

Polarized ³He⁺⁺ Source Development

J. Ritter, D. Raparia, G. Atoian, E. Beebe, X. Li,

J. Maxwell, R. Milner, N. Wuerfel

Outline

- Introduction
- Development of Polarized ³He⁺⁺ source
 - ³He⁺⁺ Source integrated into EBIS
 - Spin Rotator Chicane
 - 6 MeV Polarimeter

Schedule

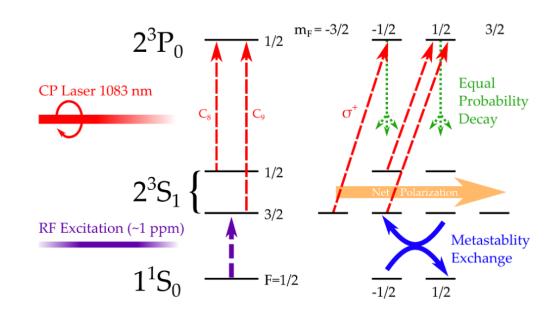
Summary

3He Source at BNL

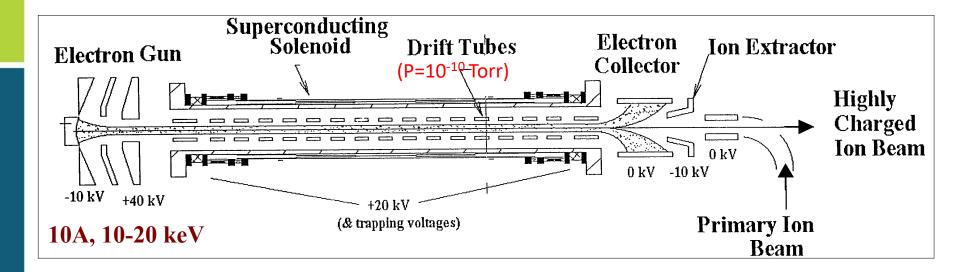
Originally proposed by A. Zelenski and J. Alessi in ICFA Newsletter in 2003.

(A. Zelenski, J. Alessi, "Proposal of production of polarized ³He⁺⁺ beam in EBIS", ICFA Beam Dynamics Newsletter 30, p.39, (2003)

- Identified as High Priority R&D for EIC by EICAC review in 2009, continued by Office of Nuclear Physics community review in 2017, again in 2018 by assessment of US National Academy of Sciences, and highlighted in the 2023 Long Range Plan for Nuclear Science.
- Development of the polarized ³He ion source is a BNL MIT collaboration that began in 2013.


Requirements for ³He⁺⁺ Source

- Intensity ~ 2.5·10¹¹ ³He⁺⁺ ions in 20 us pulse ~4 mA-peak current
- Polarization > 80%
- Compatibility with the operational EBIS for heavy ion physics and other programs.
- Spin flip every source pulse in the beam transport line for spin measurements.


Metastability Exchange Optical Pumping MEOP

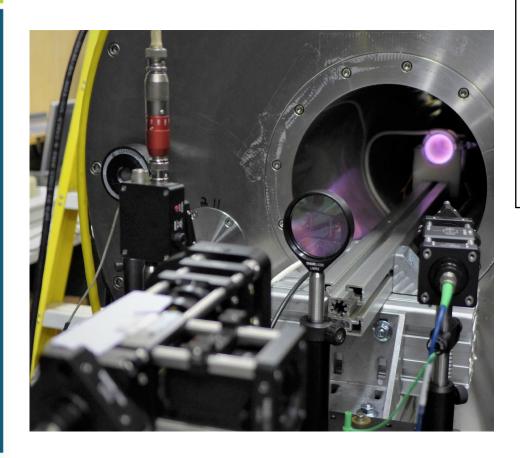
- Homogeneous magnetic field
- High Purity gas
- Electrical Discharge
- High-power laser

Principle of EBIS Operation

Radial trapping of ions by the space charge of the electron beam.

Axial trapping by applied electrostatic potentials at ends of trap.

- Ion output per pulse is proportional to the trap length and electron current.
- Ion charge state increases with increasing confinement time.
- Output current pulse is independent of species or charge state!



Production of Polarized ³He⁺⁺ in EBIS

- ³He polarization by optical pumping and metastability-exchange (MEOP) technique inside the EBIS in high (5.0T) magnetic field.
- EBIS is used for <u>efficient ionization</u> and <u>accumulation</u> of polarized 3He⁺⁺ ions to the full capacity of about (2.5)·10¹¹, ³He⁺⁺ ions.
- The upgraded EBIS has a pulsed gas injection that allows for production of ion beams.
- The ³He system will allow for injection of both polarized and unpolarized from separate pulsed valves.

