Discrete Fourier Transform Speed in SPNG

Brett Viren

September 30, 2025

Brett Viren



Topics

o Discrete Fourier Transform (DFT) speed vs size.

o Code to select a “faster” size.

Brett Viren



Intro to DFT speed theory
Original FFT (radix-2 Cooley-Tukey) algorithm

o Only supports array sizes that are powers of 2.
o FFT complexity scales with O(N log N).

Mixed-radix algorithms extend FFT to sizes with other prime factors.

o Special, compile-time support optimizes for small prime factors (3, 5, 7).
@ Special, run-time (slower) algorithms handle sizes with larger prime factors.

Need luck to hit a fast size but luck is fairly uniform

o Huge speed ups often possible with small increase in size.
o A simple heuristic can find good candidates for “special”.
First larger size with prime factors less than some value (eg 7).
But sometimes next or next-next with small primes is faster.
o Measurements needed to find the truly faster but problematic.
Very dependent on the device (CPU/GPU), amount of and makeup memory (L1/L2/L3 cache) and
parallelism.
Measuring produces a large table that needs significant time for lookup.

E——— v




Measurements

Test environment and plots

o Using wegpu0 Ryzen 7970X, RTX 4090
o Look duration at torch: : ££t: : ££t () on all sizes of 1D tensor
Given a focus and color to just small-prime factor sizes.

o Look with and without CPU multi-threading.

Testing procedure:
@ Duration is measured with <chrono>
o Each test point repeats to get around 10ms total duration.
o A GPU test point loop is async followed by a sync to assure completion.

Code to reproduce is in spng/test/check_dft_measure. {cxx,py}.

o (written in “collaboration” with Gemini)

—r e



Measurements - all sizes, single-core CPU

Raw Timing for FFT Function

—
o
0
s

Execution Time (ms)

—
o
1
~
s

0 2000 4000 6000 8000 10000
Tensor Dimension Size

Brett Viren September 30, 2025 5/12



Measurements - small-prime factor sizes, single-core CPU

Raw Timing for FFT Function

X GPU N we
- CPU B
L]
e 2 - . «
107t 4f-*-3 ® s °
e 5 " 7 s ' h
o 7 Y P o 0 o0 o°°
= o " Lenowe TO0E
3 . oo ®
i .v. . -’.or o
E . ol ® Y i
L) - S
o K . o
0 . T
.E K O ““,,,'f’
5 o e
E s o ’d"
g 102 PR
X A X
L SO 4 X X hg(X XX XX
N x X X Po P N
W)@xx X mRx Hx
K XA X X % X

0 2500 5000 7500 10000 12500 15000
Tensor Dimension Size




Measurements - small-prime factor sizes, multi-core CPU

Raw Timing for FFT Function

X GPU
- CPU
®-+--2
e 3
e 5
3 7 °
.
.
]
= o
E
[
£
£
5 1072 %
E=] X
5 X KX X M X
g ex X X LK e X
b %% ook Sl o 3 X x
s T R K x x
X
SOV VRSN PN o W X Ty
.
77777 .
0 2500 5000 7500 10000 12500 15000

Tensor Dimension Size




Some observations

e Powers of 2 win but only up to 1024.
> 2048 and above is slower, maybe because of Ln CPU cache misses.

Most points have a nearby faster point that has small-prime factors.

» There is a spread in small-prime factor speeds.
» Spread is in bands, actually, and I don’t understand their origin.

libtorch kicks in CPU-parallelism after 4096.

» Increases throughput ~ 2x but uses ~ 20 cores, a high cost!

CPU beats GPU for small sizes below about 512!
» Almost certainly due to GPU transfer overheads compared to fast CPU memory access.

o GPU time largely constant as function of size for moderate sizes.
» I expect this is due to massive parallelization and fixed overheads.

o Results are very device dependent.
» Testing other CPUs/GPUs is needed.

—r o



Reproducing

Environment for single-threaded tests:

$ export OMP_NUM_THREADS=1
$ export MKL_NUM_THREADS=1

Measure

$ ./build/spng/check_dft_measure -s range -m 16 -M 10000 benchmark-10k.csv
$ ./build/spng/check_dft_measure benchmark-st.csv

Unset the * _NUM_THREADS and repeat to get a MT data.

Plot
$ ./spng/test/check_dft_measure.py benchmark-10k.csv benchmark-10k.pdf

Etc for the others.

E——— T



Picking the best size
WCT mainline already has an £ft_best_length (), why not just use that?

Hard-coded lookup based on some undocumented measurement procedure on an unknown device using
unknown software done at least seven years ago. SPNG can do better!

High-level API
#include "WireCellSpng/DFT.h"

// Init in single-thread context with default policy.
FasterDftSize fds;

// Optional customized policy.
fds.reset(make_faster_dft_size_measured(...));

// Use in MT context okay
int64_t new_size = fds(old_size);

Design

This design is driven by the need to be thread-safe inside INode : : operatoxr () while also handling file
loading, caching, etc.

Em——— TR



More API

Mid-level - construct with some available knobs
inline const std::string faster_ dft_size_default_measurement file =
"torch_dft_measured. json";

FasterDftSizeBase: :pointer make_faster_dft_size_measured(
torch: :Device device = torch: :kCPU,
const std::string& filename = faster_dft_size_default_measurement_file);

FasterDftSizeBase: :pointer make_faster_dft_size_primes(int64_t max_prime=7);

Low-level - actual measure lookup or heuristic calculation

int64_t faster_dft_size(const std::vector<int64_t>& sizes,
const std::vector<float>& durations,
int64_t orig size);

int64_t faster_ dft_size(int64_t orig size, int64_t max_prime=7);

E——— T



Open questions:

Is there significant variation across different devices?

Is there significant variation across different DFT functions?
» How does 2D play a role? Does rf £t () have speeds from f£t ()?

e Can/should we exploit caching and reusing DFT plans?

@ Does any of this matter compared to other operations?

E——— VI



