Probing Isospin Symmetry Breaking from Lattice QCD+QED

Xin-Yu Tuo

BNL HET lunch time talk Nov 13th, 2025

Outline

- Background & Motivation
- 2 Lattice Methods
 - 2. 1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
- 4 Application II: Light-Meson Leptonic Decays
- 5 Conclusions

Outline

- Background & Motivation
- 2 Lattice Methods
 - 2.1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
 - 4 Application II: Light-Meson Leptonic Decays
- 5 Conclusion

Isospin Breaking: A Tiny Difference That Shapes the Universe

Proton and neutron mass difference: isospin breaking effects

$$m_p = 938.2720882 \pm 0.0000003~{
m MeV/c^2} \ m_n = 939.5654205 \pm 0.0000005~{
m MeV/c^2} \ m_n - m_p pprox 1.293{
m MeV}, \qquad rac{m_n - m_p}{m_p} pprox 0.14\%$$

Isospin Breaking: A Tiny Difference That Shapes the Universe

Proton and neutron mass difference: isospin breaking effects

$$m_p = 938.2720882 \pm 0.0000003 \, \mathrm{MeV/c^2} \ m_n = 939.5654205 \pm 0.0000005 \, \mathrm{MeV/c^2} \ m_n - m_p pprox 1.293 \, \mathrm{MeV}, \qquad rac{m_n - m_p}{m_p} pprox 0.14\%$$

 $m_u \neq m_d$ Strong Isospin Breaking $q_u \neq q_d$ QED interaction

Isospin Breaking: A Tiny Difference That Shapes the Universe

Proton and neutron mass difference: isospin breaking effects

$$m_p = 938.2720882 \pm 0.0000003 \, \mathrm{MeV/c^2} \ m_n = 939.5654205 \pm 0.0000005 \, \mathrm{MeV/c^2} \ m_n - m_p pprox 1.293 \, \mathrm{MeV}, \qquad rac{m_n - m_p}{m_p} pprox 0.14\%$$

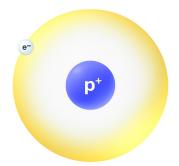
13 ***

 $m_u \neq m_d$ Strong Isospin Breaking $q_u \neq q_d$ QED interaction

ightharpoonup Why $m_n > m_p$ matters:

$$n \rightarrow p + e^- + \bar{\nu}_e$$
 $p \rightarrow$

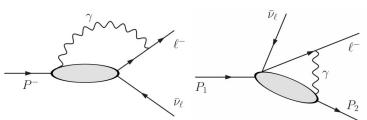
Hydrogen stability → star burning → elements, chemistry, life



Hydrogen-1 mass number: 1

A 0.14% mass difference creates the visible Universe

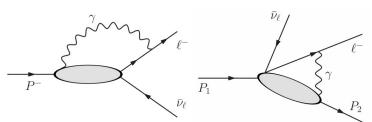
Leptonic and semi-leptonic decays



CKM unitarity: 2.4σ tension

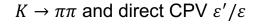
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9983(6)_{V_{ud}}(4)_{V_{us}}$$

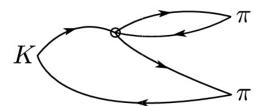
Leptonic and semi-leptonic decays



CKM unitarity: 2.4σ tension

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9983(6)_{V_{ud}}(4)_{V_{us}}$$

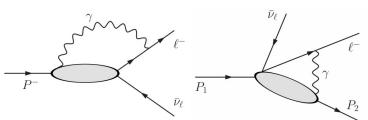




$$\Delta I = \frac{1}{2}$$
 rule: $\frac{A_0}{A_2} \approx 22.5$

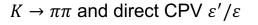
Isospin Breaking could be amplified

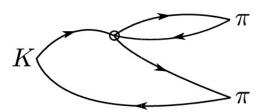
Leptonic and semi-leptonic decays



CKM unitarity: 2.4σ tension

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9983(6)_{V_{ud}}(4)_{V_{us}}$$

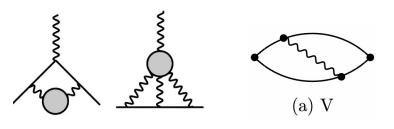




 $\Delta I = \frac{1}{2}$ rule: $\frac{A_0}{A_2} \approx 22.5$

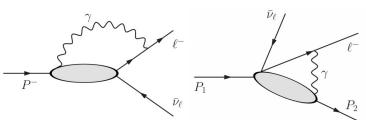
Isospin Breaking could be amplified

HVP and HLbL function in muon g-2



Isospin breaking $\delta a_{\mu}^{\rm HVP,LO} \sim 1\%$

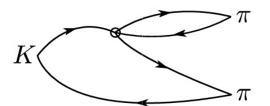
Leptonic and semi-leptonic decays



CKM unitarity: 2.4σ tension

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9983(6)_{V_{ud}}(4)_{V_{us}}$$

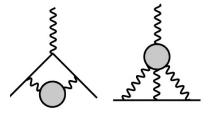
 $K \to \pi\pi$ and direct CPV ε'/ε

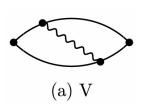


 $\Delta I = \frac{1}{2}$ rule: $\frac{A_0}{A_2} \approx 22.5$

Isospin Breaking could be amplified

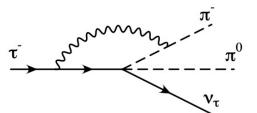
HVP and HLbL function in muon g-2





Isospin breaking $\delta a_{\mu}^{\rm HVP,LO} \sim 1\%$

Hadronic au decay and $e^+e^- o \pi\pi$



Related to $e^+e^- \to \pi\pi$ by isospin breaking Important input to HVP function

Challenges on lattice

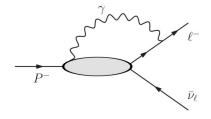
 $> m_u \neq m_d$, strong isospin breaking effects: scheme dependence different lattice groups define 'isosymmetric world' in different ways, direct comparison of IB results across collaborations is not straightforward.

