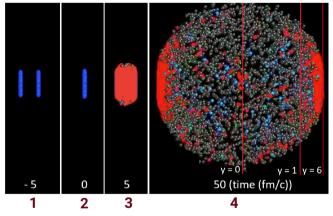
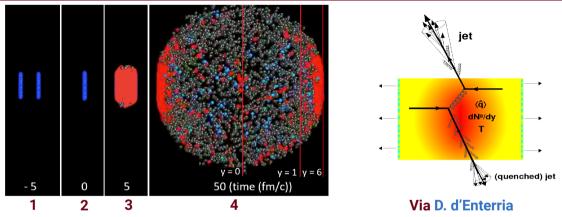

Recent CMS light ions results

Chris McGinn


BNL NP Seminar

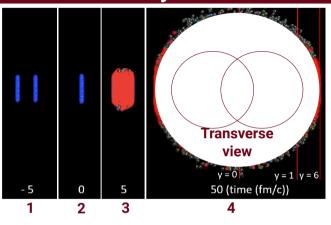
14 October 2025

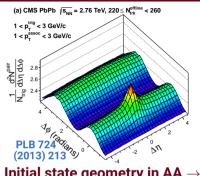
Schematic of Heavy Ion Collisions



Still via Ann.Rev.Nucl.68 (2018)

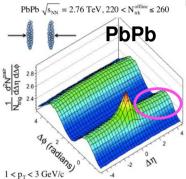
Full video via Yen-jie Lee, Wit Busza, and Andre Yoon


- 1. Lorentz-contracted nuclei inbound
- 2. Initial collision
- 3. After some formation time, Quark Gluon Plasma (QGP) hydrodynamics takes over
- 4. After some longer time, freezeout and hadronization

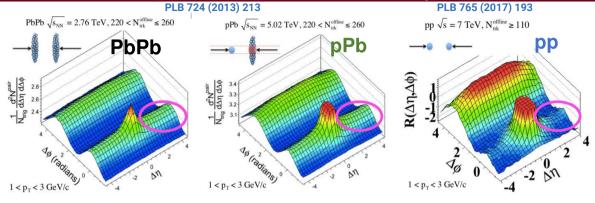

Probing the Quark Gluon Plasma with Jets

- Hard-scattered partons act as QGP probe
 - Energy loss observed in jets is taken as a possible sign of QGP formation

Geometry to Momentum Space Correlations

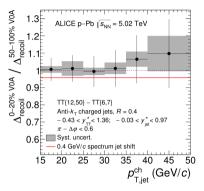

Initial state geometry in AA \rightarrow long range correlations via hydro.

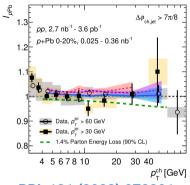
$$\sim \mathbf{1} + \mathbf{2} \; \Sigma_n v_n^2 \mathbf{cos}(n\Delta\phi) \\ \mathbf{v}_2 \rightarrow \mathbf{ellipticity}$$

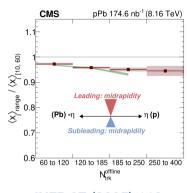

Long-range correlations taken as a possible sign of QGP formation

A Droplet of Plasma in Small Systems?

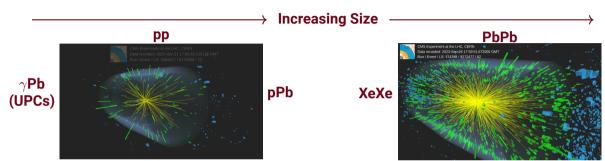
PLB 724 (2013) 213

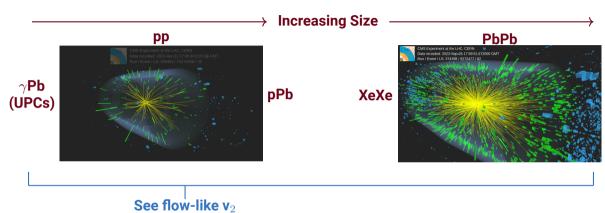

A Droplet of Plasma in Small Systems?

