

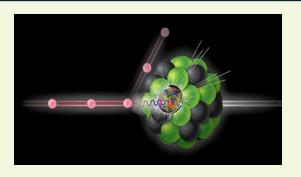
Next-Generation High-Current Ion Sources for Nuclear Physics Facilities: Demonstration with Niobium and Roadmap to Heavy Ions

Institution	FY 2027	FY 2028	Total
BNL	600	500	1,100

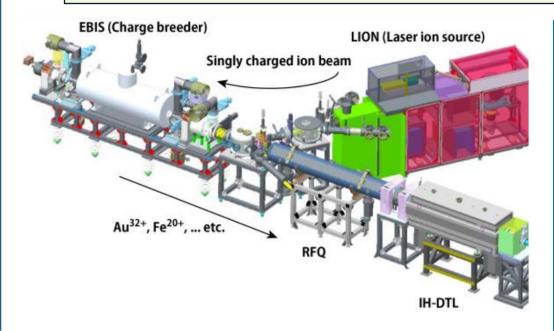
PI: M. Okamura

Co-PI: T. Kanesue, S. Ikeda

Investigators: A. Cannavo, S. Kondrashev



@BrookhavenLab


Main Goal: Highly Charged Nb beam

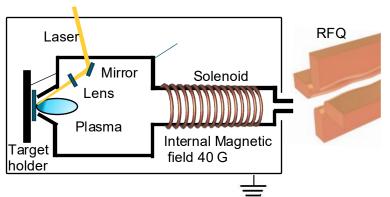
Niobium

- -Z/A = 0.440860
- monoisotopic
- easily available
- high purity
- high melting point

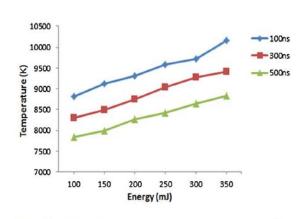
Achieve most intense ion beam current

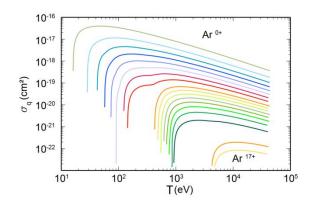
- - ⁴He²⁺, ⁴He²⁺ 3.5×10^{10} C^{5+} , O^{7+} 1.3 × 10¹⁰ 1.1×10^{10} Ne⁸⁺ Si¹¹⁺ 7.3×10^{9} Ti¹⁷⁺, Ti¹⁸⁺ 6.6×10^{9} Fe²⁰⁺ 6.9×10^{9} 5.2×10^{9} Aq²⁹⁺ Tb³⁵⁺ 4.2×10^{9} Ta³⁸⁺ 4.2×10^{9} Au³²⁺ 6.0×10^{9} and more ...

- 1. Theoretical limit (charge trap capacity)
- 2. Practical Performance limit (compensation factor, charge state distribution)


Scientific & Technological Concept

Advances in Laser Technology


Direct Plasma Injection Scheme (DPIS)



Okamura, M., Takeuchi, T., Jameson, R. A., Kondrashev, S., Kashiwagi, H., Sakakibara, K., ... & Hattori, T. (2008). Direct plasma injection scheme in accelerators. *Review of Scientific Instruments*, 79(2).

Laser Energy ↔ e⁻ Temperature ↔ Charge state

Asamoah, E., & Hongbing, Y. (2017). Influence of laser energy on the electron temperature of a laser-induced Mg plasma. *Applied Physics B*, 123, 1-6.

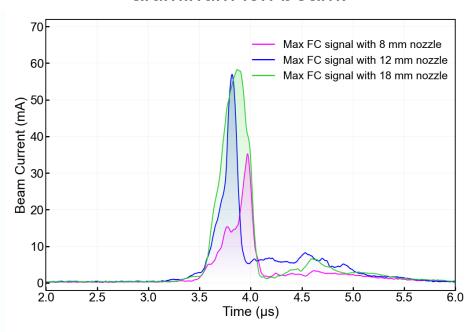
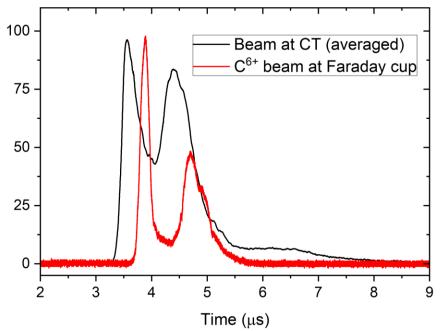
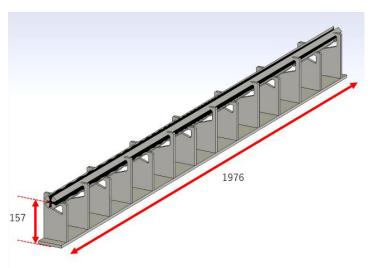

Lapierre, A., Benitez, J., Okamura, M., Todd, D., Xie, D., & Sun, Y. (2022). Ion Sources for Production of Highly Charged Ion Beams. *arXiv preprint arXiv:2205.12873*.

