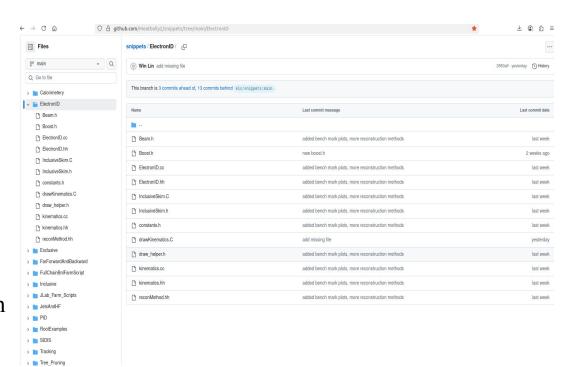
Update on eID Performance and Cross-section for eHe3

Shubham Yadav

Inclusive PWG meeting

14/10/2025

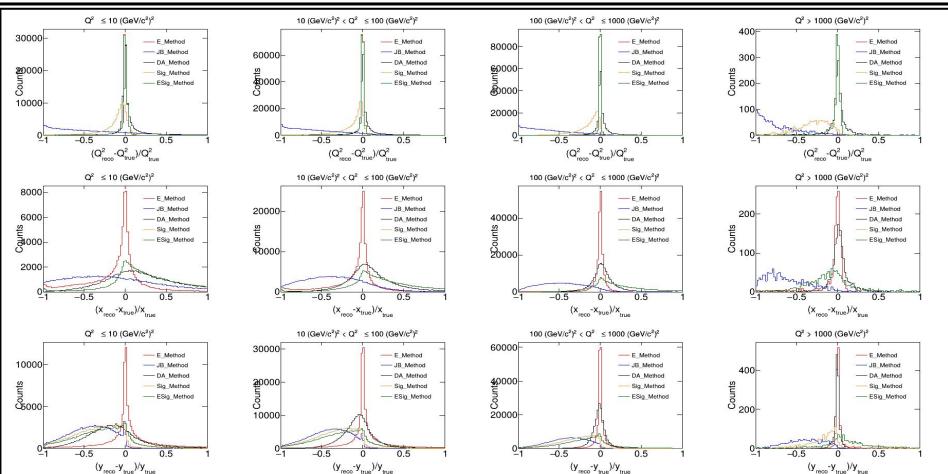

eID based reconstruction

https://github.com/Meatbally2/snippets/tree/main/ElectronID

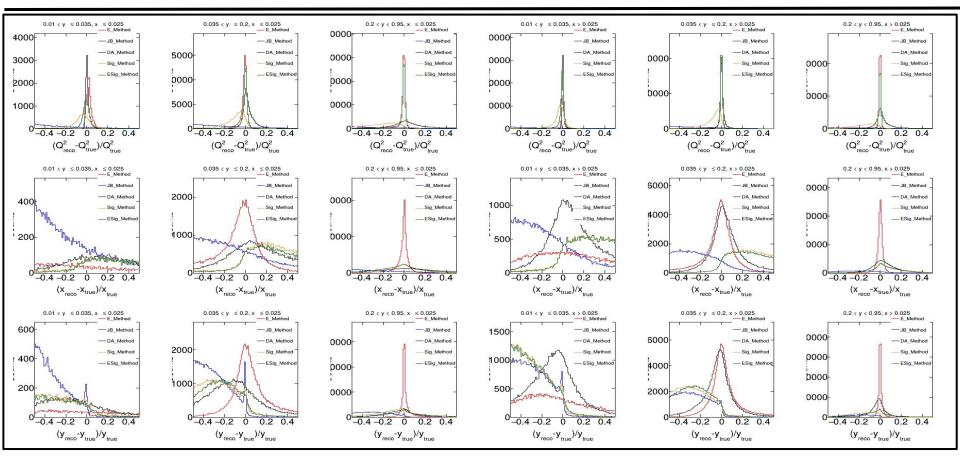
- *Initially developed by Tyler.
- *Win has added more files.