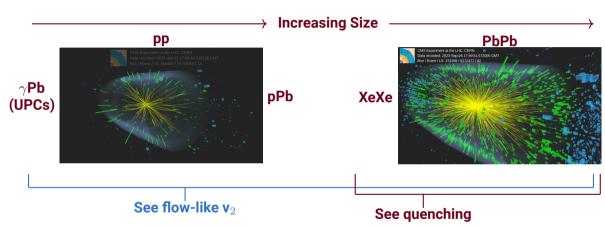


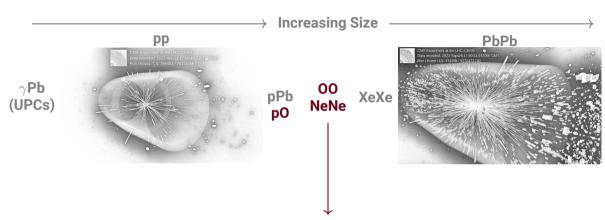

- → Decreasing Size
- Observable phenomena in collisions systems of all sizes!
- Possible signature of QGP droplet formation in small systems?

Complication: Where Is Quenching?

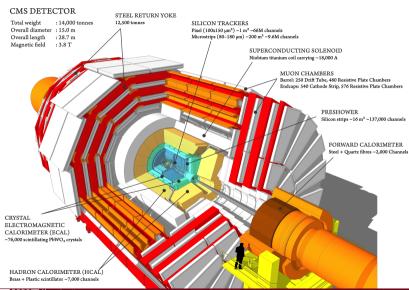



PLB 783 (2018) 95

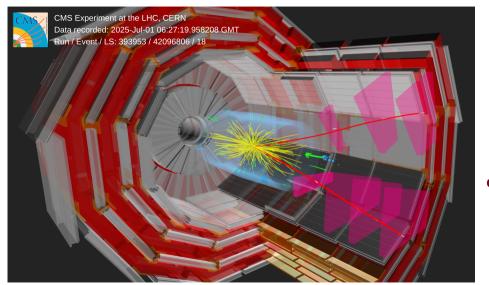

PRL 131 (2023) 072301


JHEP 07 (2025) 118

- Many independent searches for quenching in pPb have returned no indications
- ullet ALICE, ATLAS, and CMS have all set stringent limits w/ dijet x_J , jet-hadron correlations

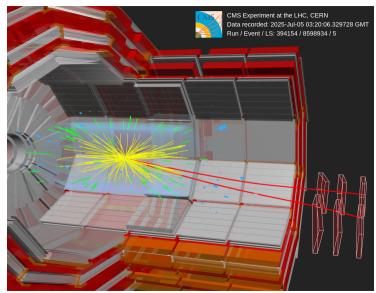


- 1. Study the relationship between system-size and particle production w/ $dN/d\eta$
- 2. Probe the nuclear structure with v_2 and v_3 in each system
- 3. Search for partonic energy loss in light ions


The CMS Detector

Study of HI enabled by The CMS Detector

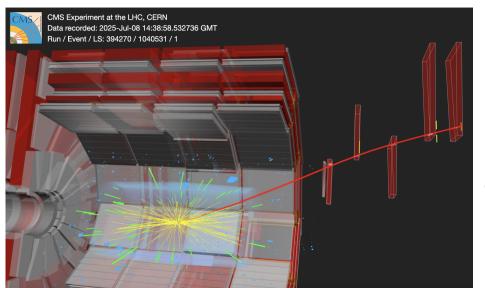
- Silicon trackers for charged hadrons
- ECAL for photons / π^0
- HCAL for neutrals
- Forward calorimeters for centrality
- Muon chambers and ZDC (used minimally in these analyses)


Datataking for pO,

Data taken July 1st-3rd

pO event displays via CDS

Datataking for pO, OO,



Data taken July 5th-7th

00 event displays via CDS

Datataking for pO, OO, and NeNe!

Data taken July 8th-9th

NeNe event displays via CDS

	Jul				Aug					Sep			
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	30	7	14	21	28	4	11	18	25	1	8	15	22
Tu	O ion setting up	Ne-Ne run								MD 2			
We		ZDCs out											
Th	MD 1b	VdM									Jeune G.		
Fr		program											
Sa	O-O & p-O Ions run												
Su													

