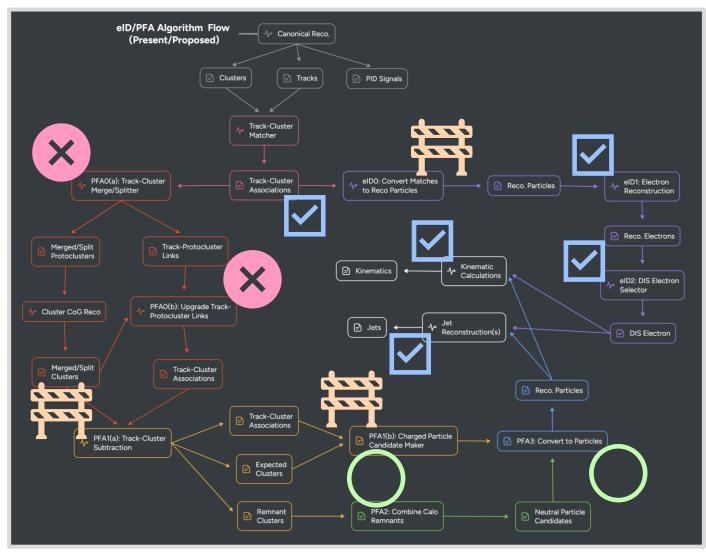
PF Development | Roadmap & Tracking


- Right: Current PF roadmap
 - Minor updates since Physics Readiness Workshop...
- Spreadsheet for tracking tasks can be found here
 - 4 Huge thanks to Shujie for sharing the template!
 - Task list at end of slide deck

= To-do

= In progress

Done/already in ElCrecon

Blocked

PF Development | Contributing

- Set up <u>branch</u> of my ElCrecon fork for development testing
 - Check it out with:
 git clone git@github.com:ruse-traveler/EICrecon.git
 git checkout –B pfa-dev-base
 - Has blank plugin and empty directories for where new PF code should go
- PF code will be collected into a new particle category:
 - Algorithms go in src/algorithms/particle
 - Factories in src/factories/particle
 - Factory generators should be added to src/global/particle/particle.cc
 - And output collections should get added to list at line 388 of
 - src/services/io/podio/JEventProcessorPODIO.cc

- FYI: still juggling PRs, so particle category hasn't been introduced to ElCrecon main yet
 - Recommend following these steps when making a PR:

```
git clone git@github.com:eic/ElCrecon.git [if needed] git checkout -B <my-pfa-contribution>
[copy code from test area into appropriate directories]
[commit changes and push to <my-pfa-contribution>]
```

- Reminder: for anyone who hasn't done ElCrecon development recently
 - Adding a new algorithm making these changes:
 - Making *.cc, *.h, and *Config.h files in src/algorithms/particle
 - Making a *_factory.h file in src/factories/particle
 - Adding appropriate generators to **particle.cc** plugin
 - Adding appropriate collection so
 JEventProcessorPODIO.cc
 - Examples can be found <u>here</u>

PF Development | PFA2 | Notes

- Calo Remnant Combiner: combines remnant clusters from subtractor into neutral particle candidates
 - Assignee: Subhadip

The algorithm:

- 1) Combine nearby ECal, HCal clusters
 - a) Identify seed ECal cluster
 - b) Merge all ECal, HCal clusters in Δr_{add}^{em} , Δr_{add}^{h} of seed and create neutral candidate
 - c) Repeat until no ECal clusters are left
- 2) Combine remaining HCal clusters
 - a) Identify seed HCal cluster
 - b) Add all HCal clusters in Δr_{add}^h of seed and create neutral candidate
 - c) Repeat until no HCal clusters are left

Inputs:

- Remnant ECal clusters
- Remnant HCal clusters

Outputs:

Neutral particle candidates

Note: maybe make inputs vectors of collections?

Parameters:

- $-\Delta \mathbf{r}_{add}^{em}$: window to add ECal clusters
- $-\Delta r_{add}^{h}$: window to add HCal clusters

PF Development | PFA3 | Notes (1/2)

 Particle Converter: takes candidate particles and turns them into reconstructed particles

Assignee: TBD

The algorithm:

- Assign preliminary PID based on what info is available (next slide)
- 2) Calculate track energy

$$E_{trk} = p_{trk} \oplus m_{pid}$$

3) Calculate calorimeter energy

$$E_{cal} = N_{cal} \left(\sum w_{em} E_{em} + \sum w_h E_h \right)$$

- 4) If charged particle and $k_{use\ \sigma?}$, calculate resolution-weighted average of E_{cal} and E_{trk}
- 5) Calculate remaining kinematics and create reconstructed particle

Inputs:

- Candidate charged/neutral particles
- Reconstructed charged particles (for PID)
- Primary vertices (for neutral candidates)

Outputs:

Reconstructed particles

Parameters:

- $k_{use \sigma?}$: turn on/off using resolution in energy calculation for charged candidates
- N_{cal}: normalization of calo energy
- σ_{trk} : tracking resolution to use in energy calc
- σ_{cal} : calo resolution to use in energy calc

PF Development | PFA3 | Notes (2/2)

- Particle Converter: takes candidate particles and turns them into reconstructed particles
 - Assignee: TBD

o The algorithm:

- 1) Assign preliminary PID based on what info is available (sub-routine to right)
- 2) Calculate track energy

$$E_{trk} = p_{trk} \oplus m_{pid}$$

3) Calculate calorimeter energy

$$E_{cal} = N_{cal} \left(\sum w_{em} E_{em} + \sum w_h E_h \right)$$

- 4) If charged particle and $k_{use\ \sigma?}$, calculate resolution-weighted average of E_{cal} and E_{trk}
- 5) Calculate remaining kinematics and create reconstructed particle

Sub-routine: what PDG to assign?