Truth → MC information

Reco Reconstructed information


Various Reconstruction Method

Method name	Observables	у	Q^2	$x \cdot E_p$
Electron (e)	$[E_0, E, \theta]$	$1 - \frac{\Sigma_e}{2E_0}$	$\frac{E^2 \sin^2 \theta}{1-y}$	$\frac{E(1+\cos\theta)}{2y}$
Double angle (DA) [6,7]	$[E_0,\; heta,\; \gamma]$	$\frac{\tan\frac{\gamma}{2}}{\tan\frac{\gamma}{2} + \tan\frac{\theta}{2}}$	$4E_0^2\cot^2\frac{\theta}{2}(1-y)$	$\frac{Q^2}{4E_0y}$
Hadron (h, JB) [4]	$[E_0, \Sigma, \gamma]$	$\frac{\Sigma}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
ISigma (I Σ) [9]	$[E, \theta, \Sigma]$	$\frac{\Sigma}{\Sigma + \Sigma_c}$	$\frac{E^2 \sin^2 \theta}{1 - y}$	$\frac{E(1+\cos\theta)}{2y}$
IDA [7]	$[E, \theta, \gamma]$	y_{DA}	$\frac{E^2 \sin^2 \theta}{1 - y}$	$\frac{E(1+\cos\theta)}{2y}$
$E_0 E \Sigma$	$[E_0, E, \Sigma]$	y_h	$4E_0E - 4E_0^2(1-y)$	$\frac{Q^2}{2\Sigma}$
$E_0 heta \Sigma$	$[E_0,\; heta,\; \Sigma]$	y_h	$4E_0^2\cot^2\frac{\theta}{2}(1-y)$	$\frac{Q^2}{2\Sigma}$
$\theta \Sigma \gamma$ [8]	$[\theta, \ \Sigma, \ \gamma]$	y_{DA}	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
Double energy (A4) [7]	$[E_0, E, E_h]$	$\frac{E - E_0}{(x E_p) - E_0}$	$4E_0y(xE_p)$	$E+E_h-E_0$
$E\Sigma T$	$[E, \Sigma, T]$	$\frac{\Sigma}{\Sigma + E \pm \sqrt{E^2 + T^2}}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{2\Sigma}$
E_0ET	$[E_0, E, T]$	$\frac{2E_0 - E \mp \sqrt{E^2 - T^2}}{2E_0}$	$\frac{T^2}{1-y}$	$\frac{Q^2}{4E_0y}$
Sigma (Σ) [9]	$[E_0, E, \Sigma, \theta]$	$y_{\mathrm{I}\Sigma}$	$Q_{\mathrm{I}\Sigma}^2$	$\frac{Q^2}{4E_0y}$
eSigma ($e\Sigma$) [9]	$[E_0, E, \Sigma, \theta]$	$rac{2E_0\Sigma}{(\Sigma+\Sigma_e)^2}$	$2E_0E(1+\cos\theta)$	$\frac{E(1+\cos\theta)(\Sigma+\Sigma_e)}{2\Sigma}$

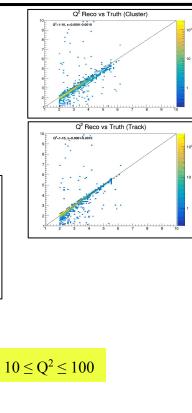

https://arxiv.org/pdf/2110.05505

Resolution performance of different Recon Methods at Q² ranges

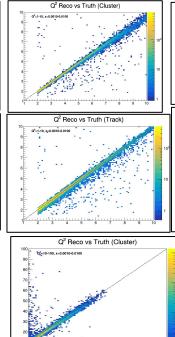
epic sim. 25.07.0 eHe3 10x166

Resolution performance of different Recon Methods at x&y ranges

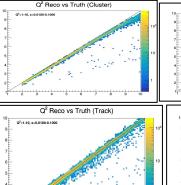
*For this analysis, I'm going with electron method


Response in (x,Q^2) Bins epic sim. 25.07.0

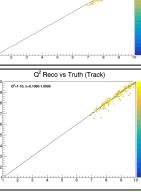
eHe3 10x166


and x

Plots are Q²_{Reco} vs Q²_{truth} in different ranges of Q²

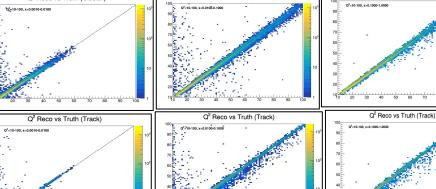

 $1 \le Q^2 \le 10$

 $0.0001 \le x \le 0.001$



 $0.001 \le x \le 0.01$

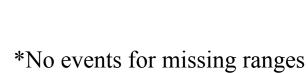
Q2 Reco vs Truth (Cluster)