Challenges on lattice

- $> m_u \neq m_d$, strong isospin breaking effects: scheme dependence different lattice groups define 'isosymmetric world' in different ways, direct comparison of IB results across collaborations is not straightforward.
- QED effects: Long-distance photon propagator
 - Non-local hadronic matrix elements, four-point function
 - Large finite volume effects

Challenges on lattice

- $> m_u \neq m_d$, strong isospin breaking effects: scheme dependence different lattice groups define 'isosymmetric world' in different ways, direct comparison of IB results across collaborations is not straightforward.
- QED effects: Long-distance photon propagator
 - Non-local hadronic matrix elements, four-point function
 - Large finite volume effects
- ➤ This talk: introducing techniques to overcome these challenges, and then apply them to two examples:
 - Baryon mass splitting
 - Light-meson leptonic decays



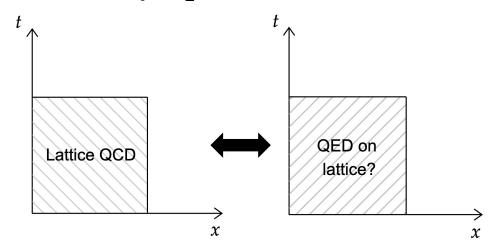
Outline

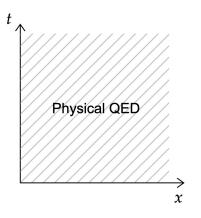
- 1 Background & Motivation
- 2 Lattice Methods
 - 2.1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
 - 4 Application II: Light-Meson Leptonic Decays
- 5 Conclusion

Outline

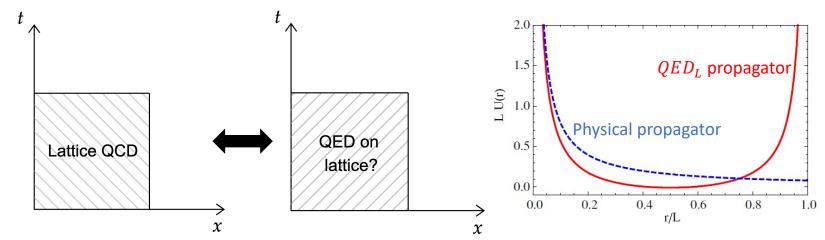
- 1 Background & Motivation
- 2 Lattice Methods
 - 2.1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
 - 4 Application II: Light-Meson Leptonic Decays
- 5 Conclusion

ightharpoonup Traditional QED_L method:

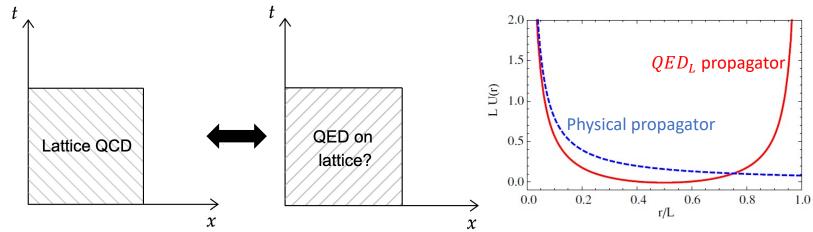




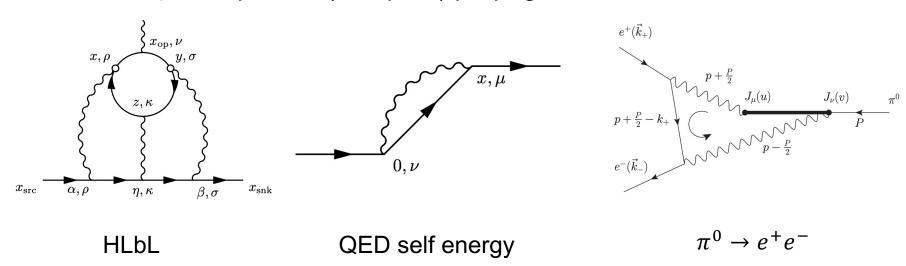
ightharpoonup Traditional QED_L method: Large finite-volume errors $\sim O(1/L)$



For Traditional QED_L method: Large finite-volume errors $\sim O(1/L)$

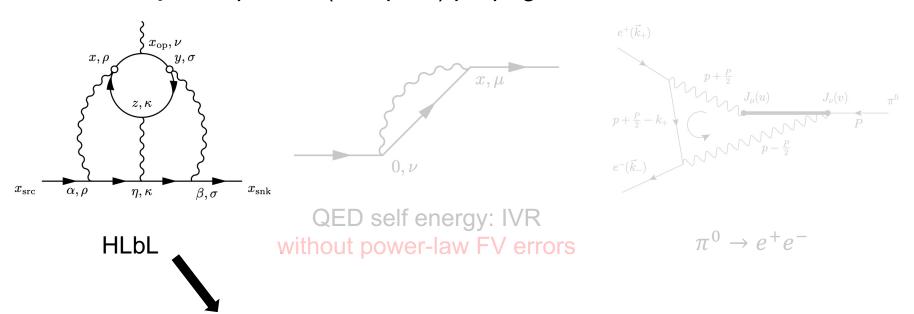


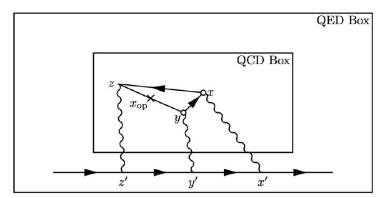
 \triangleright Idea of QED_{∞} : photon (or lepton) propagators in infinite volume



7/28

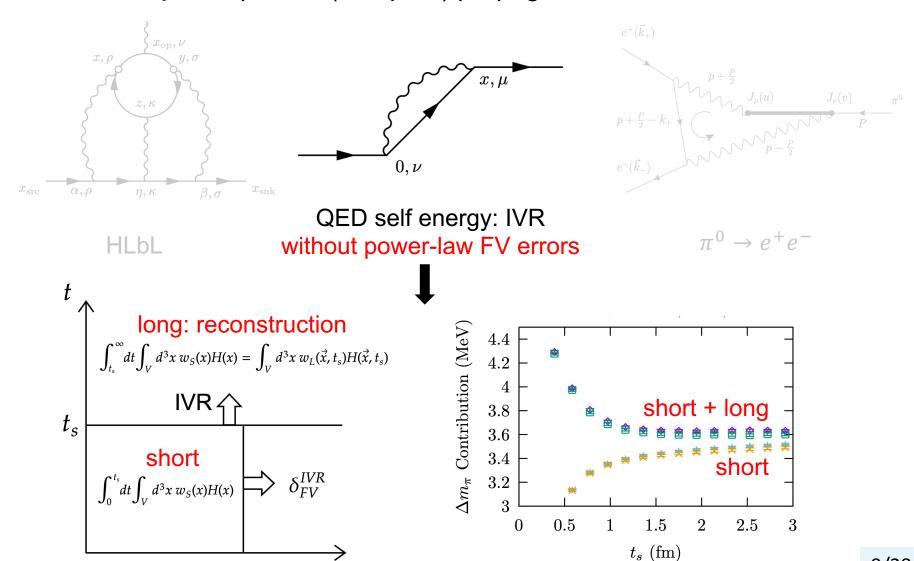
 \triangleright Idea of QED_{∞} : photon (or lepton) propagators in infinite volume