Previous BNL MEOP results

 89% polarization with sealed cell at 3T Maxwell & Zelenski - 2016

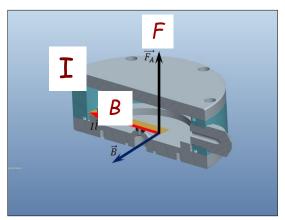
³He-gas purification and filling system

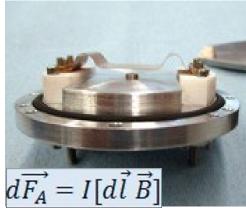
Modified Cryo-pump for 3He purification and storage

Vessel filled with activated charcoal granules

The activated charcoal cryopumps ³He gas.

The adsorbed gas is released by cartridge heater vessel heating ~20K.

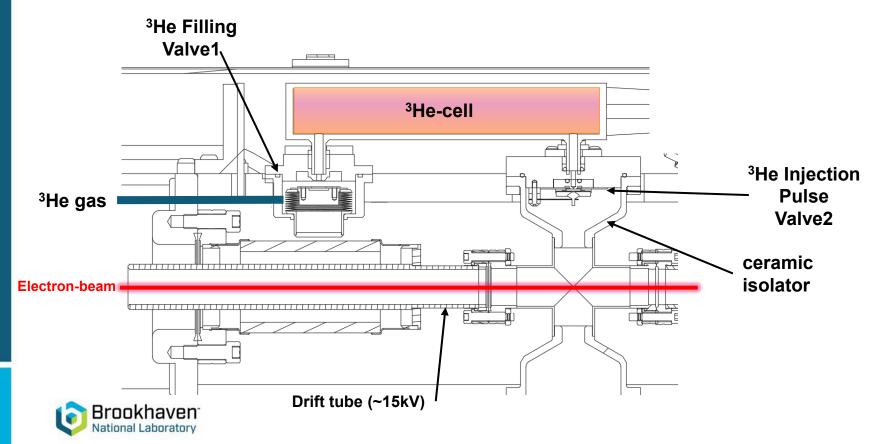

This system provides gas storage and supply for ³He-cell operation at the optimal pressure value (3-5 Torr).

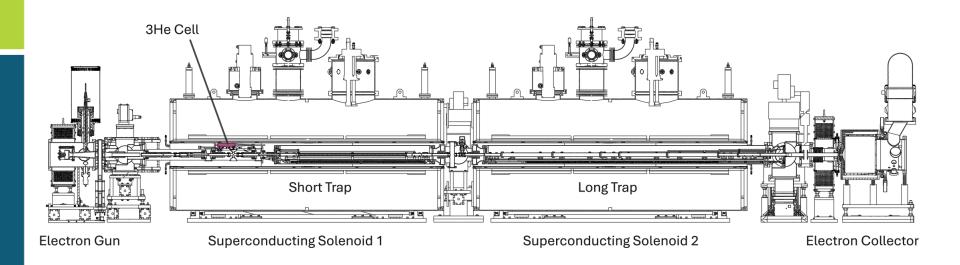


Fast Pulsed Gas Injection Valve

"Electro-magnetic", [IxB] valve operation principle

- Injection port is sealed by force from flat spring strip.
- Lorentz force in magnetic field opens the valve when current is passed through strip.
- Tested and currently used in EBIS for unpolarized 3He and other gases.