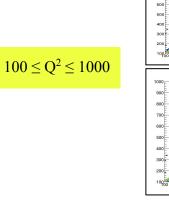

 $0.01 \le x \le 0.1$

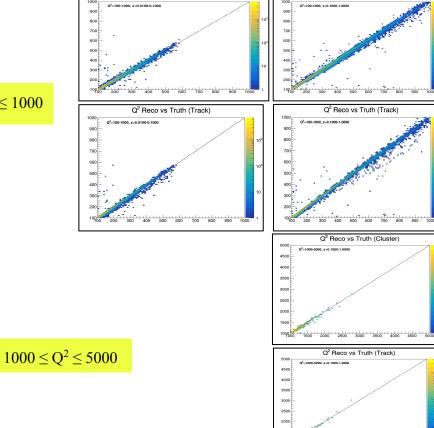
Q2 Reco vs Truth (Cluster)

 $0.1 \le x \le 1$

Q2 Reco vs Truth (Cluster)

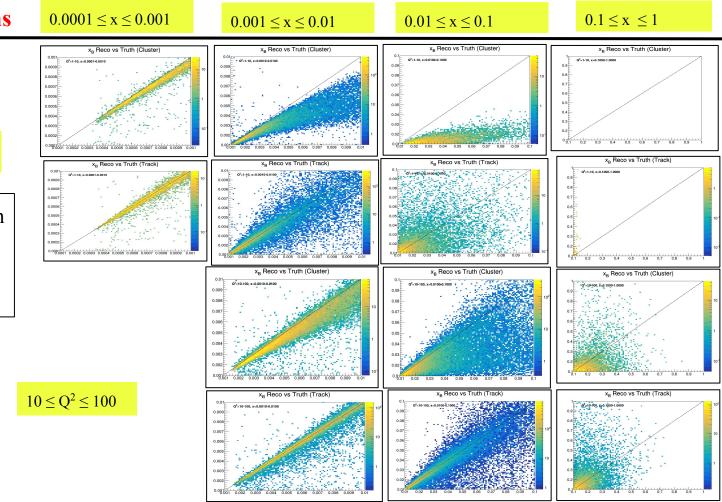

Response in (x,Q²) Bins


 $0.01 \le x \le 0.1$


Q² Reco vs Truth (Cluster)

 $0.1 \le x \le 1$

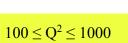
Q2 Reco vs Truth (Cluster)

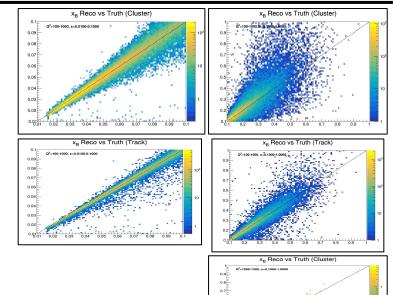


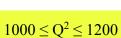
Response in (x,Q²) Bins epic sim. 25.07.0 eHe3 10x166

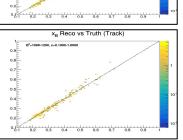
 $1 \le Q^2 \le 10$

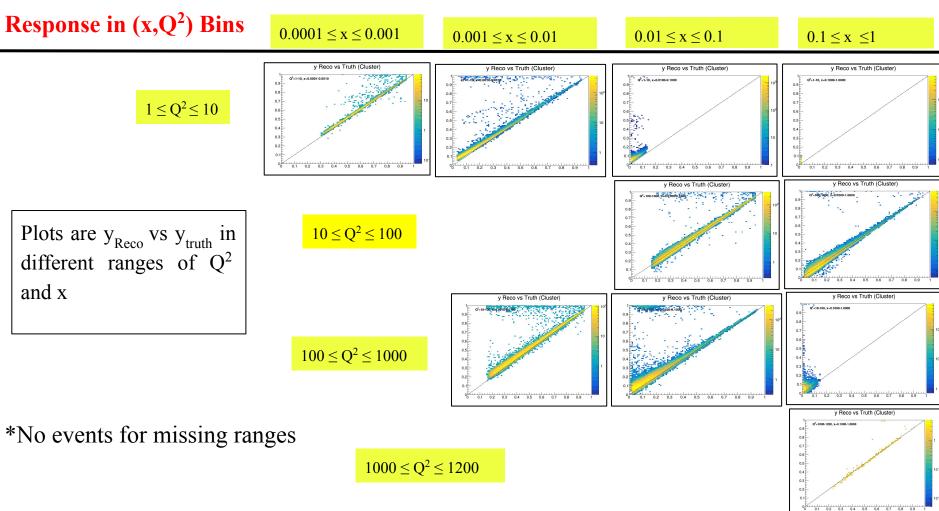
Plots are x_{Reco} vs x_{truth} in different ranges of Q^2 and x