Thomas Blum, Norman Christ, Masashi Hayakawa, Taku Izubuchi, Luchang Jin, Chulwoo Jung, Christoph Lehner, PRD 96 (2017) 3, 034515, arxiv:1705.01067

 \triangleright Idea of QED_{∞} : photon (or lepton) propagators in infinite volume

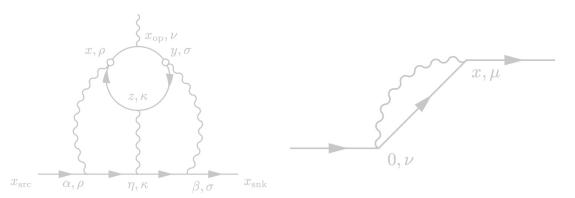


 χ

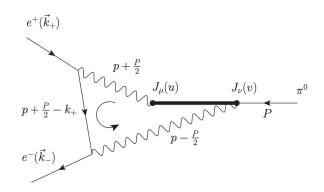
X. Feng, L. Jin., M. Roberdy, PRL 2022 [arXiv:2108.05311]

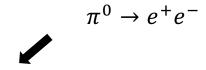
9/28

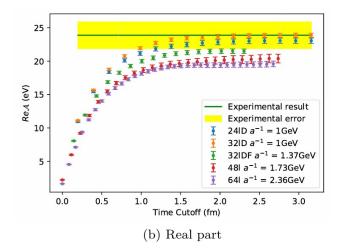
 \triangleright Idea of QED_{∞} : photon (or lepton) propagators in infinite volume



QED self energy: IVR without power-law FV errors







HLbL

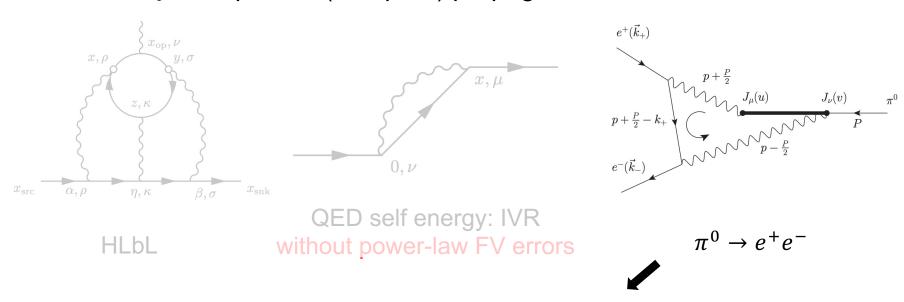
Generalization of QED_{∞} idea:

Not only the photon propagators, but also the lepton propagators are defined in infinite volume

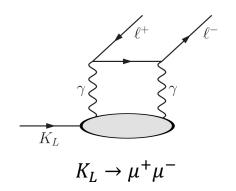
$$\mathcal{A} = \int \mathrm{d}^4 w \ L_{\mu\nu}(w) H_{\mu\nu}(w)$$

Norman Christ, Xu Feng, Luchang Jin, Cheng Tu, Yidi Zhao, PRL 130 (2023) 19, 191901, arxiv:2208.03834

 \triangleright Idea of QED_{∞} : photon (or lepton) propagators in infinite volume



Can we use the same method in $K_L \to \mu^+ \mu^-$?



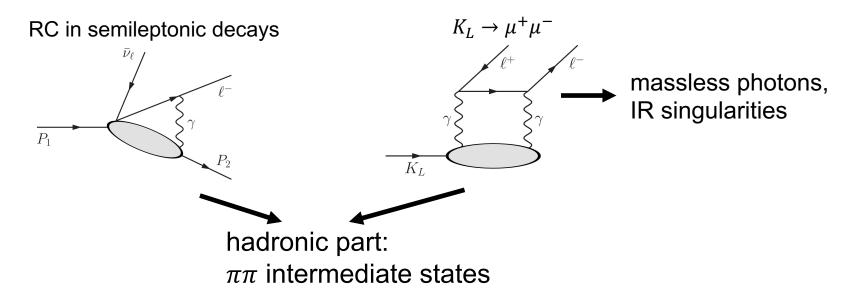
Generalization: 2π intermediate states

 \triangleright Large finite volume effects can arise from both the hadronic part $(2\pi \text{ states})$, and photon/lepton propagators

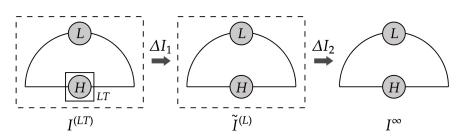


Generalization: 2π intermediate states

 \triangleright Large finite volume effects can arise from both the hadronic part $(2\pi \text{ states})$, and photon/lepton propagators

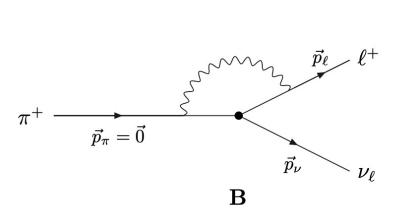


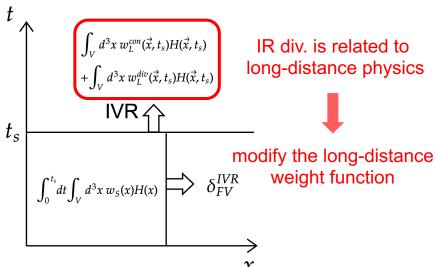
 \triangleright Generalization to 2π intermediate states: new finite-volume formalism



