D^0 Reconstruction

A. Alikhanyan National Science Laboratory

October 14, 2025

Artur Hoghmrtsyan, Aram Movsisyan, Hrachya Marukyan

Physics Goal and Strategy

Overall Objective

- Extract Gluon Sivers Asymmetry via charm production in DIS
- Use $D^0 o K^-\pi^+$ as a clean probe of charm dynamics
- Access gluon transverse momentum distributions

Analysis Strategy

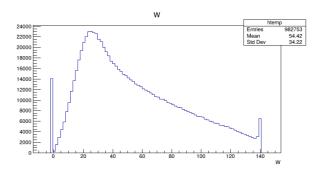
- Reconstruct D^0 candidates from kaon-pion pairs
- Select DIS events: $Q^2 > 1$ GeV², W > 5 GeV, y < 0.95
- Match Reco to MC particles to validate candidates
- Bin in azimuthal and kinematic variables for asymmetry extraction

File Source and Used Branches

DIS Dataset Location (minQ2=1)

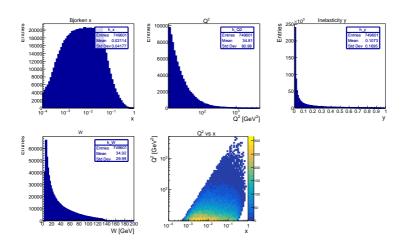
root://dtn-eic.jlab.org//volatile/eic/EPIC/RECO/
25.03.1 /epic_craterlake/DIS/NC/18x275/minQ2=1/

DIS Dataset Location (minQ2=10)

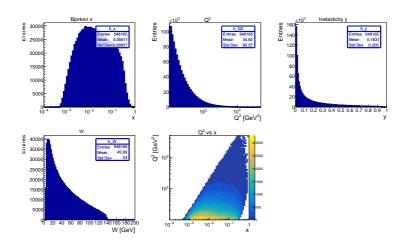

root://dtn-eic.jlab.org//volatile/eic/EPIC/RECO/
25.03.1 /epic_craterlake/DIS/NC/18x275/minQ2=10/

Used Branches

- MCParticles
- ReconstructedChargedParticles
- ReconstructedChargedParticleAssociations
- InclusiveKinematicsTruth (previously Electron)


D^0 Event Statistics Summary

Decay Channel	DIS Events after Cuts	$\pi^- K^+$ Pairs	Generated D^0
Electron Branch (minQ2=10)	858,182	637,474	15,378
Truth Branch (minQ2=10)	948,165	671,671	16,015
Truth Branch (minQ2=1)	749,601	298,185	4,110



W distribution with InclusiveKinematicsElectron branch.

SIDIS Kinematics (minQ2=1)

SIDIS Kinematics (minQ2=10)

October 14, 2025 Artur Hoghmrtsyan 6/11

Injecting Asymmetries via Spin-Dependent Weights

Procedure for Toy Model Asymmetry

- Assign random spin state (up or down) to each event
- Apply spin-dependent weight:

$$\begin{aligned} & \text{Spin Up:} & \ w = 1 + A \cdot \cos(\phi_{\text{true}}) \\ & \text{Spin Down:} & \ w = 1 + A \cdot \cos(\phi_{\text{true}} + \pi) \end{aligned}$$

- \bullet Fill histograms of reconstructed azimuthal angle $\phi_{\rm rec}$ with these weights
- Extract asymmetry as:

$$A_{\mathsf{rec}}(\phi) = rac{ extstyle N_{\uparrow}(\phi) - extstyle N_{\downarrow}(\phi)}{ extstyle N_{\uparrow}(\phi) + extstyle N_{\downarrow}(\phi)}$$

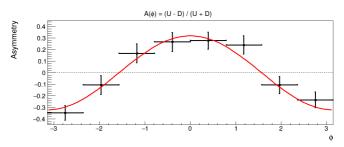
 Fit the result with a cosine to check reconstruction performance

Which ϕ do we use?

What DO.Phi() is (Used now)

- TLorentzVector::Phi() ⇒ lab-frame azimuth around the beam axis
- Good for basic checks, but not the SIDIS/TMD azimuth used in asymmetry formulas

Asymmetry uses a plane—plane angle (Next step)


- Define the virtual photon: $\vec{q} = \vec{\ell} \vec{\ell'}$ (incoming e minus scattered e)
- **Lepton plane**: spanned by $(\vec{\ell}, \vec{q})$ Hadron plane: spanned by (\vec{q}, \vec{P}_{D^0})
- The SIDIS azimuth ϕ is the signed angle between these planes, measured **around** \vec{q}

$$\phi = \underset{\text{October 14, 2025}}{\text{atan2}} \left(\hat{q} \cdot \left(\vec{n}_{\ell} \times \vec{n}_{h} \right), \ \vec{n}_{\ell} \cdot \vec{n}_{h} \right), \quad \vec{n}_{\ell} = \frac{\vec{\ell} \times \vec{q}}{|\vec{\ell} \times \vec{q}|}, \quad \vec{n}_{h} = \frac{\vec{q} \times \vec{P}_{D^{0}}}{|\vec{q} \times \vec{P}_{D^{0}}|}$$

Asymmetry Fit with 8 ϕ Bins

Configuration

• Number of azimuthal bins: **8** (tested 16; some bins underpopulated)

Example: asymmetry vs. ϕ (8 bins) with cosine fit overlay.

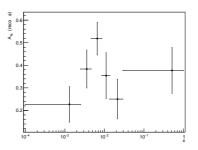
Fit result: $A = 0.320021 \pm 0.0360831$

October 14, 2025 Artur Hoghmrtsyan 9/11

Asymmetry vs. Q^2 (Binning & Fits)

Q^2 -bin edges (analysis)

Q2Edges = { 10, 13, 15, 20, 28, 49, 5000 }


Extracted amplitude vs. Q^2 .

Notes: Constant injected amplitude ${\bf A}={\bf 0}.{\bf 3}.$ Binning shown is *not final* and will be **finalized**.

Asymmetry vs. x (Binning & Fits)

x-bin edges (analysis)

xEdges = { 0.0001, 0.0025, 0.0046, 0.0085, 0.0135, 0.0292, 1.0 }

Extracted amplitude vs. x.

Notes: Constant injected amplitude ${\bf A}={\bf 0.3}.$ Binning shown is *not final* and will be **finalized**.