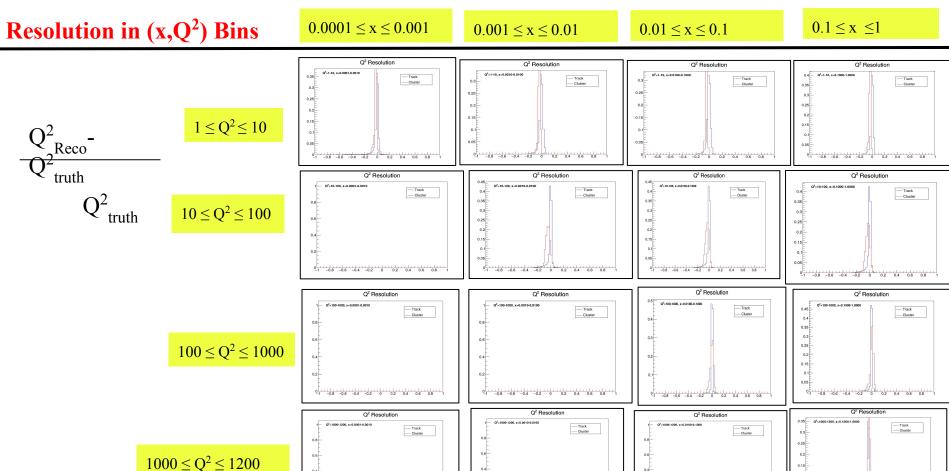

Response in (x,Q^2) Bins


 $0.01 \le x \le 0.1$


 $0.1 \le x \le 1$

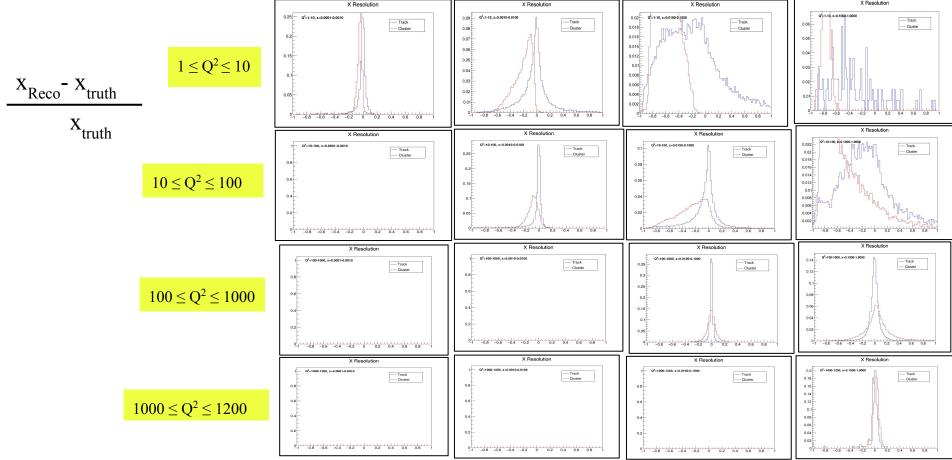



*No events for missing ranges



-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Resolution in (x,Q²) Bins


 $0.0001 \le x \le 0.001$

 $0.001 \le x \le 0.01$

 $0.01 \le x \le 0.1$

X Resolution

 $0.1 \le x \le 1$

- Cluster

Resolution in (x,Q^2) Bins

 $1 \le Q^2 \le 10$

 $10 \le Q^2 \le 100$

Q²=1-10, x=0,0001-0,0010 - Track - Cluster

 $0.0001 \le x \le 0.001$

— Track — Cluster

Q2 10-100, x 0.0010-0.0100

 $0.001 \le x \le 0.01$

Q2-1-10, x=0.0100-0.1000 — Track — Cluster

 $0.01 \le x \le 0.1$

0.025 Q°=10-100, x=0.1000-1.0000

 $0.1 \le x \le 1$

0.045 Q2=1-10, x=0.1000-1.0000

y_{truth}

y_{Reco}- y_{truth}

Q2=10-100, x=0.0001-0.0010 - Track - Cluster 0 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