Generalization: decays with IR divergence

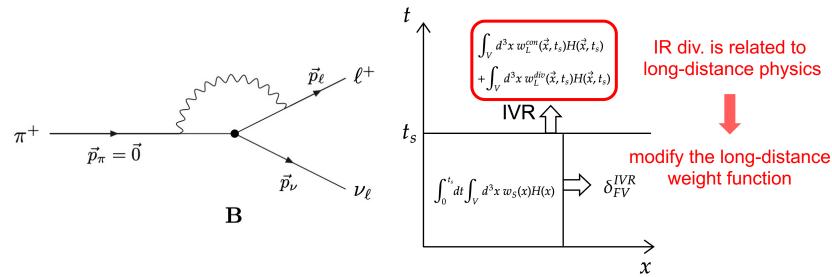
Example: RC in leptonic decays





Generalization: decays with IR divergence

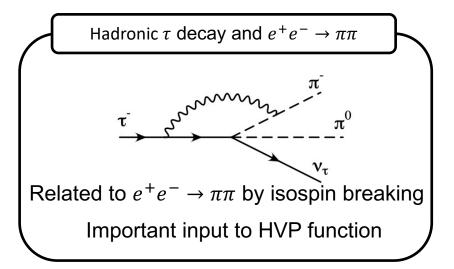
Example: RC in leptonic decays

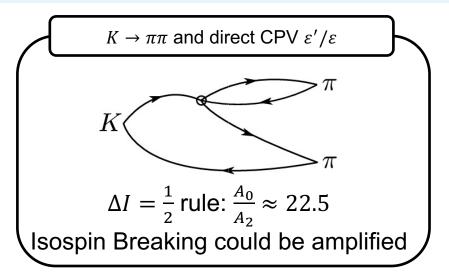


Subtraction of IR div.: $e^{i\vec{k}\cdot\vec{x}} = (e^{i\vec{k}\cdot\vec{x}} - 1) + 1$ trick

$$w_L^{\mu\rho}(t,\vec{x}) = i \frac{G_F V_{ud}^* e^2}{\sqrt{2}} \int \frac{d^3k}{(2\pi)^3} \int \frac{dk_E^0}{2\pi} \frac{\bar{L}^{\mu\rho}(k,p)}{((k_E^0)^2 + E_\gamma^2 - i\epsilon)((p_{\ell,E}^0 - k_E^0)^2 + E_\ell^2 - i\epsilon)} \times \left[\underbrace{\left(e^{-i\vec{k}\cdot\vec{x}} - 1\right)}_{W_L^{con}} + 1 \right] \frac{e^{ik_E^0 t_s}}{-ik_E^0 + E_\pi(\vec{k}) - m_\pi}$$

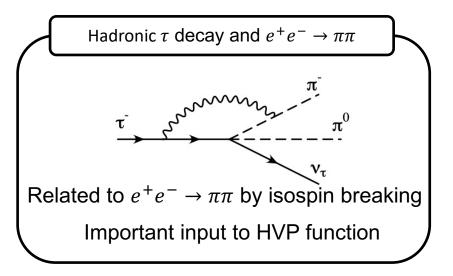
New frontier: 2π final states

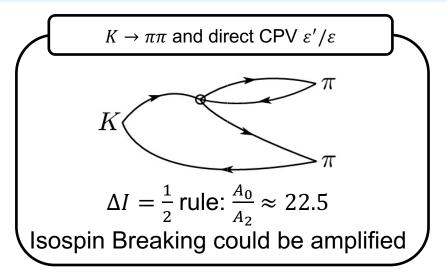




- The radiative corrections to the 2π final states are closely to related to e^+e^- collider, or any experiments with 2π final states.
- The finite-volume formalism is much more challenging.

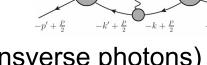
New frontier: 2π final states





- \triangleright The radiative corrections to the 2π final states are closely to related to e^+e^- collider, or any experiments with 2π final states.
- The finite-volume formalism is much more challenging.
- \triangleright Several attempts for ε'/ε :
 - \triangleright Simplified QED: coulomb potential effects to $\pi\pi$ scattering

Norman Christ, Xu Feng, Joseph Karpie, Tuan Nguyen, PRD 106 (2022) 014508



Using ChPT to estimate the size of QED effects beyond the coulomb potential (from transverse photons)

Outline

- 1 Background & Motivation
- 2 Lattice Methods
 - 2.1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
 - 4 Application II: Light-Meson Leptonic Decays
- 5 Conclusion

Strong IB corrections: scheme dependence

For any quantity $X(\alpha_{QED}; \{m_q\})$ as a function of α_{QED} and quark masses $\{m_q\} = \{m_u, m_d, m_s\}$ with mass dimension n,

$$X(0;\{m_q^{\mathrm{iso}}\})\,\Big|_{m_u^{\mathrm{iso}}=m_d^{\mathrm{iso}}}$$
 isosymmetric QCD world

 $X(lpha_{QED};\{m_q^{
m phy}\})$ physical QCD+QED world

$$\delta X_{IB} = rac{X(lpha_{QED}; \{m_q^{
m phy}\})}{X(0; \{m_q^{
m iso}\})} - 1$$
IB corrections

Strong IB corrections: scheme dependence

For any quantity $X(\alpha_{QED}; \{m_q\})$ as a function of α_{QED} and quark masses $\{m_q\} = \{m_u, m_d, m_s\}$ with mass dimension n,

$$X(0;\{m_q^{
m iso}\})\,\Big|_{m_u^{
m iso}=m_d^{
m iso}}$$
 isosymmetric QCD world

 $X(lpha_{QED};\{m_q^{
m phy}\})$ physical QCD+QED world

$$\delta X_{IB} = \frac{X(\alpha_{QED}; \{m_q^{\text{phy}}\})}{X(0; \{m_q^{\text{iso}}\})} - 1$$
IB corrections

- \blacktriangleright However, the quark masses on lattice $\{m_q^{\rm lat}\}$ are not same as $\{m_q^{\rm iso}\}$, $\{m_q^{\rm phy}\}$
- Traditional method: determine the quark masses and their differences in each "world", which depend on the specific isosymmetric QCD theory.
- Different lattice group might use different isosymmetric world, and thus different quark masses.

Strong IB corrections: new strategy

 $X(0;\{m_q^{\mathrm{iso}}\}) \,\Big|_{m_u^{\mathrm{iso}}=m_d^{\mathrm{iso}}}$ isosymmetric QCD world

 $X(lpha_{QED}; \{m_q^{
m phy}\})$ physical QCD+QED world

goal

Strong IB corrections: new strategy

reconstruct

Define a new quark-mass-insensitive quantity

$$\begin{split} X^{\mathrm{sub}} &= X - m_{\Omega}^n \left(c_1 \frac{m_{\pi^\pm}^2}{m_{\Omega}^2} + c_2 \frac{m_{K^\pm}^2}{m_{\Omega}^2} + c_1 \frac{m_{K^0}^2}{m_{\Omega}^2} \right) \\ &\text{with constraints } \frac{\partial X^{\mathrm{sub}}}{\partial m_{q_i}} \, |_{m_{q_i} = m_{q_i}^{\mathrm{lat}}} = 0 \end{split}$$

independent of quark masses direct calculation on lattice

$$Xig(0;ig\{m_q^{\mathrm{iso}}ig\}ig)\Big|_{m_u^{\mathrm{iso}}=m_d^{\mathrm{iso}}}$$
 isosymmetric QCD world