Jul					Aug				Sep			
27	28	29	30	31	32	33	34	35	36	37	38	39
30	7	14	21	28	4	11	18	25	1	8	15	22
O ion setting up	Ne-Ne run								MD 2			
	ZDCs out								IVID 2			
MD 1b	VdM									Jeune G.		
	program											
O-O & p-O Ions run												
	O ion setting up MD 1b O-O & p-O	30 7 Oion Setting up Ne-Ne run ZDCs out MD 1b VdM program OO & PO	30 7 14 Olion Setting up Ne-Ne run ZDCs out MD 1b VdM program OO & p.O. Do Do Do Do Do Do Do D	30 7 14 21 Olion Settling up Ne-Ne run ZDCs out MD 1b VdM program OO & p.O. Do Do Do Do Do Do Do D	27 28 29 30 31 30 7 14 21 28 Olion setting up Ne-Ne run ZDCs out MD 1b VdM program OO & PO O O O O O O O O O O O O O O O O	27 28 29 30 31 32	27 28 29 30 31 32 33 30 7 14 21 28 4 11 Olion setting up Ne-Ne run ZDCs out MD 1b VdM program OO & PO Dons run	27 28 29 30 31 32 33 34 30 7 14 21 28 4 11 18 Olion setting up Ne-Ne run ZDCs out MD 1b VdM program OO & PO Jons run	27 28 29 30 31 32 33 34 35 30 7 14 21 28 4 11 18 25 Olion setting up Ne-Ne run ZDCs out MD 1b VdM program OO & P.O. Dons run Jons run Jone run Jone Run Jone Jone Run Jone Jone Jone Jone Jone Jone Jone Jon	27 28 29 30 31 32 33 34 35 36 30 7 14 21 28 4 11 18 25 1 Setting up Ne-Ne run setting up ZDCs out	27 28 29 30 31 32 33 34 35 36 37 30 7 14 21 28 4 11 18 25 1 8 Olion setting up Ne-Ne run ZDCs out MD 1b VdM program OO 8 PO lons run OO 8 PO lons run OO 8 PO lons run OO 8 PO lons run	27 28 29 30 31 32 33 34 35 36 37 38 30 7 14 21 28 4 11 18 25 1 8 15 Olion setting up Ne-Ne run ZDCs out MD 1b VdM program OO & Program

	0	0		NeNe						
(nb ⁻¹)	target	delivered	ratio	(nb ⁻¹)	target	delivered	F			
ATLAS	8.0	8.2	10.3	ATLAS	0.1	1.0	10			
ALICE	0.5	5.15	10.3	ALICE	0.1	0.91	9.1			
CMS	0.8	9.4	11.8	CMS	0.1	0.91	9.1			
LHCb	0.5	5.75	11.5	LHCb	0.1	0.61	6.1			

Only experiment w/ VdM in NeNe!

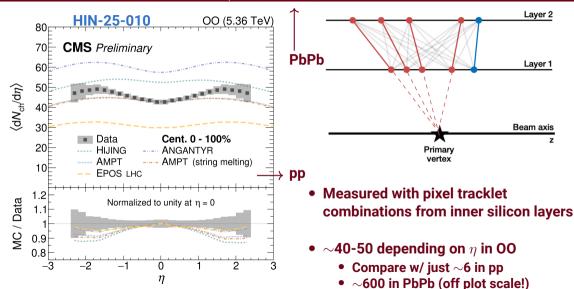
Via LHC report at Sept. Jamboree

	Jul			Aug				Sep					
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	30	7	14	21	28	4	11	18	25	1	8	15	22
Tu	O ion setting up	Ne-Ne run								MD 3			
We		ZDCs out											
Th	MD 1b	VdM									Jeune G.		
Fr		program											
Sa	O-O & p-O Ions run												
Su													

	0	0		NeNe					
(nb ⁻¹)	target	delivered	ratio	(nb ⁻¹)	target	delivered	F		
ATLAS	0.8	8.2	10.3	ATLAS	0.1	1.0	10		
ALICE	0.5	5.15	10.3	ALICE	0.1	0.91	9.		
CMS	0.8	9.4	11.8	CMS	0.1	0.91	9.		
LHCb	0.5	5.75	11.5	LHCb	0.1	0.61	6.		