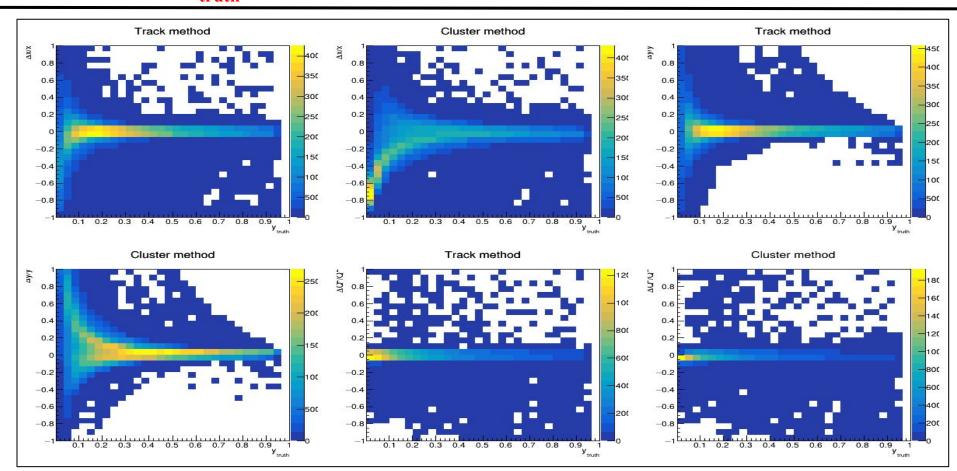
0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

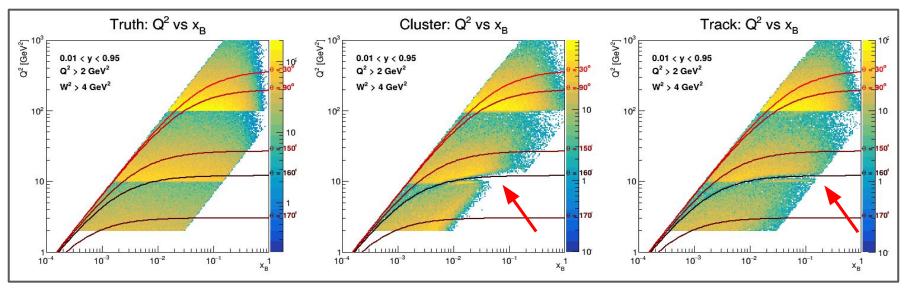
— Track — Cluster

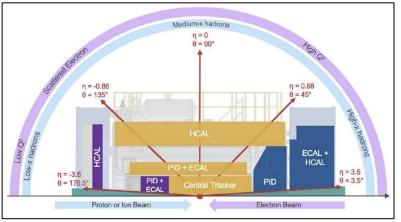
Q²=100-1000, x=0.0100-0.1000

0,18 Q2=100-1000, x=0.1000-1.0000 - Track - Cluster

 $100 \le Q^2 \le 1000$

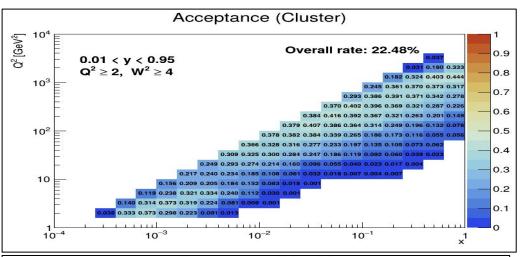

0 1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 Q*=1000-1200, x=0.0001-0.0010

