitoring interface to facility control system.

Proposed Project Schedule

Project Scope: Tank 9 Solid-State Conversion

Immediate Decision Needed → To enable order placement by **May 2027**

- Preparation Phase (May 2026 May 2027)
 - > Technical specifications and SOW development
 - > ~1 year procurement preparation effort
- Procurement & Delivery:
 - ➤ Complete order package/ place SSA order by May 2027
 - Delivery expected Aug 2029 (24-month lead time)
- Integration Timeline:
 - > Removal/Installation in Tank 9: June December 2029
 - > System Level Test & Validation : January June 2030

Future Scope: Phased Rollout for 6 of Remaining 8 Tanks

- Maintain tube inventory through June 2030 (8–10 years coverage)
- Order 6 SSA units by December 2030
- Install during summer shutdowns: 2 tanks/year (2030–2034)
- Use leftover tube inventory to support 40-year operation of Tanks 1 & 2 (low-power systems)

LINAC RF Amplifier Upgrade – Summary

Objective: Modernize the LINAC RF system using solid-state amplifiers to mitigate long-term supply risk associated with obsolete, solesource RF vacuum tubes.

Mission & Urgency: The LINAC RF system is mission-critical for RHIC/EIC, BLIP, and NASA NSRL, but depends on 5 MW vacuum tubes with credible production loss in ~3–4 years and limited remaining inventory.

Technology Selection: Multiple upgrade paths were evaluated (including continued tube procurement and alternative tube technologies); **solid-state RF was selected** as the lowest-risk, most sustainable option based on reliability, safety, vendor diversity, and lifecycle cost.

Phase 1 – Tank 9 Only (Demonstration):

- Convert Tank 9 from tube-based RF to a 5 MW, 201 MHz solid-state system to validate performance, integration, reliability, and lifecycle cost.
- > Duration: ~4 years (decision ~2026; install/validate 2029–2030)
- Cost Estimate: \$12.9 M (fully burdened, includes contingency)
- Installed during scheduled shutdowns; no impact to operations

Phase 2 – Follow-On Upgrade (Post-Demonstration):

- Following successful Phase 1, begin a phased conversion of **six additional LINAC RF systems**, starting ~2030 and completing over ~4 years.
- Estimated additional cost: ~\$80 M

MAC Input Requested:

Review the technology selection and phased approach; assess technical, schedule, and supply-chain risk; and advise on Phase 1 initiation and funding, approval pathway, procurement strategy, and the proposed plan for a phased upgrade.

Thank You

