SPNG (de)convolution

Brett Viren

October 9, 2025

Brett Viren



Topics

@ New, general convolution kernels and operation in SPNG.
o Specific kernels for filtered-response deconvolution.

@ Possible future application



Basic formalism

Fourier-space representation: convolution=multiplication, deconvolution=division.

Convolve signal S with response R to get measure M, in presence of noise NV

M=S*«xR+N

Deconvolve measure M with response R subject to filter F' to estimate signal S
S=FxM/R

Filter is required in order to (at least) suppress divide-by-zero but also to attenuate real-world
noise /N which is otherwise ignored in this decon model.




Deconvolution is convolution

Recognize an important associative property:

S = (FxM)/R=F*(M/R)

“Deconvolution” is really just convolution with a kernel that happens to have a denominator.



Basic convolution C = T % K via FFT method

e If a dimension will have a cyclic convolution:
shape[dim] = T.size(dim)
e If a dimension will have a linear convolution!:
shape[dim] = T.size(dim) + K.size(dim) - 1
e Optionally, but only for linear, seek a faster DFT size:
shape[dim] = faster_dft(shape[dim])
e Pad both 7" and K to have the calculated shape.
@ The actual convolution:
C = ifft2(fft2(T) * fft2(K)

e Optionally, but only for linear, crop away “faster” or additionally the “linear” padding.

e Optionally, roll dimension to account for any “shifts”.

!This avoids cyclic artifacts but the convolution is still cyclic.



Shifts (rolls) in C' relative to T’

Artificial shift
A badly prepared kernel can introduce a non-physical “shift”.

e Eg, a mirror symmetry was not placed at sample zero.
@ Best to “pre-shift” the kernel K before use, but can “post-shift” the convolution C.

Logical shift

The linear convolution is still cyclic and early activity can show up in late samples.

@ Can “post-shift” C' and then relabel sample zero with an earlier value (eg time).

Natural shift

A kernel can naturally have a peak in a non-zero sample (FR and ER both have this).
@ Peak in 7" will appear to have moved in C.

o This is not a convolution error, but due to the nature of the kernel contents.
e An application may apply a logical shift

eg, “we move the signal from the response plane to the collection plane”




Examples of shifts in FR and ER kernel parts

Pitch (mm]

Pitch (mm]

Pitch (mm]

Response: Induced Current [*signed log"] U-plane

Time [us)
Response: Induced Current ["signed log"] V-plane

o

Time [us]

Response: Induced Current ["signed log"] W-plane

Amplitude [mV/C]

5S¢

F Peaking Time
4 — 05us

r — 10us
s — 20us

Fl — 30upus
RS
;
0f

| SEEEE T N S NN PR NN S RN S

0o 1t 2 3 4 5 6 7 8 9 10

Time [us]

FR’s “pitch=0" row needs to be at tensor row=0 to avoid
artificial shift.

In M = S * R, both naturally shift peaks later in time.
In S = F % M/R, natural shifts move peaks earlier in

time. These can wrap around to place columns at high
column number, causing a logical shift.

October 9, 2025

7/15



Real-world complications, /' and 1R are composed from parts.

Responses
o 2D field response, calculated with a sample period that differs from ADC'’s.
o 1D electronics response, analytical function.
@ 1D “RC” (or sometimes RC*RC) response with long time constant (large tensor).

Must combine these into one 2D R while also trying to exploit optimizations, especially w.r.t. 1D
and long-time responses.

v

Filters
e 1D “wire” aka “channel” dimension filter.
@ 1D pair of competing “time” filters (“gauss”, “wiener”).
e 1D multiple, competing additional filters for ROI finding (Lf/Hf, tight/loose).

Filters are an arbitrary choice and tend to made different compromises in signal/noise ratios
and charge conservation.
Each subset of filters is needed for different purpose/consumer.

15



SPNG components - filter and response

ITorchSpectrum interface

Returns a Fourier-space tensor of a given shape and provides a natural shape.

FilterKernel provides F for decon
Combines N 1D filters with outer product to form ND filter.