- 1) Check what info is present:
 - a) If at least 1 related track, hasTrk = TRUE
 - b) If at least 1 EMCal cluster, hasECal = TRUE
 - c) If at least 1 HCal cluster, hasHCal = TRUE
- 2) If hasTrk
 - a) Use track to retrieve reco charged particle
 - b) PDG = chrgPar.getPDG()
- 3) Else
 - a) If hasECal and !hasHCal, PDG = <Photon>
 - b) If hasECal and hasHCal, PDG = <Neutron>
 - c) If !hasECal and hasHCal, PDG = <???>

Note: for initial pass electron/muon and pi0/gamma discrimination deferred to downstream

Also can refine neutral PID by checking relative ECal vs. HCal contribution

PF Development | Task List (1/3)

Tasks	Issue/PR/Note	Est. labor time*	Assignee
PFA-1: deprecate MatchClusters, replace w/ pure reco equivalent	ElCrecon#1956	2 weeks	Tristan
PFAO(a): complete merge/splitter update (requires JANA2 2.4.3)	ElCrecon#1699	1 week	BLOCKED
PFA0(b): implement track-protocluster link promotion algorithm	EICrecon#1886	2 weeks	BLOCKED
PFA1(a): revive and finish track-cluster subtractor	ElCrecon#1627	1 week	Derek
PFA1(b): track-cluster converter (synergy w/ PFA-1)	ElCrecon#2124	1 week	Derek
EDM: flagging ecal vs. hcal clusters	EICrecon#2078	1 week	Derek
PFA2: implement calo remnant combiner	To-do	2 weeks	Subhadip
PFA3: implement particle regressor/convertor	To-do	2 weeks	OPEN

^{*} Assuming 50% FTE, including code review time

PF Development | Task List (2/3)

Tasks	Issue/PR/Note	Est. labor time*	Assignee
 PFA-1 Benchmark - input: Sum eClust, sum pTrk, nClust, nTrk, E/p matched clusters, sum eGenPar, eGenPar, nGenPar - output: Sum eRecPar, eRecPar, ePar, nRecPar, nPar, PES/R of reco pars 	To-do	1 day	OPEN
 PFA0 Benchmark - input: Sum eClust, eClust, pTrk, nTrk, nClust, E/p matched clusters - output: Sum eSMClust, eSMClust, nSMClust, E/p SM clust, dRct SM 	Some work done	1 day	Olaiya, Derek (nom.)
 PFA1 Benchmark - input: Sum eClust, eClust, sum pTrk, pTrk, nTrk, nClust, E/p matched clusters, sum pChrgPar, pChrgPar, nChrgPar - output (expected): sum eEXClust, eEXClust, nEXClust, E/p EX clust, dRct EX - output (remnant): sum eREClust, eREClust, nREClust - output: sum eEXClust + eREClust 	To-do	2 days	Derek (nom.)

Assuming 50% FTE, including code review time O Notes:

- PES/R = Particle Energy Scale/Resolution
- SM = Split/Merge, EX = Expected, RE = Remnant
- dRct = distance b/n cluster & matched track

PF Development | Task List (2/3)

Tasks	Issue/PR/Note	Est. labor time*	Assignee
PFA2 Benchmark - input: sum eREClust (EM, H), eREClust (EM, H), nREClust (EM, H), sum eNeuPar, eNeuPar, nNeuPar - output: sum eRecPar, nRecPar	To-do	1 day	Subhadip (nom.)
 PFA3: - input: Sum eClust, sum pTrk, nClust, nTrk, E/p matched clusters, sum eGenPar, eGenPar, nGenPar - output: Sum eRecPar, eRecPar, ePar, nRecPar, nPar, PES/R of reco pars 	To-do	1 day	Win
PHYS Benchmark: JES/R	To-do (just need wiring)	0.5 day	Dener
PHYS Benchmark ^(a,b) : Jets - E, mass, FFs (jt, z), Substructure (dRcst, angularity, EECs)	To-do	2 days	Dener
PHYS Benchmark ^(a) : Events - TEECs, NECs	NECs in progress (see <u>here</u>)	3 weeks	Derek (NECs)

- * Assuming 50% FTE, including code review time o **Notes:**
- a) Desirable, but not required

– EM = "Electromagnetic", H = "Hadronic

b) Could do inclusive, HF-tagged, etc.

– dRcst = constituent delta-R