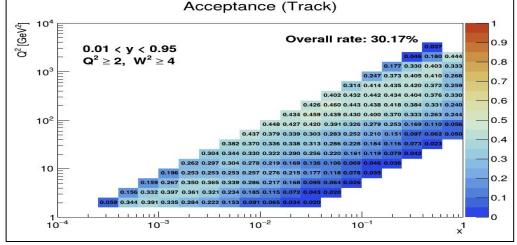

0-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8


Q2=1000-1200, x+0.0010-0.0100

Q²=1000-1200, x=0.0100-0.1000 - Track - Cluster

 $1000 \le Q^2 \le 1200$

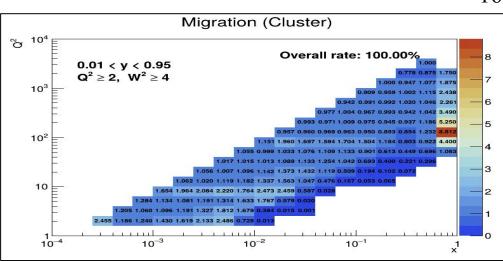

epic sim. 25.07.0 eHe3 10x166

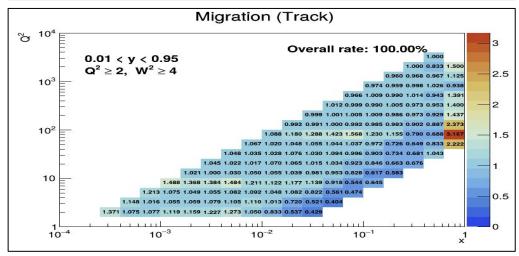

*Similar inefficiency in Win's Analysis

epic sim. 25.07.0 eHe3 (10x166)

$$C_{acc} = \frac{N_{rec}(x_{gen}, Q_{gen}^2)}{N_{gen}(x_{gen}, Q_{gen}^2)}$$
Tyler's Slide

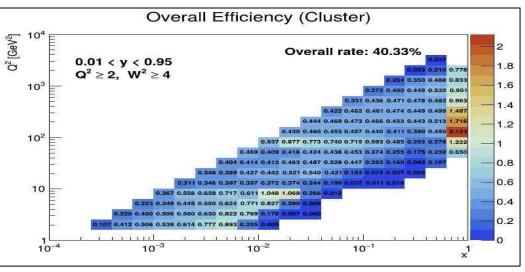
*Poor Acceptance Rate, will try to improve using mix Recon. Methods for different ranges of observables.

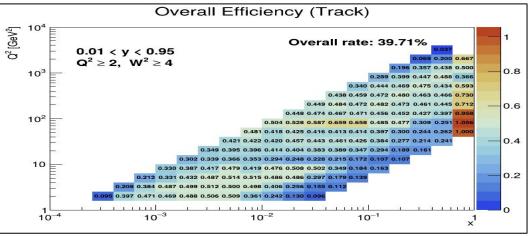




epic sim. 25.07.0 eHe3 (10x166)

$$C_{bin} = \frac{N_{rec}(x_{rec}, Q_{rec}^2)}{N_{rec}(x_{gen}, Q_{gen}^2)}$$
Tyler's Slide


*No QED effect involved

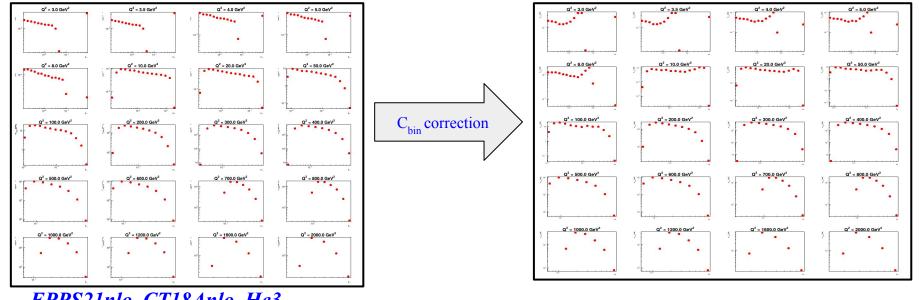


epic sim. 25.07.0 eHe3 (10x166)

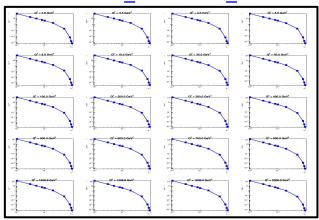
$$C_{\text{tot}} = C_{\text{acc}} \cdot C_{\text{bin}} = \frac{N_{\text{rec}}(x_{\text{rec}}, Q_{\text{rec}}^2)}{N_{\text{gen}}(x_{\text{gen}}, Q_{\text{gen}}^2)}$$
Win's slide