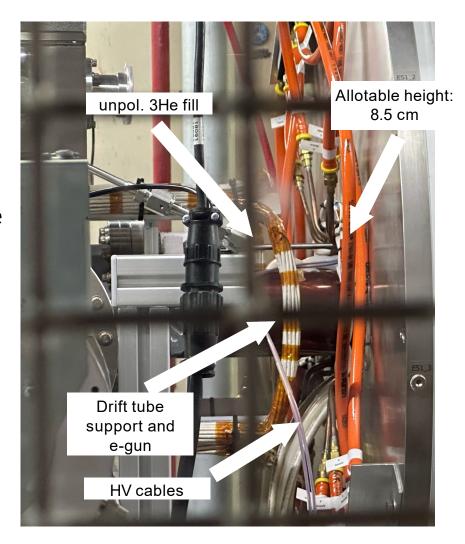

Pulsed valve for Un-polarized gas Injection to the EBIS


³He Polarizing Cell inside EBIS

Procedure to polarize the ³He gas at high magnetic field

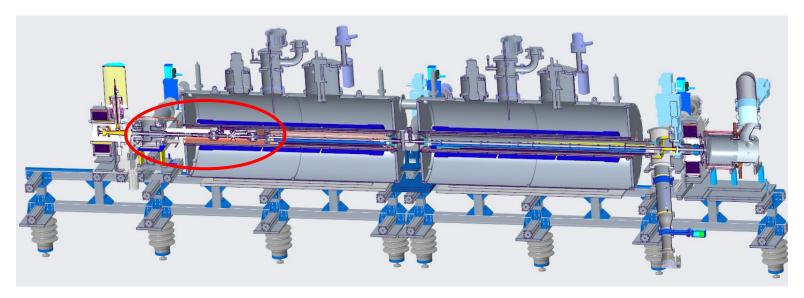
- Prepare the ³He gas for polarization by the purification system; Valve1-open/ Valve2-close
- Polarize the ³He gas inside the glass-cell by a MEOP technique; Valve1-close/ Valve2-close
- Continually control the polarization of the injected ³He gas by using the Optical Probe polarimeter;
- Inject a portion of polarized ³He into drift tube (beam line) through the pulsed valve Valve2-open
- Ionize the polarized atoms of ³He by electron beam

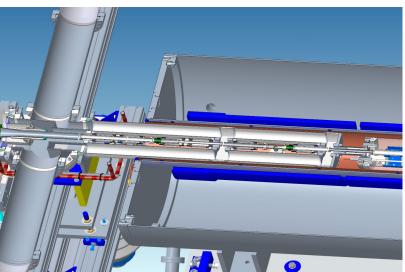
EBIS Polarized ³He⁺⁺

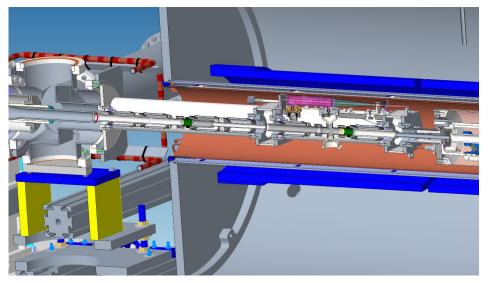


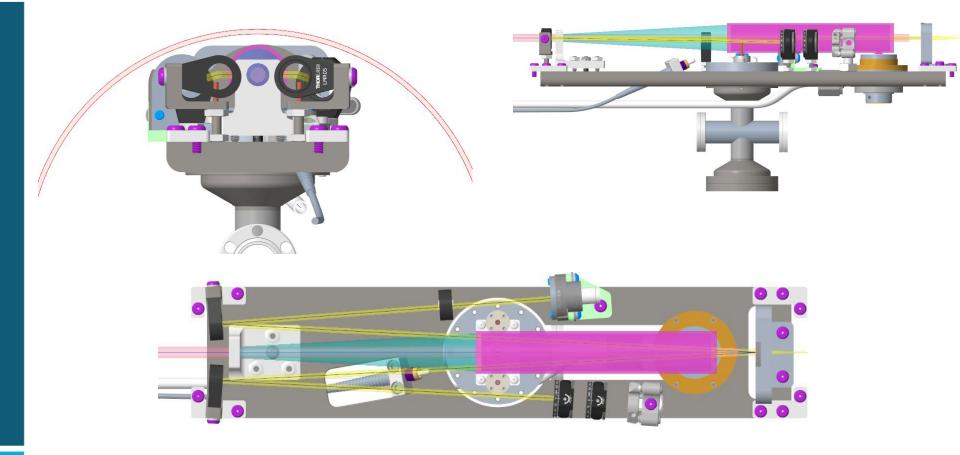
The polarized ³He ion source will be installed inside Solenoid 1.

- The atoms of the ³He gas will be polarized by MEOP technique
- The fast pulse valve will inject the polarized gas into the ion trap region of the EBIS.
- Inside trap the³He ions will be stripped of electrons to the ³He⁺⁺ state.
- The trap barrier is lowered and beam sent to Booster.


Challenges in EBIS


- In EBIS limited space in bore.
- Allowable cross section for in situ polarization cell and optics is just 8.5 cm height x 18.5 cm width.
- During installation possibility of sensitive fiber optics being caught on other objects, optic misalignment could damage cabling.
- Inhomogeneity in magnetic field depolarizes 3He cell and causes challenges for steering the e-beam, requiring non-magnetic materials.