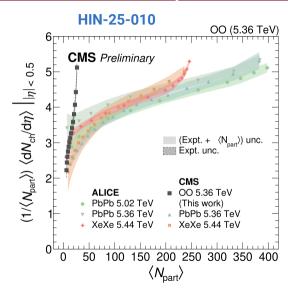
Via LHC report at Sept. Jamboree

	Jul				Aug					Sep			
Wk	27	28	29	30	31	32	33	34	35	36	37	38	39
Мо	30	7	14	21	28	4	11	18	25		8	15	22
Tu	O ion setting up	Ne-Ne run								MD 2			
We		ZDCs out		Road	l to Ini	tial Sta	ges 2	025		WID 2			
Th	MD 1b	VdM								\longrightarrow	Jeune G.		
Fr		program			\sim 8	weeks	ļ						
Sa	O-O & p-O Ions run												
Su													


	0	0		NeNe						
(nb ⁻¹)	target	delivered	ratio	(nb ⁻¹)	target	delivered	F			
ATLAS	0.8	8.2	10.3	ATLAS	0.1	1.0	10			
ALICE	0.5	5.15	10.3	ALICE	0.1	0.91	9.1			
CMS	0.8	9.4	11.8	CMS	0.1	0.91	9.1			
LHCb	0.5	5.75	11.5	LHCb	0.1	0.61	6.1			

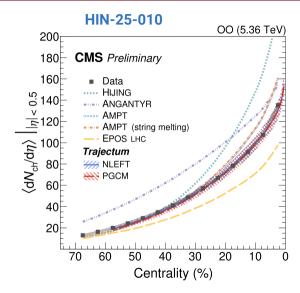
Via LHC report at Sept. Jamboree

$dN/d\eta$ in Light lons

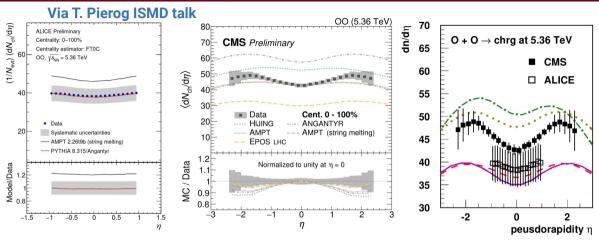

Layer 2

Layer 1

Beam axis


20

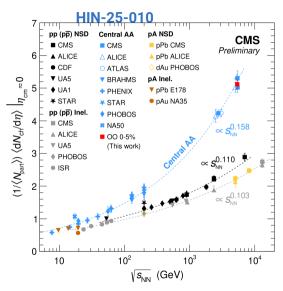
$N_{ m part}$ dependence of $dN/d\eta$


- $N_{\rm part}$ scaled average $dN/d\eta$ in $N_{\rm part}$ bins
- Observe a steep slope as a function of $N_{\rm part}$ compared to other species
- At central-most OO, achieve density akin to heavy-ions
 - Full nuclear-overlap → similar particle production per nucleon

Centrality dependence of $dN/d\eta$

- Comparing w/ models as a function of centrality
- Hydro. models w/ different nuclear structure assumptions (Trajectum) show good agreement
 - Note: restricted to mid-rapidity, $|\eta| < 0.5$
- MC EPOS LHC and HIJING fare worse important input for tuning!

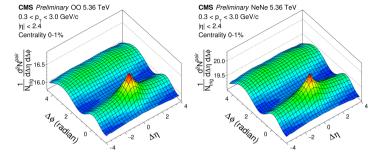
Comparisons with ALICE



- Comparison just a the $dN/d\eta$ level, no Glauber modeling
- Results consistent between 1-2 σ ; already being studied by modeling community!

23

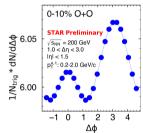
OO $dN/d\eta$ in the Global Picture


- 00 \rightarrow heavy-ions like particle production
- Not simply an incoherent superposition of proton-proton collisions
 - Rather, energy more efficiently converted to final-state multiplicities

Motivating Flow in Light Ions

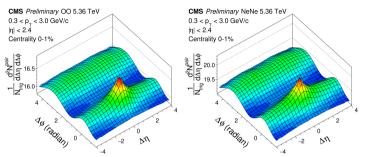
• Do we see collectivity in light-ions?

Motivating Flow in Light Ions

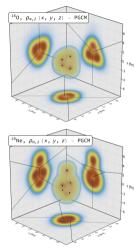

• Do we see collectivity in light-ions? (Answer: Yes!)

CMS-HIN-25-009

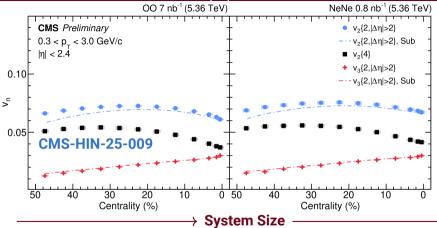
 How do the signs of collectivity evolve w/ centrality in light-ions compared to heavy-ions?