 $X(\alpha_{QED}; \{m_q^{\mathrm{phy}}\})$ physical QCD+QED world

goal

Strong IB corrections: new strategy

> Define a new quark-mass-insensitive quantity

$$\begin{split} X^{\mathrm{sub}} &= X - m_{\Omega}^n \left(c_1 \frac{m_{\pi^\pm}^2}{m_{\Omega}^2} + c_2 \frac{m_{K^\pm}^2}{m_{\Omega}^2} + c_1 \frac{m_{K^0}^2}{m_{\Omega}^2} \right) \\ &\text{with constraints } \frac{\partial X^{\mathrm{sub}}}{\partial m_{q_i}} \, |_{m_{q_i} = m_{q_i}^{\mathrm{lat}}} = 0 \end{split}$$

 $X(0; \{m_q^{\mathrm{iso}}\}) \Big|_{m_u^{\mathrm{iso}} = m_d^{\mathrm{iso}}}$ isosymmetric QCD world

 $X(lpha_{QED}; \{m_q^{
m phy}\})$ physical QCD+QED world

independent of quark masses direct calculation on lattice

goal

Strong IB correction as a function of meson masses

$$X\left(\alpha_{QED}; \left\{m_q^{\text{phy}}\right\}\right) - X\left(0; \left\{m_q^{\text{iso}}\right\}\right) = \delta X_{\text{sub}}^{QED} - \left[\sum_{i=1}^{3} c_i \left[\frac{\left(m_{P_i}^{\text{phy}}\right)^2}{\left(m_{\Omega}^{\text{phy}}\right)^{2-n}} - \frac{\left(m_{P_i}^{\text{iso}}\right)^2}{\left(m_{\Omega}^{\text{iso}}\right)^{2-n}}\right]\right]$$
QED
strong IB

 \succ In order to get strong IB, we only need to know the scheme-independent coefficient c_i . Physical meaning: the dependence on meson masses.

Lattice scale setting with the new quantity

- The first application of this new quantity, is to set the lattice spacing in isosymmetric QCD world, or QCD+QED world.
- \triangleright Choose X to be omega mass m_{Ω} . In pure QCD theory:

$$am_{\Omega}^{\text{sub}} = am_{\Omega}^{\text{lat}} - am_{\Omega}^{\text{lat}} \sum_{i=1}^{3} c_i \left(\frac{m_{P_i}^{\text{lat}}}{m_{\Omega}^{\text{lat}}}\right)^2$$

Lattice scale setting with the new quantity

- The first application of this new quantity, is to set the lattice spacing in isosymmetric QCD world, or QCD+QED world.
- \triangleright Choose X to be omega mass m_{Ω} . In pure QCD theory:

$$am_{\Omega}^{\text{sub}} = am_{\Omega}^{\text{lat}} - am_{\Omega}^{\text{lat}} \sum_{i=1}^{3} c_i \left(\frac{m_{P_i}^{\text{lat}}}{m_{\Omega}^{\text{lat}}}\right)^2$$

For any given isosymmetric QCD world

$$a^{\rm QCD} = \frac{am_{\Omega}^{\rm sub}}{m_{\Omega}^{\rm sub,iso}}$$

For QCD+QED world

$$a^{\text{QCD+QED}} = \frac{a(m_{\Omega}^{\text{sub}} + \delta_{\text{QED}} m_{\Omega}^{\text{sub}})}{m_{\Omega}^{\text{sub,phy}}}$$

New quantity is independent of quark masses

the scale setting is not sensitive to quark mass mistuning

Outline

- 1 Background & Motivation
- 2 Lattice Methods
 - 2.1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
- 4 Application II: Light-Meson Leptonic Decays
- 5 Conclusion

Application I: Baryon mass splitting

$$rac{m_p-m_n}{m_p}pprox 0.14\%$$

Based on our unpublished work, in collaboration with Xu Feng and Chenfei Lu. Choose X to be $m_n, m_p, m_{\Sigma}, m_{\Xi}, m_{\Lambda}$. Lattice spacing is set by m_{Ω} .

Application I: Baryon mass splitting

$$\frac{m_p-m_n}{m_p}\approx 0.14\%$$

Based on our unpublished work, in collaboration with Xu Feng and Chenfei Lu. Choose X to be $m_n, m_p, m_{\Sigma}, m_{\Xi}, m_{\Lambda}$. Lattice spacing is set by m_{Ω} .

$$\begin{split} m_B^{\mathrm{sub}} &= m_B - m_\Omega \left(c_1 \frac{m_{\pi^\pm}^2}{m_\Omega^2} + c_2 \frac{m_{K^\pm}^2}{m_\Omega^2} + c_1 \frac{m_{K^0}^2}{m_\Omega^2} \right) \\ &\text{with constraints } \frac{\partial m_B^{\mathrm{sub}}}{\partial m_{q_i}} |_{m_{q_i} = m_{q_i}^{\mathrm{lat}}} = 0 \end{split}$$

Baryon masses in QCD+QED world

Application I: Baryon mass splitting

$$\frac{m_p-m_n}{m_p}\approx 0.14\%$$

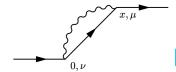
Based on our unpublished work, in collaboration with Xu Feng and Chenfei Lu. Choose X to be $m_n, m_p, m_{\Sigma}, m_{\Xi}, m_{\Lambda}$. Lattice spacing is set by m_{Ω} .

$$\begin{split} m_B^{\mathrm{sub}} &= m_B - m_\Omega \left(c_1 \frac{m_{\pi^\pm}^2}{m_\Omega^2} + c_2 \frac{m_{K^\pm}^2}{m_\Omega^2} + c_1 \frac{m_{K^0}^2}{m_\Omega^2} \right) \\ &\text{with constraints } \frac{\partial m_B^{\mathrm{sub}}}{\partial m_{q_i}} |_{m_{q_i} = m_{q_i}^{\mathrm{lat}}} = 0 \end{split}$$

Baryon masses in QCD+QED world

Isospin breaking correction to baryon masses:

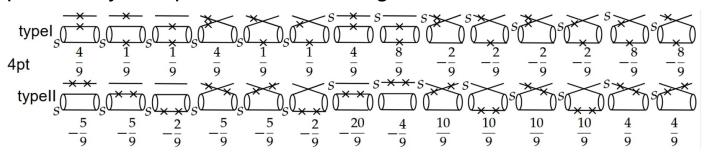
$$m_{B}\left(\alpha_{QED}; \left\{m_{q}^{\text{phy}}\right\}\right) - m_{B}\left(0; \left\{m_{q}^{\text{iso}}\right\}\right) = \delta m_{B,\text{sub}}^{QED} - \sum_{i=1}^{3} c_{i} \left[\frac{\left(m_{P_{i}}^{\text{phy}}\right)^{2}}{\left(m_{\Omega}^{\text{phy}}\right)^{2-n}} - \frac{\left(m_{P_{i}}^{\text{iso}}\right)^{2}}{\left(m_{\Omega}^{\text{iso}}\right)^{2-n}}\right]$$



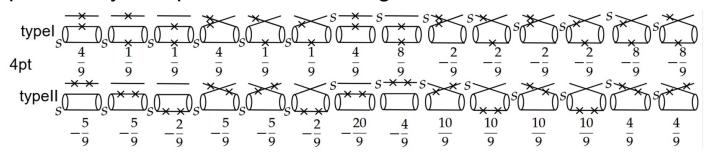
IVR method lattice 4-pt function

fixed by constraint lattice 3-pt function

Example: Λ baryon 4-pt functions, 28 diagrams after contraction

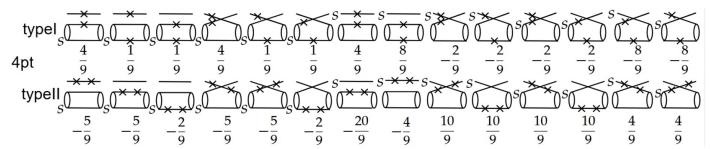


> Example: Λ baryon 4-pt functions, 28 diagrams after contraction

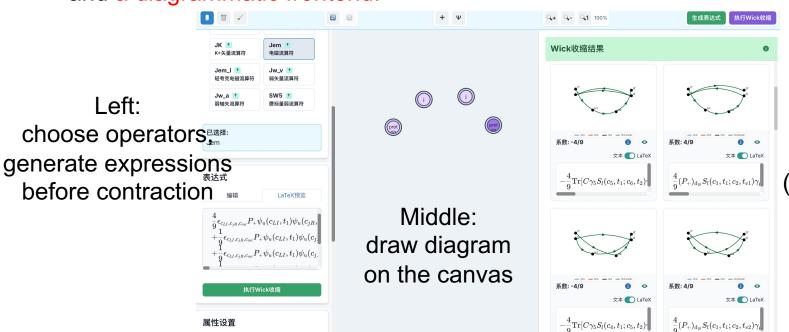


➤ To obtain reliable coefficients for each diagram, I developed an automatic diagrammatic contraction tool, consisting of a backend contraction module and a diagrammatic frontend.

Example: Λ baryon 4-pt functions, 28 diagrams after contraction

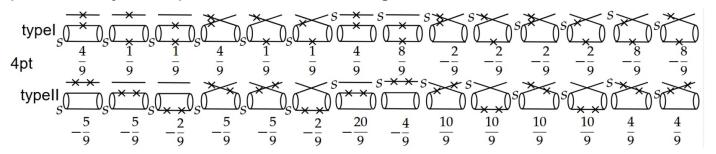


➤ To obtain reliable coefficients for each diagram, I developed an automatic diagrammatic contraction tool, consisting of a backend contraction module and a diagrammatic frontend.



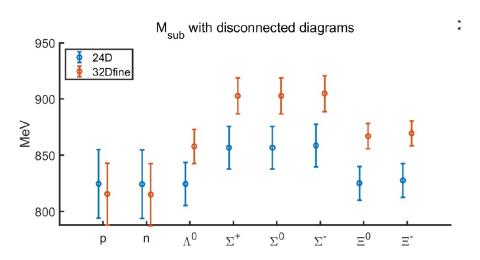
Right:
automatic
contractions
(diagrams and
expressions)

Example: Λ baryon 4-pt functions, 28 diagrams after contraction

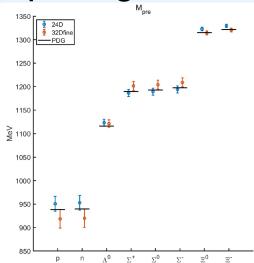


- Calculation of contraction diagrams:
 - Sparsed, smeared propagators in 24D and 32Dfine
 - Calculated by *qlattice* package developed by Luchang Jin.

Results: baryon mass splitting

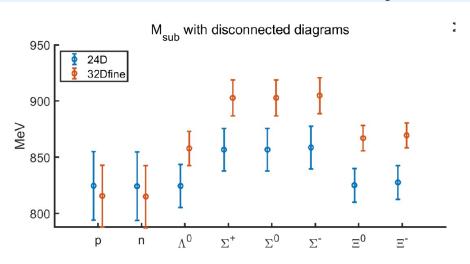


New quantity $m_{B,\mathrm{sub}}$ for baryon masses



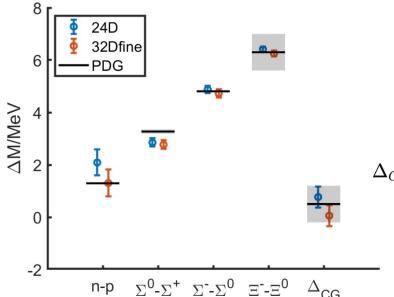
Prediction of physical baryon masses

Results: baryon mass splitting



New quantity $m_{B,sub}$ for baryon masses

Prediction of physical baryon masses



Baryon mass differences due to isospin breaking corrections

Coleman-Glashow mass relation

$$\Delta_{CG} \equiv (M_n - M_p) - (M_{\Sigma^-} - M_{\Sigma^+}) + (M_{\Xi^-} - M_{\Xi^0}) = 0$$

Outline

- 1 Background & Motivation
- 2 Lattice Methods
 - 2.1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
 - 4 Application II: Light-Meson Leptonic Decays
- 5 Conclusion