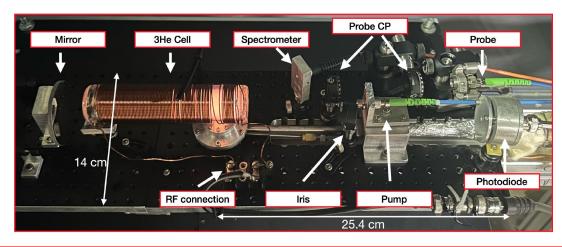

EBIS

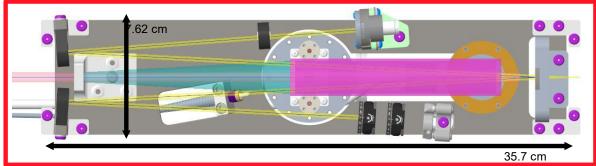
Vacuum manifold with drift tubes

RHICEBIS in the test lab

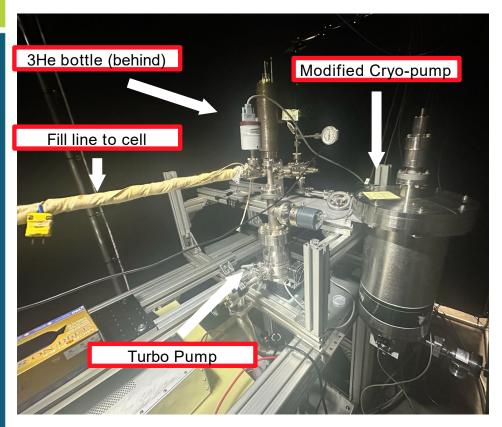
RHICEBIS moving to test lab Nov 2023

RHICEBIS inside Test Lab


3He Test Lab Developments


- Since mid 2023 Noah
 Wuerfel (MIT) has led the polarized ³He source effort.
- Moved gas purification system into test lab with the ACCEL EBIS magnet.
- New laser enclosure, interlock, and safety approvals, June 2024.
- Testing the compact optical polarization layout.

Reduced optical Footprint

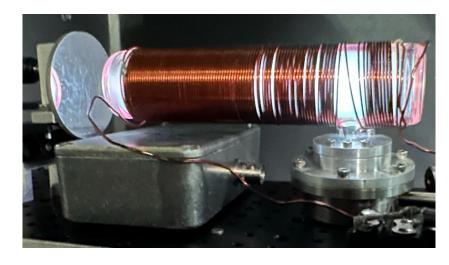


Final layout designed to meet space constraints in EBIS.

3He work in Test Lab

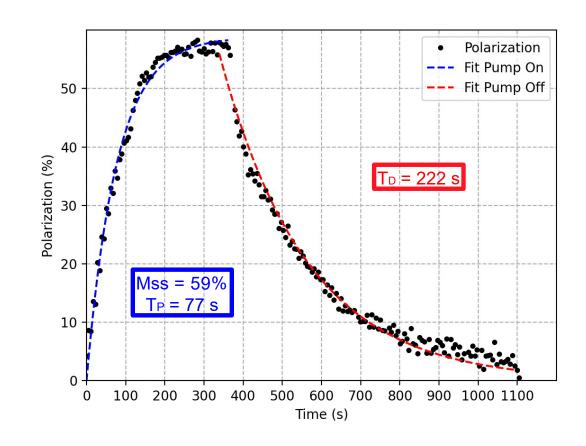
Cryogenic gas purification system

Controls rack with pump and probe ₁₇



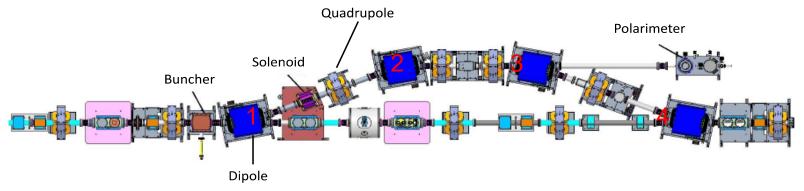
Mock Pulse Valve

- Constructed a mock pulse valve to test effect of 10 A current on the cell polarization.
- Aluminum case with copper strip of roughly the same dimensions as pulse valve.
- No measurable effect on cell polarization at 10A at 1hz and 1Khz.