Via S. Zhang QM Talk

Known from STAR!


Motivating Flow in Light Ions

• Do we see collectivity in light-ions? (Answer: Yes!)


CMS-HIN-25-009

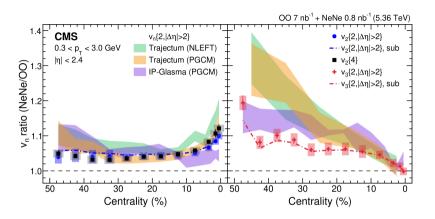
- How do the signs of collectivity evolve w/ centrality in light-ions compared to heavy-ions?
- 00/NeNe: similar nucleon numbers, but different geometry
 - Should imprint on v₂ ratio; are we sensitive?
 - Like STAR probe of U-deformation, Nature 635 (2024) 8037

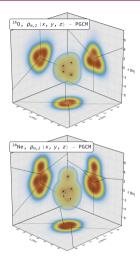
PRL 135 (2025) 012302

Measuring $v_{n\{n\}}$ in OO and NeNe

- Measured $v_2\{2\} + v_3\{2\}$ w/ and w/o subtraction, and $v_2\{4\}$ in OO and NeNe
- v₂ behavior qualitatively similar to heavy-ions expectation
- v_3 strictly increasing as centrality \rightarrow 0% contra HI; impact of fluctuations?

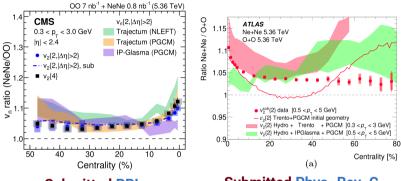
Comparing v₂ with Models


- Reasonable qualitative agreement observed with hydro models in OO and NeNe
 - NLEFT appears modestly better than PGCM
- IP-Glasma+PGCM fares worse; impact of greater fluctuation in initial conditions?


Christopher McGinn

29

Ratio of $v_2\{2\}$ in OO and NeNe


- Uptick in $v_2\{2\}$ as centrality \rightarrow 0%
- Indicative of nuclear deformation present in neon!
 - 'Bowling pin' structure compared to more symmetric oxygen

PRL 135 (2025) 012302

Comparing to ATLAS and ALICE

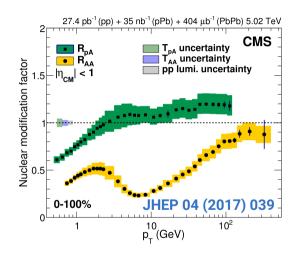
Note: Flipped x-axis!

PGCM PGCM PGCM NLEET 20 Centrality (%)

ALICE OO and Ne-Ne, $\sqrt{s_{NN}} = 5.36 \text{ TeV}$ 0.2 < p_{-} < 3 GeV/c

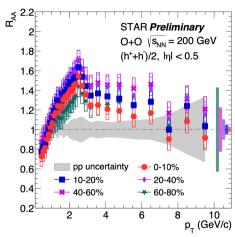
 $V_2\{2\}$

1.2 hl < 0.8


Submitted PRL

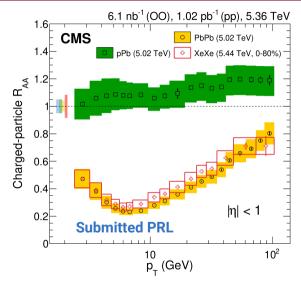
Submitted Phys. Rev. C

Submitted PRL


- Qualitatively consistent trend across all three experiments in OO/NeNe v₂ vs centrality
- All pointing towards sensitivity to nuclear deformation via correlations

Motivating a Quenching Search in Light Ions

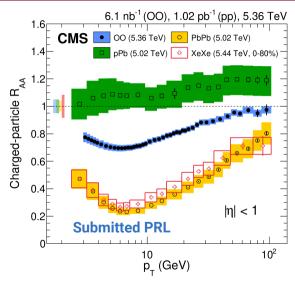
- One manifestation of quenching → high-p_T particle suppression
- Long-observed in AA, absent in pA
- Measure in light ions to establish where quenching effects turn-on


Existing Results from STAR at RHIC

Via S. Zhang QM Talk

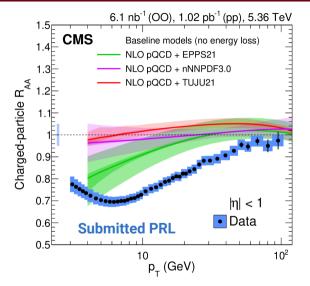
- STAR R_{AA} above unity, but with significant uncertainties
- Uncertainties come from Glauber normalization for centrality bins
- Can we be more precise looking inclusively? What about higher p_T?