@ Supports up to 3D, higher with simple code extensions.

o Intended for (channel, wire) filter.

o Directly reimplements WCT’s analytical filter functions.

o Provides symmetric configuration for both low-pass and high-pass filters.

ResponseKernel provides R
Convolves FR and ER using configured standard components.
o Avoids artificial shift in FR channel dimension
Downsamples FR to match ER period, linear convolution provides the “natural shape”.

°
o Interval space padding (channel:central, time:end) + FFT to hit requested shape.
@ Uses recently added ThreadSafeCache for LRU-cache of R as function of shape.




Q: What about RC? A: deal with it in a follow-on decon.

The RC response is very long, many milliseconds,
O(10k) samples at 2 MHz. Best to handle it

separately.

=30 Performance

Including in the 2D R would require substantially more
memory.

__RC®RC @ The T tensor must also be padded to match

— Single RC @ Especially bloated for batched 7.

@ Avoid bloat with dedicated, serial, per batch or even
per channel, 1D RC decon.

o

Amplict:‘ude [1/RC]

Physics

0 1 2 3 4 5 Future “chunked streaming” mode (supernova burst)
Time [RC] requires special handling.
@ Extra samples from convolution padding must be
Typical: RC = 1 1ms. added to “next chunk”.
@ Long RC may changes problem from “next chunk” to
“next few chunks”. )




SPNG components - DeconKernel

An ITorchSpectrum that provides the F'/ R kernel
F egaFilterKernel
R egaResponseKernel
Very simple:
@ Delegates to the two kernels to get each of a requested shape.
e Divides
@ Optionally, caches the result.
» Note, as can ResponseKernel. No use in caching in both.
@ Returns the Fourier-space ratio.
This is NOT convolutional because the filter is assumed to itself be a sampling in Fourier-space.

@ No extra padding is introduced beyond what is in the R denominator.



SPNG components - KernelConvolve

An ITorchTensorFilter that applies C = T % K convolution
Per-dimension options

@ Apply cyclic (no padding) or linear convolution.
e Crop C by fixed amount, to remove “faster” padding or additionally “linear” padding.

» only if linear

@ Apply aroll to C after possible cropping.



Status and next steps

Current status
All described here exists and with fairly good unit test coverage.

o With Gemini, etc, there’s really no excuse not to have unit tests!

Near future
Finish Jsonnet config to do integration testing of KernelConvolve and friends.

@ Check that the actual results are reasonable.

Next next things

@ Add the RC decon follow-on node. Maybe can extend KernelConvolve to handle this 1D convo.
@ Retrofit and/or integrate the existing MP2/3 node.

Far in the future, but becoming a realistic goal.

It recently occurred to me that we are actually providing some of the “hard parts” of TPC detector simulation.
SPNG now has perhaps 20% of what is needed.




Other changes along the way

util/
@ Thread safe caches

@ JSON <+ C++ struct via Boost.Hana

spng/
@ Ported WCT’s LMN to Torch
o Implement TorchSetUnpacker giving tensor set -> tensor fanout.

@ Use thread safe cache for kernel tensors

@ Use Boost.Hana support for better configuration.




New, robust C++-layer configuration pattern

Standard WCT C++ configuration sucks. Interpreting JSON object is error prone, not standardized and is
verbose. Boost.Hana gives key to a better way. No new dependencies required.

struct MyComponentConfig {
int number = 42;
std::string tool = "";
b
BOOST_HANA_ADAPT_STRUCT (MyComponentConfig, number, tool); // some magic
class MyComponent : public ISomeInterface {

MyComponent m_cfg; // use C++ struct, not JSON!
//

}s

void MyComponent: :configure(const WireCell::Configuration& config) {
from_json(m_cfg, config); // type safe conversion

}

WireCell: :Configuration MyComponent::default_configuration() const {
return to_json(m_cfg); // and all automatic, thanks hana.

void MyComponent: :use_my_config() {
std::cout << "number=" << m_cfg.number << " tool=" << m_cfg.tool << "\n"
}

More improvements possible but requires radical schema-based approach a’la moo.


https://brettviren.github.io/moo/