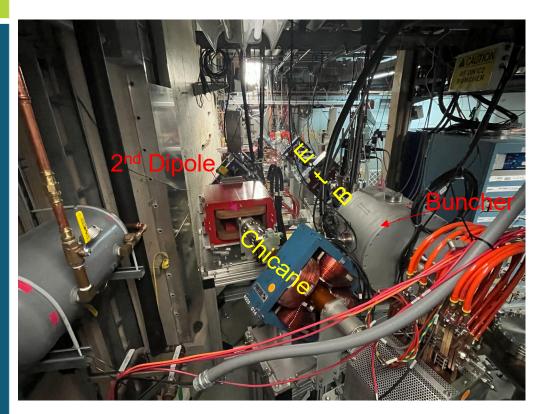


Polarization with New Setup

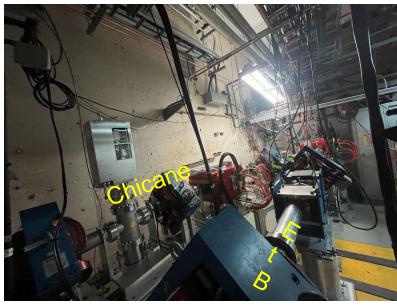
- Steady state polarizations near 60% at 3T and 2.5 Torr.
- Probe signal depends on brightness of plasma, but highest polarizations require dim plasma.
- At high field, plasma distributes near the edges of the cell, but probe is traveling through center.
- Probe and pump are poorly separated in the bore, further reducing signal.
- Outgassing from fill line introduces hydrogen contaminants.



³He⁺⁺ Spin-Rotator in the at 6.0 MeV Beam Energy


After acceleration by EBIS LINAC, the polarized ³He⁺⁺ beam will have an energy of 6MeV with a longitudinal spin direction.

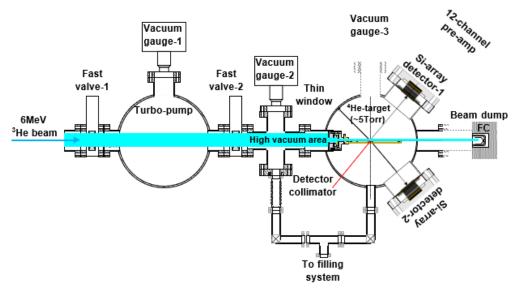
- The longitudinal polarization of beam is at first rotated to transverse direction using the 21.5 deg bending magnet (Dipole-1) and after
- The Spin- solenoid will change the spin direction to the vertical. It is a pulsed solenoid with reversible field to enable spin-flip on an EBIS pulse-by-pulse basis.
- Vertically polarized beam will return to the straight HEBT line by the system of dipole magnets (2,3,4).
- The chicane was tested with 4He++ in 2023. Transmission was 90% of straight line.

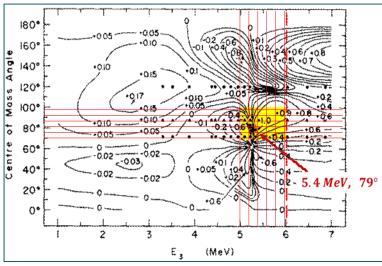

The polarimeter will install in the straight section after the Dipole-3 magnet. With a spin-flip, we can measure polarization of the beam with a standard configuration of left/right symmetric Si-strip detectors).

Spin Rotator - Chicane

End of Chicane

Start of Chicane

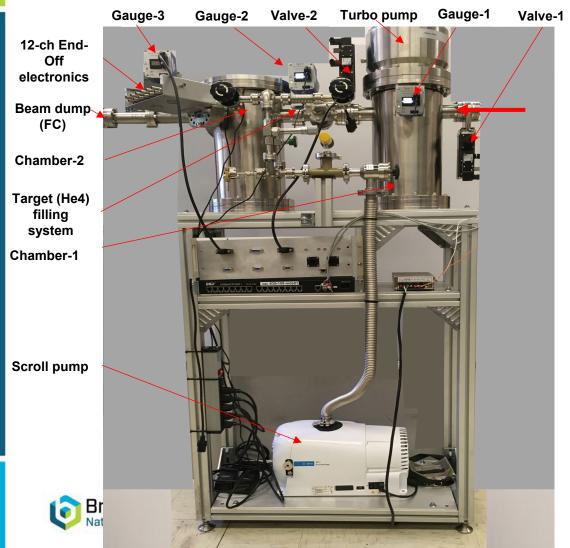

³He-⁴He scattering polarimeter at 5.4 MeV beam energy


By a measuring, the spin correlated asymmetry of ³He (beam ions) scattering on the ⁴He (gas target) to determine the polarization of ³He beam.