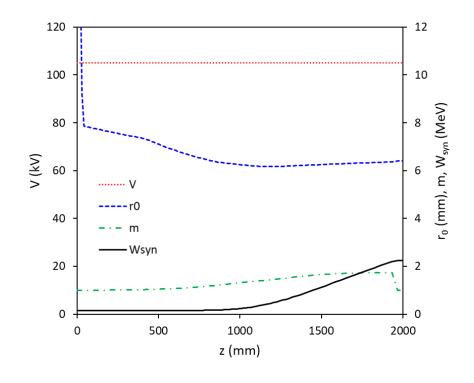
Fig. 8 Plot of the electron temperature against laser energy, at three different delay times, 100, 300 and 500 ns


Figure 1.2.1. Electron-impact ionization cross-section of the argon atom and ions in dependence of electron energy T, (taken from [ZSCH2013]).

The promised outcome

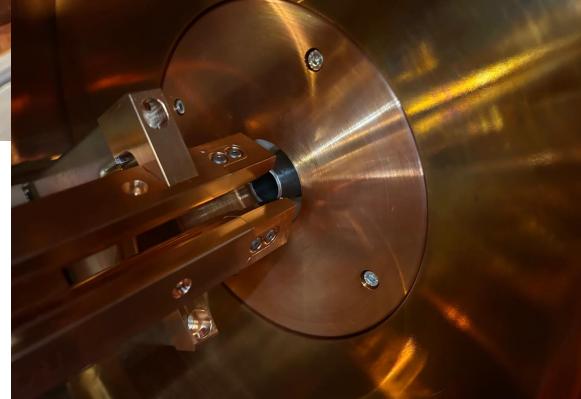
Achieved a new record using an aluminum ion beam.

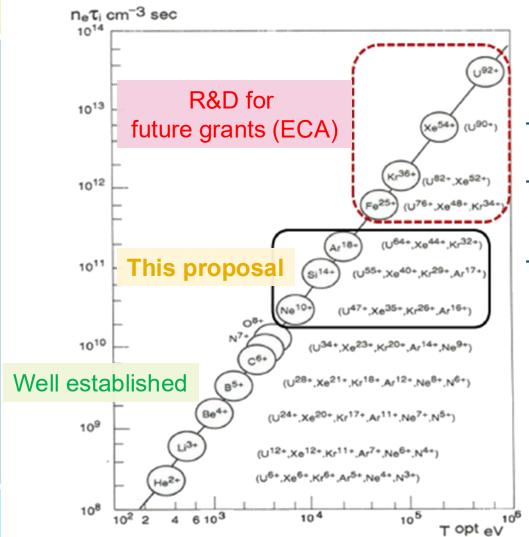

An ion current equivalent to that of the strongest class of proton ion beam


Accelerated and analyzed beam current profile: left 58 mA Al¹¹⁺beam corresponding to a total 1.0×10^{10} ions/pulse; right 96 mA C⁶⁺ beam corresponding to 4.0×10^{10} ions/pulse.

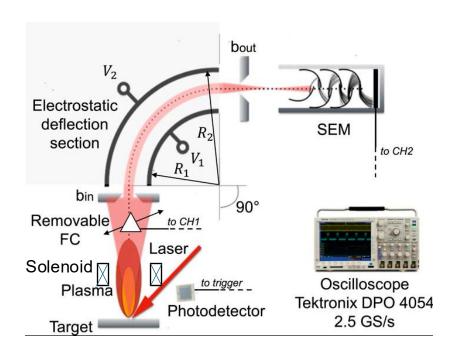

World's first variable B-structure 4 rod RFQ

Resonant frequency	100 MHz
Accelerated particle	⁷ Li ³⁺
Peak beam current	≧100 emA
Input energy	21.8 keV/u
Output energy	320 keV/u
Imput normalized rms emittance	0.33 mmmrad
Number of cells	138
Rod length	1997.5 mm
V	105 kV
r₀(without RMS)	6.2-7.8 mm
Transverse vane-tip curvature	Variable (≦1.0r ₀)
E _{max} (Kilpatrick factor)	≦22.3 MV/m
	(1.96)




New Li vanes were commissioned and achieved full power within half a day.