Cross section from simulation files

$$\frac{d\sigma}{dx_B dQ^2} = \frac{N}{C_{acc} C_{bin} L \cdot \Delta x_B \Delta Q^2}$$


$$\sigma_{red} = \left(\frac{d\sigma}{dx_B dQ^2}\right) \cdot \frac{Q^4 x_B}{2\pi\alpha^2 Y_+ \hbar^2 c^2}$$
$$Y_+ = 1 + (1 - y)^2$$

• Acceptance and bin migration corrections from simulation

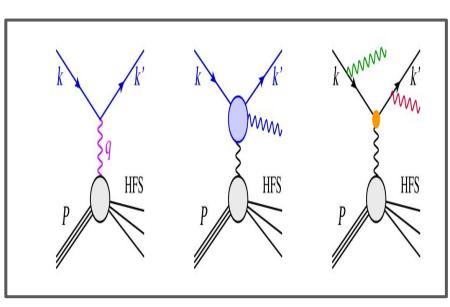

$$C_{acc} = \frac{N_{rec}(x_{gen}, Q_{gen}^2)}{N_{gen}(x_{gen}, Q_{gen}^2)} \qquad C_{bin} = \frac{N_{rec}(x_{rec}, Q_{rec}^2)}{N_{rec}(x_{gen}, Q_{gen}^2)}$$

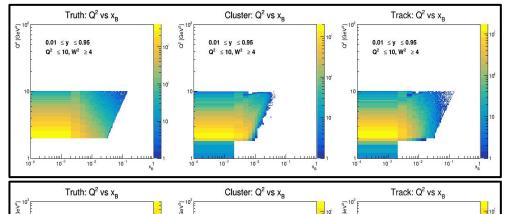
- ullet Scale counts to integrated luminosity of $L=1\,$ fb-1 .
- Bin volumes $\Delta x_B \Delta Q^2$ from Monte Carlo (account for cuts)
- Using same simulated events for analysis and corrections...
 by definition will obtain the generated distributions
- Detector and reconstruction performance determines size of the corrections

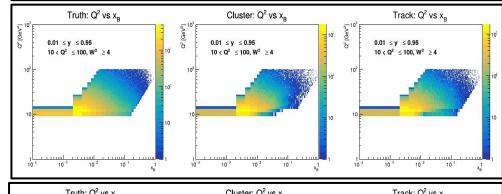
Tyler's Slide

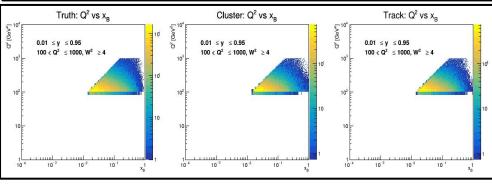
EPPS21nlo CT18Anlo He3

eID based Reconstruction


eHe3(10x166GeV) *25.07.0


Electron method


Details of Analysis


- Only track Information
- Logarithmic binning
- Bin widths ($\Delta x \times \Delta Q^2$)

*Extra Slides

$$C_{bin} = \frac{N_{rec}(x_{rec}, Q_{rec}^2)}{N_{rec}(x_{gen}, Q_{gen}^2)}$$

double C_{bin} = double(Nrec_recbin[ix_bin][iq]) / Nrec[ix_bin][iq];

What are these quantities

Variable	Meaning	Filled in the event loop
Ngen[ix][iq]	Number of generated events in the true (MC) bin (xB, Q^2)	Ngen[ix][iq]++
Nrec[ix][iq]	Number of reconstructed events (that pass detector selection) corresponding to the true MC bin	incremented if positive_eID is true
Nrec_genbin[ix][iq]	Number of reconstructed events whose reconstructed bin equals the generated bin (same (xB, Q²))	<pre>if(ix==ix_rec && iq==iq_rec)</pre>
Nrec_recbin[ix_rec] [iq_rec]	Number of events reconstructed in this reconstructed bin, regardless of where they were generated	<pre>Nrec_recbin[ix_rec][iq_rec]+</pre>