
DUNE SPNG Updates
October 17, 2025

1

NvTools Extension and NVIDIA Insight Tools

● NVIDIA insight tools provide profiling and debugging tools
○ GPU and CPU usage
○ Memory usage (CPU and GPU)
○ GPU Trace (Timeline of throughput, thread, duration of processes etc)
○ CPU Trace
○ Third Party API (MPI)

● Nvidia Tool extensions allows to mark part of the code to get meaningful
insights and time ranges

● Works with NVIDIA tools (nvprof, nsys etc)
● Profiling Outputs in proprietary nsys-rep format, sqlite, hdf5, arrow, parquet

○ Nsys-rep format → Can use NVIDIA Nsight System (that supports UI)
■ Download in your laptop, copy the profile output and analyze

○ Sqlite format → Write your own python sqlite reader code
■ Flexibility to compare different output variables

2

Use NVIDIA NSight Systems to analyze the profile report

3

Content of the Profile Output

● Profile reports on extensive (API and I/O) categories

4

Report is extensive but probably we could
be interested in a small set….

CUDA API Summary

5

Summary of the Cuda APIs being used

CUDA GPU Kernel Summary

6

CUDA Operations happening on the backend via torch

CUDA GPU Trace

7

Running NVIDIA Profiling Tool in Wire-cell SPNG

● SPNG uses torch libraries and APIs (Run in GPU, support CPU)

● The backend is NVIDIA

● So the profiler spits out profile report in terms of Core CUDA Calls

8

Not so useful.
Hard to figure where
these operations are
happening.
Need to get insight in
SPNG API level

NVIDIA Tools Extension (NvToolsExt) library

● Annotate the code and get insights

9

NvTool to Annotate to understand insight in each code sections

10
OS (CPU) Runt Time summary and CUDA API Summary for
NoTileMPConcidence::Operator

Configuring SPNG for nvTools

● Current spng branch of wire-cell toolkit
● Configuration is similar to how you configure SPNG except

○ Add –with-nvtx flag
○ Add path to nvTools library in –with-libtorch-lib
○ Add path to nvTools header in –with-libtorch-include

● Example from mine (may not work in yours)

./wcb configure --prefix=$PREFIX --boost-mt --boost-libs=$PREFIX/lib --boost-include=$PREFIX/include
--with-jsonnet-libs=gojsonnet --with-cuda-lib=/usr/lib/x86_64-linux-gnu,$PREFIX/targets/x86_64-linux/lib
--with-cuda-include=$PREFIX/targets/x86_64-linux/include --with-libtorch=$TDIR
--with-libtorch-include=$TDIR/include,$TDIR/include/torch/csrc/api/include,$PREFIX/targets/x86_64-linux/include
--with-libtorch-lib=$TDIR/lib,$PREFIX/targets/x86_64-linux/lib --with-root=$PREFIX --with-nvtx

11

For the code part to be annotated

● Add the header file
○ WireCellSpng/TorchnvTools.h

● Annotate the code to be profiler

● NVTX_SCOPED_RANGE profiles the operator function

12
Annotate part of code using PUSH/POP combination
Can support nested annotation as well.

Profiling the SPNG

● We can attempt to profile the SPNG code in a generic way to get some

general sense

● Target I/O, memory hot/cold areas from the information we gather from the

generalized profiling

● Generalized profiling still needs annotation to know the ball park of where

I/O, memory, hot/cold areas fall

● SPNG Workflow in General

13

Input waveform → Deconvolution → Filters → Initial ROIs + MP2/MP3 formation→ DNNROI → Output
waveform with ROIs

Actual Data Flow Graph (To Run DNNROI)

14

Tasks to produce ingredients to find ROIs in 1 plane:
● Decon (for all Planes)
● Filters (For all planes, filters depending upon induction/collection type)
● MP Finding (Target Induction Plane, MP information in Other 2 planes)

Annotating the SPNG

● Annotate each FunctionNode nvtx tool

● Annotate any function or parts of the code that does heavy lifting (both in

CPU or GPU)

● Exclude functions that do configurations

● Sometimes functions call other function. But we want to include that
○ For example DNNROI calls TorchService. Annotate both of them.
○ Nested Annotation is supported.

15

After Annotating with Nvtx Library

16

Runs of 4.2 seconds ~ Consistent with the wire-cell timer

After Annotating with Nvtx Library

17

● Runs of 4.2 seconds ~ Consistent with the wire-cell timer
● SPNG spends most of its time on (descending order)

○ NoTileMPCoincidence
○ TorchFRERSpectrum
○ DNNROI

Time spent by Wire-cell in each Component

18

Average Number of GPU Operations

19

Includes both GPU
operations and I/O

Very Highly Dominated by NoTileMPCoincidence
More on this later….

GPU Utilization

● Fraction of operations handled by the GPU (Total = GPU + CPU)
● Overall GPU Utilization is ~12%
● In those 12%:

○ 86% of the time, GPU does actual work (operations
○ 14% of the time it does I/O

●

20

GPU Utilization in Annotated parts of the code

21

Note that NoTileMPCoincidence dominates the SPNG GPU
Operations.

NoTileMPCoincidence

● More on this next week

●

22