250 kW

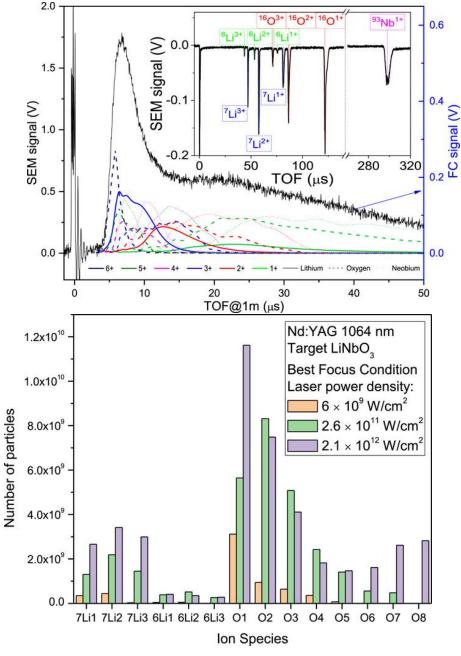


Road map to very heavy ion

- Beneficial for the successful commissioning of the EIC
- Fundamental knowledge for the next generation of accelerator
- BNL would take a significant step forward compared to the state-of-the-art, boosting its competitiveness and leadership

Method

Nd:YAG Laser Quantel

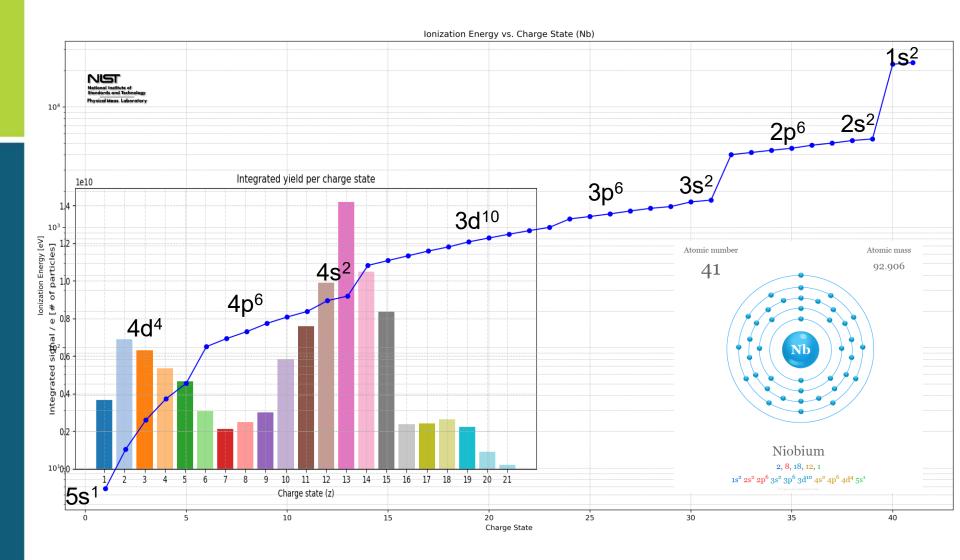

- Wavelength: 1064 nm

- Pulse energy: 850 mJ \rightarrow 8 J

- Repetition rate: 5 Hz

- Pulse width: 6 ns (FWHM)

- Temporal pulse: Gaussian like



R&D menu

Plasma Study
Laser System Optimization
Laser energy
Laser width
Laser incidence angle and double pulse mode
Target surface quality control
Advanced target development
Design Testing and Commissioning of the RFQ for high current Nb16+ beams
Design of the new set of RFQ vanes
Plasma-RFQ Interface Optimization
Variable-Aperture Vane Parameter Generation
RF Resonator Design
Installation and testing
Reconfiguration of the RFQ beamline
Optimization of the Solenoidal magnetic field and extraction electrode
Optimization of the RF power
Optimization of the medium-energy-beam-transport line between the RFQ and the
analyzing dipole magnet
Commissioning of the Ultra-Intense Nb16+ beam production test
Long-term stability test

Laser Energy: 780 mJ

 $5.0 \times 10^{10} \text{ Nb}^{15+} \text{ ions/pulse}$

Summary

Project's goal

- Achieving the highest intensity of highly charged Nb beam
- Overcome the EEBIS actual performance by a factor of 10
- Powerful tool, especially for EIC commissioning
- It will allow to get fundamental knowledge of laser-matter interaction and for the next generation of accelerator

Nb beam is just a pivot species:

- Technology and achievements can be exported to uncountable number of applications and therefore attract interest from different funds source (medical isotope production....)

Thank you for your attention.

We strongly hope that this proposal will be adopted.