OO Charged Particle R_{AA}

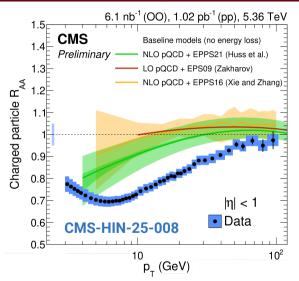


- Measure inclusive in centrality to avoid Glauber modeling
- R_{AA} definition as:

$$R_{AA} = \frac{1}{A^2} \frac{d\sigma_{OO}/dp_T}{d\sigma_{pp}/dp_T}$$


Any guesses?

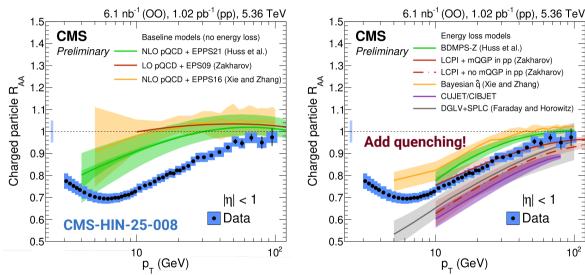
OO Charged Particle R_{AA}


- Observe a significant suppression!
 - \sim 7 σ deviation from unity at minimum
 - Roughly 0.69 at 6 GeV

Baseline without Quenching Effects

- nPDF effects can explain some fraction of observed suppression
- As a result, cannot declare light-ions quenching observed (yet!)
- EPPS21 nPDFs approximately 2σ from data
 - pO data will prove crucial for constraining nPDFs

Comparison with Quenching Models

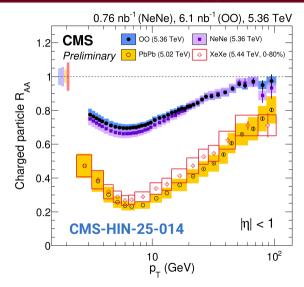


Three baselines w/o quenching:

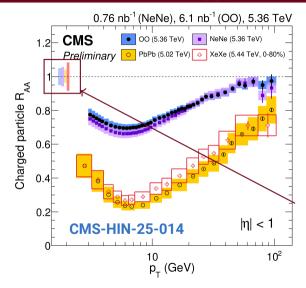
- 1) NLO pQCD + EPPS21
- 2) LO pQCD + EPS09
- 3) NLO pQCD + EPPS16

None describe the data

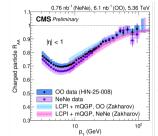
Comparison with Quenching Models



Data is best described w/ quenching effects!


 10^{2}

R_{AA} in NeNe Collisions

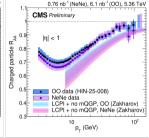

- NeNe R_{AA} measured in identical binning as 00
- Slight increase in observed suppresion
 - 0: 16 nucleons
 - Ne: 20 nucleons

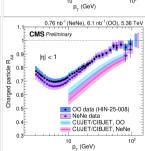
R_{AA} in NeNe Collisions

- NeNe $R_{\rm AA}$ measured in identical binning as 00
- Slight increase in observed suppresion
 - 0: 16 nucleons
 - Ne: 20 nucleons
- Need to take normalization uncertainties seriously!

NeNe R_{AA} **Model Comparisons**

0.76 nb⁻¹ (NeNe), 6.1 nb⁻¹ (OO), 5.36 TeV


OO data (HIN-25-008)

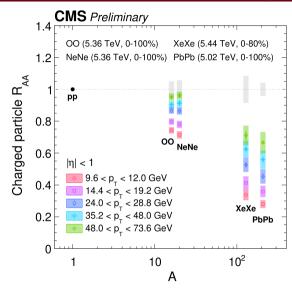

Faraday & Horowitz, OO

Faraday & Horowitz, NeNe

NeNe data

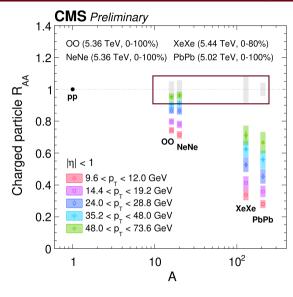
p (GeV)