Isospin-breaking corrections in $K_{\ell 2}/\pi_{\ell 2}$

Define X as quantity $R_P(\alpha_{QED}; \{m_q\})$

$$R_P(lpha_{
m QED}; \{m_{q_i}\}) = rac{1}{C} rac{\Gamma_{P_{\ell 2(\gamma)}}(lpha_{
m QED}; \{m_{q_i}\})}{m_P(lpha_{
m QED}; \{m_{q_i}\})}$$
 $C = G_F^2 |V_P|^2 m_\ell^2 (1 - m_\ell^2 / m_P^2) / (4\pi)$

$$R_P(0;\{m_{q_i}^{
m iso}\}) = (F_P^{
m iso})^2$$
 isosymmetric QCD

$$R_P(lpha_{QED}; \{m_{q_i}^{
m phy}\})$$
 physical QCD+QED

$$R_{P}(\alpha_{\text{QED}}; \{m_{q_{i}}^{\text{phy}}\}) - R_{P}(0; \{m_{q_{i}}^{\text{iso}}\}) = \underbrace{\delta R_{P, \text{sub}}^{\text{QED}}} + \underbrace{\sum_{i=1}^{3} c_{i} \left((m_{P_{i}}^{\text{phy}})^{2} - (m_{P_{i}}^{\text{iso}})^{2}\right)}_{\text{QED}}$$
strong IB

Isospin-breaking corrections in $K_{\ell 2}/\pi_{\ell 2}$

► Define *X* as quantity $R_P(\alpha_{QED}; \{m_q\})$

$$R_P(\alpha_{ ext{QED}}; \{m_{q_i}\}) = rac{1}{C} rac{\Gamma_{P_{\ell 2(\gamma)}}(\alpha_{ ext{QED}}; \{m_{q_i}\})}{m_P(\alpha_{ ext{QED}}; \{m_{q_i}\})}$$
 $C = G_F^2 |V_P|^2 m_\ell^2 (1 - m_\ell^2 / m_P^2) / (4\pi)$

$$R_P(0;\{m_{q_i}^{
m iso}\}) = (F_P^{
m iso})^2$$
 isosymmetric QCD

$$R_P(lpha_{QED}; \{m_{q_i}^{
m phy}\})$$
 physical QCD+QED

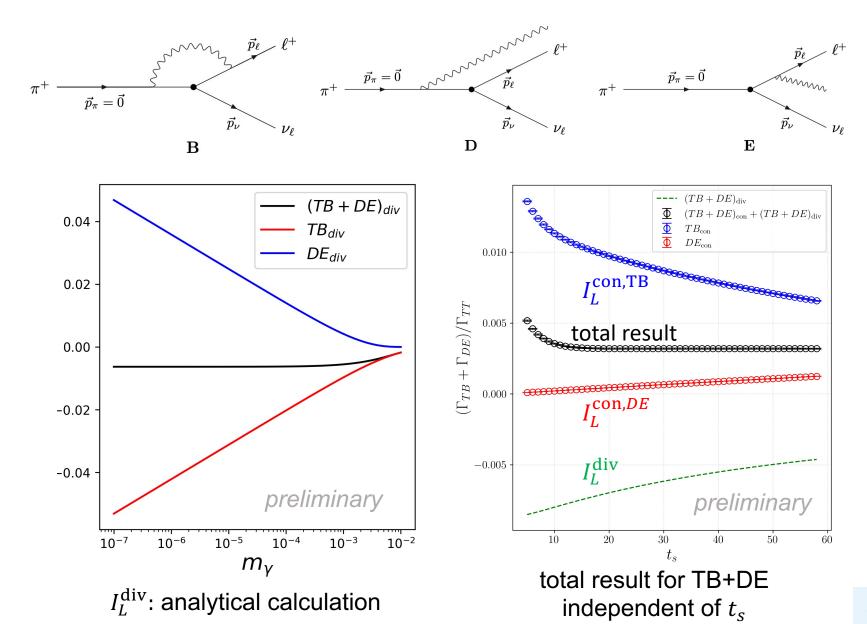
$$R_P(lpha_{ ext{QED}}; \{m_{q_i}^{ ext{phy}}\}) - R_P(0; \{m_{q_i}^{ ext{iso}}\}) = \delta R_{P, ext{sub}}^{ ext{QED}} + \sum_{i=1}^3 c_i \left((m_{P_i}^{ ext{phy}})^2 - (m_{P_i}^{ ext{iso}})^2
ight)$$
QED strong IB

 \succ c_i are determined on lattice. (meaning: dependence of F_P^2 on meson masses)

meson	c_1 (for m_{π^\pm})	c_2 (for m_{K^\pm})	c_3 (for m_{K^0})	
$P=\pi^{\pm}$	0.0149(15)	0.0011(9)	0.0011(9)	48I results
$P = K^{\pm}$	0.0014(10)	0.0147(9)	-0.0041(9)	

In ChPT, c_1 for pion and c_2 for kaon are given by the same LEC $L_5^r(\mu)$.

QED calculation example: TB+DE

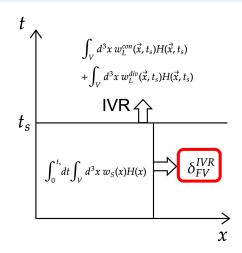


Finite-volume effects

> FV effects in IVR method (48I, $m_{\pi}L \sim 3.8$):

 $\delta_{\mathrm{FV}}^{\mathrm{IVR,pt}}$: point-particle approximation, $F^{(\pi)}(q^2)=1$

 $\delta_{\rm FV}^{\rm IVR,SD}$: structure-dependent, $F^{(\pi)}(q^2)=1+rac{\langle r_\pi^2
angle}{6}{
m q}^2$



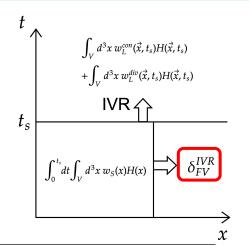
Finite-volume effects

> FV effects in IVR method (48I, $m_{\pi}L \sim 3.8$):

 $\delta_{\mathrm{FV}}^{\mathrm{IVR,pt}}$: point-particle approximation, $F^{(\pi)}(q^2)=1$

 $\delta_{\rm FV}^{\rm IVR,SD}$: structure-dependent, $F^{(\pi)}(q^2)=1+\frac{\langle r_\pi^2\rangle}{6}{\bf q}^2$

 \triangleright $O(e^{-mL/2})$ convergence with volume $V = L_{\text{ref}}^3$:



-0.01075 -	Lattice volume (481)		I, w. $\delta_{FV}^{IVR,SD}$
-0.01100 -	_		prol	iminary
-0.01125 -	.		pren	iminary
-0.01150		干 干 丰	= =	= =
-0.01175 -	⊥			
-0.01200 -	⊥		• •	
-0.01225 -	_ _	⊥		
Ļ		<u> </u>	± ±	± ± ±
5.0		12.5 15.0	17.5	20.0 22.5
		L _{ref} [fm]		