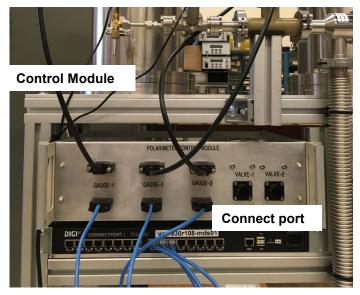
The asymmetry α could be found from the number of detected scattered particles $N_{LR}^{\uparrow\downarrow}$ in left/right (L/R) detectors depending on the beam spin ($\uparrow\downarrow$):

$$a = A_N P = \frac{\sqrt{N_R^\uparrow N_L^\downarrow} - \sqrt{N_R^\downarrow N_L^\uparrow}}{\sqrt{N_R^\uparrow N_L^\downarrow} + \sqrt{N_R^\downarrow N_L^\uparrow}} \quad \text{and} \quad \sigma_a = \sqrt{\frac{1 - a^2}{N_R^\uparrow + N_L^\downarrow + N_L^\downarrow}} = \sqrt{\frac{1 - a^2}{N_{tot}}}, \quad \text{Polarized Beam where P is the beam polarization, } A_N \text{ - analyzing power and } \sigma_a \text{ - statistical accuracy.}$$

Analyzing power in 3He-4He elastic scattering at 5.4 MeV beam energy and 79° - angle is close to 100%.



Left Detector

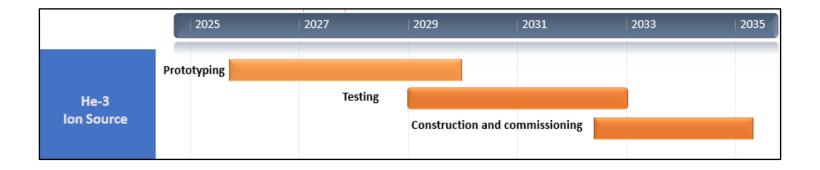


Setup of 6 MeV polarimeter

Detector completed with the required geometry, the energy range and is being installed in the EBIS beam line.

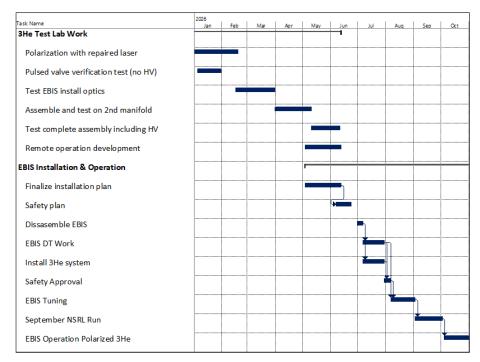
Polarimeter Control Module

With the beam we plan to study:


- Kinematics of elastic ³He-⁴He scattering;
- Energy distribution of the ³He-⁴He pair;
- Energy and time resolution;
- Electronics and DAQ;
- Data collection and analysis of events;
 - Controlling and monitoring the detectors;

26

- Vacuum control system;
- Communication system;


• ...

Schedule

2026 Protype Schedule

- Complete assembly and testing prototype EBIS ³He system
- Install ³He polarizer during July & August
- October ³He⁺⁺ beam

Summary

- It is essential for EIC physics to have a reliable ³He polarized ion source along with developed polarimetry and beam transport.
- Achieved high ³He polarization in open cell under high magnetic field.
- Developed and implemented a ³He purification and supply system using cryo-pumping, successfully meeting the requirements for high polarization.
- Designed and tested a pulsed electromagnetic injection valve for delivering ³He into the drift tube; this valve type is already proven in EBIS operations.
- Established a dedicated ³He test laboratory.
- Installed and tested the spin-rotation line. The polarimeter will be tested with ³He beam.
- Active research includes optimization of polarization in compact configuration, assembly of updated injection valve, and further integration of polarization controls.

Summary

- The proposed polarized ³He ion source will deliver orders of magnitude higher intensities than previous generations of polarized ³He sources.
- For perspective, the OPPIS source required 40 50 years of continuous development to reach its present performance level.
- As the first polarized ³He ion source based on MEOP, it is realistically expected to require approximately a decade of sustained effort to reach full performance.
- At present, a small number of world experts are actively working on this development; any interruption in the ³He source R&D will be severely detrimental to the project.
- If development is stopped or significantly slowed, reviving the effort later would likely take much longer and be substantially more expensive, with no guarantee of recovering the same expertise or momentum.