CMS-HIN-25-014

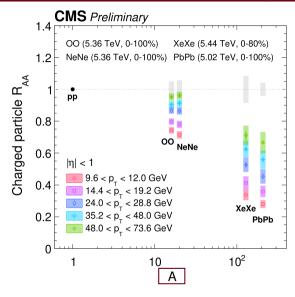

- NeNe model comparisons made simultaneous to 00 comparisons
- Models consistently predict rough ordering observed in data
- What does the A dependence of quenching look like?

0.6

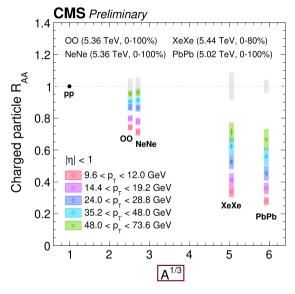
CMS Preliminary


|m| < 1

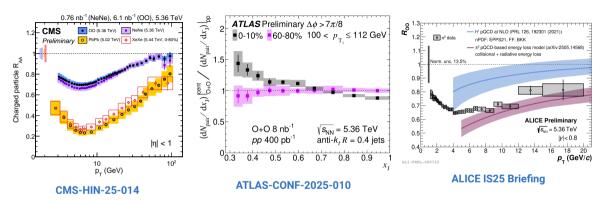
R_{AA} Dependence on A


- LHC AA quenching data now spans many systems!
- Rough ordering in A observed

R_{AA} Dependence on A

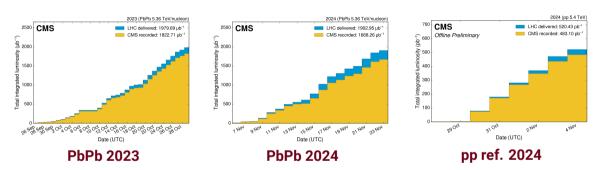

- LHC AA quenching data now spans many systems!
- Rough ordering in A observed
 - Still must take normalization uncertainty seriously

R_{AA} Dependence on A


- LHC AA quenching data now spans many systems!
- Rough ordering in A observed
 - Still must take normalization uncertainty seriously
- A may not be the most natural x-axis
 - What about A^{1/3} (path-length proxy)?

$R_{\mathsf{A}\mathsf{A}}$ Dependence on $\mathsf{A}^{1/3}$

- RAA A^{1/3} dependence plausibly linear
- Path-length dependence picture emerging
- Caveat: quenching favored in OO/NeNe
 - However, nPDFs cannot be excluded at greater than 2σ
 - Scans in Aⁿ may be premature
- Follow-ups:
 - pO data for nPDF constraints
 - Centrality-differential R_{AA}


Quenching in Small Systems

- ATLAS, ALICE, and CMS light-ions measurements all favor quenching
 - Global evidence stronger than CMS results alone
 - Fast analysis from all three experiments made this advance possible!

2023+2024 Integrated Luminosity for PbPb and pp ref.

Via LUM TWiki

- ullet Recorded PbPb total \sim 3.5 $\,\mathrm{nb}^{-1}$, per above, or about halfway to our 7 $\,\mathrm{nb}^{-1}$ target
- Reference pp sample delivered last year, \sim 1.5x our Run 2 reference from 2017
- Per-fill peak luminosity improved in 2024 over 2023; optimistic for 2025

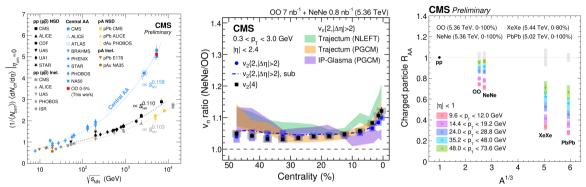
Christopher McGinn

47

Future Prospects

↑ 2026 LHC schedule

Future Prospects



↑ 2026 LHC schedule

← Alt. ions via Via Town Hall contribution from R.A. Fernandez

Alt. ions an option if we hit our PbPb target in 2025

Summary

- Measurement of bulk particle-production suggests 00 is akin to heavy-ions
- Flow measurements in OO and NeNe are a new tool for nuclear structure
- New results suggest quenching present in light-ions!