	π	K
$\delta_{ m FV}^{ m IVR,pt}/0.01$	+7.90%	+0.004%
$\delta_{\mathrm{FV}}^{\mathrm{IVR,SD}}/0.01$	+7.82%	+0.008%

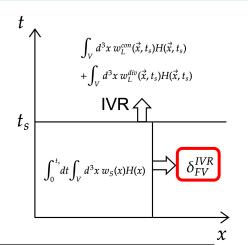
Finite-volume effects

> FV effects in IVR method (48I, $m_{\pi}L \sim 3.8$):

 $\delta_{\mathrm{FV}}^{\mathrm{IVR,pt}}$: point-particle approximation, $F^{(\pi)}(q^2)=1$

 $\delta_{\rm FV}^{\rm IVR,SD}$: structure-dependent, $F^{(\pi)}(q^2) = 1 + \frac{\langle r_\pi^2 \rangle}{6} {\bf q}^2$

 $ightharpoonup O(e^{-mL/2})$ convergence with volume $V=L_{\rm ref}^3$:



-0.01075 -	Lattice volume ((481)		N. $\delta_{FV}^{IVR,SD}$
-0.01100 - -0.01125 -			prelim	ninary
-0.01120		₹ ₹ ∓	T T T	+ +
-0.01175 - -0.01200 -		● ● ●	8 8 8	₩ ₩
-0.01225 -	_ † †			
5.	7.5 10.0	12.5 15.0 <i>L_{ref}</i> [fm]	17.5	20.0 22.5

	π	K
$\delta_{ m FV}^{ m IVR,pt}/0.01$	+7.90%	+0.004%
$\delta_{\mathrm{FV}}^{\mathrm{IVR,SD}}/0.01$	+7.82%	+0.008%

Comparison:

$$\delta_{\rm FV}^{\rm QED_L,pt}$$
 at $O\left(\frac{1}{L^3}\right) \sim 45\%$ error

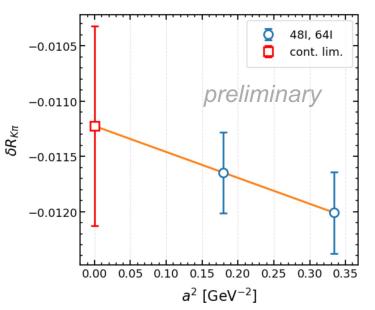
$$\delta_{\rm FV}^{\rm IVR,pt}{\sim}8\%~{\rm error}\\ \delta_{\rm FV}^{\rm IVR,SD}-\delta_{\rm FV}^{\rm IVR,pt}{\sim}0.08\%~{\rm error}$$

Result for $\delta R_{K\pi}$

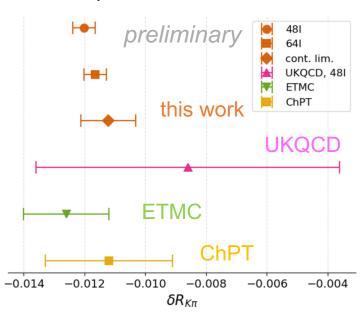
$$R_P(lpha_{ ext{QED}}; \{m_{q_i}^{ ext{phy}}\}) - R_P(0; \{m_{q_i}^{ ext{iso}}\}) = \delta R_{P, ext{sub}}^{ ext{QED}} + \sum_{i=1}^3 c_i \left((m_{P_i}^{ ext{phy}})^2 - (m_{P_i}^{ ext{iso}})^2 \right)$$

 \triangleright First lattice result with errors below O(10%)

Continuum extrapolation



Comparison with literature



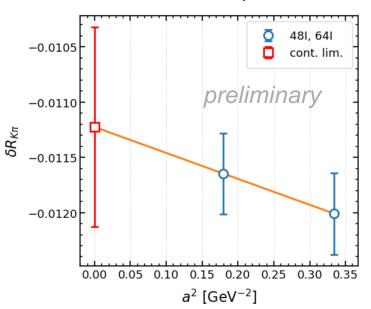
$$\delta R_{K\pi} = -0.01123(91)$$

Result for $\delta R_{K\pi}$

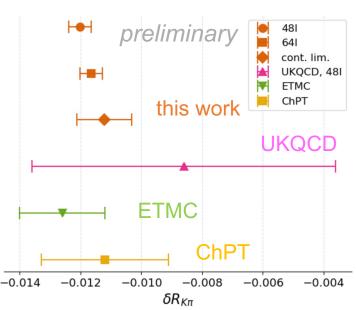
$$R_P(lpha_{ ext{QED}}; \{m_{q_i}^{ ext{phy}}\}) - R_P(0; \{m_{q_i}^{ ext{iso}}\}) = \delta R_{P, ext{sub}}^{ ext{QED}} + \sum_{i=1}^{3} c_i \left((m_{P_i}^{ ext{phy}})^2 - (m_{P_i}^{ ext{iso}})^2
ight)$$

 \triangleright First lattice result with errors below O(10%)

Continuum extrapolation



Comparison with literature



$$\delta R_{K\pi} = -0.01123(91)$$

$$|V_{us}|/|V_{ud}| = 0.23184(28)_{\text{exp}} (10)_{\delta R_{K\pi}} (65)_{f_P^{\text{iso}}}$$

Compare: previous lattice result

$$|V_{us}|/|V_{ud}| = 0.23154(28)_{\rm exp} \, (15)_{\delta R_{K\pi}} (45)_{\delta R_{K\pi}, \rm vol} (65)_{f_P^{\rm iso}}$$

From $0^+ \to 0^+ \beta$ decay: $|V_{us}|/|V_{ud}| = 0.2341(15)$

Outline

- 1 Background & Motivation
- 2 Lattice Methods
 - 2.1 QED effects: overview
 - 2. 2 Strong IB effects: new strategy
- 3 Application I: Baryon Mass Splitting
 - 4 Application II: Light-Meson Leptonic Decays
 - 5 Conclusions

Conclusions

- Isospin breaking, though small, plays a crucial role in precision frontier
 from baryon mass splitting to weak decays.
- ➤ The IVR method enables QED corrections without large finite-volume effects. The similar idea can be extended to general physical processes with photon and lepton propagators.
- ➤ A new scheme-independent approach for strong IB allows consistent comparison across lattice calculations.
- \blacktriangleright Applied to baryon mass differences, our method successfully predict the mass differences for n, p, Σ, Ξ , and check the Coleman–Glashow mass relation.
- Applied to leptonic decays, we obtain the first lattice result with sub-10% accuracy.