DUNE SPNG Updates
October 17, 2025

NvTools Extension and NVIDIA Insight Tools

e NVIDIA insight tools provide profiling and debugging tools
o GPU and CPU usage
o Memory usage (CPU and GPU)
o GPU Trace (Timeline of throughput, thread, duration of processes etc)
o CPU Trace
o Third Party API (MPI)

e Nvidia Tool extensions allows to mark part of the code to get meaningful
insights and time ranges
e \Works with NVIDIA tools (nvprof, nsys etc)
e Profiling Outputs in proprietary nsys-rep format, sqlite, hdf5, arrow, parquet
o Nsys-rep format — Can use NVIDIA Nsight System (that supports Ul)

m Download in your laptop, copy the profile output and analyze

o Sqlite format — Write your own python sqlite reader code
m Flexibility to compare different output variables

Use NVIDIA NSight Systems to analyze the profile report

@ NVIDIA Nsight Systems 2025.
Project 1 X [EE@ i RIS EXEYER W report_nvix_wirecell4.nsys-rep X report_compare_mp_ i nsys-rep X

imeline View ~ @ Options... @ @ Q x 2 warnings, 15 messages

= 0s 0,55 1s 1.58 2s 2.55 3s 3.58 4s -
» CUDA HW (0000:41:00.0 - NVIDI Maae)]
~ Threads (19)
~ [259328] wire-cell 010 100%
0S runtime libraries
cecL

NVTX

~ CUDA API - |
CUDA Overhead

Profiler overhead

18 threads hidden. - 010 100%

Expert System View ~

Time filter: 2.17 to 2.92 (0.75 seconds or 17.2%).) Settings
CUDA Async Memcpy with Pageable Memor ~ | Duration ~ Start Src Kind Dst Kind Bytes PID Device ID Context ID Green Context ID Stream ID APl Name =
1.312 2.2368: P bl Devi 12.50 KiB 25932 0 1|- 7 daM A 020
The following APIs use PAGEABLE memory . 36635 { Eoosabic e s 328 SudaMemcpyAnG V9
which causes asynchronous CUDA memcpy 544 ns 2.24342s Pageable Device 4.48KiB 259328 0 1/- 7 cudaMemcpyAsync_v3020
operations to block and be executed 12 2243475 P bl Devi 448KB 25932 0 1]- 7 M A 3020
aynchranoush, This laads o low GPU 512ns L s Pageable evice .48 Kil 59328 cudaMemcpyAsync_v30:
utilization. 416 ns 2.23764s Pageable Device 1.88KiB 259328 0 1]- 7 cudaMemcpyAsync_v3020
385 2.28231s P bl Devi 8B 259328 0 1 - 7z daM A >_v3020
Suggestion: If applicable, use PINNED memory L 2'| Fagesvle ovice SudaMemcpyAsyn ¥
instead. 385ns 228271s Pageable Device 8B 250328 0 1]- 7 cudaMemcpyAsync_v3020
N 385ns 2.28384s Pageable Device 8B 259328 0 1 - 7 cudaMemcpyAsync_v3020
See complete explanation of the rule.
385ns 2.30218s = Pageable Device 8B 259328 0 1 - 7 cudaMemcpyAsync_v3020
g’:lye‘he top 50 results are displayed in the 385ns 230737s Pageable Device 8B 250328 0 1 - 7 | cudaMemcpyAsync_v3020
’ 385ns 2.30951s Pageable Device 8B 250328 0 1]- 7 cudaMemcpyAsync_v3020
CLI command: 385ns 2.32128s Pageable Device 8B 259328 0 1- 7 cudaMemcpyAsync_v3020
nsys analyze -r cuda_memcpy_async “/Users/ 5
amitbashyal/Documents/BNL-DUNE/nsys- 385ns 2.34s Pageable Device 8B 259328 0 1 - 7 cudaMemcpyAsync_v3020
profiler/report_nvix_wirecell3.sqlite" 385ns 2.3423s Pageable Device 8B 259328 0 1 - 7 | cudaMemcpyAsync_v3020 |~

=K

Content of the Profile Output

e Profile reports on extensive (APl and 1/O) categories

CUDA API Summary

CUDA API Trace

CUDA GPU Kernel Summary

CUDA GPU Kernel/Grid/Block Summary
CUDA GPU MemOps Summary (by Size)
CUDA GPU MemOps Summary (by Time)
CUDA GPU Summary (Kernels/MemOps)
CUDA GPU Trace

CUDA Kernel Launch & Exec Time Summary
CUDA Kernel Launch & Exec Time Trace
DX11 PIX Range Summary

DX12 GPU Command List PIX Ranges Summa
DX12 PIX Range Summary

MPI Event Summary

MPI Event Trace

MPI Message Size Summary

NVTX GPU Projection Summary

NVTX GPU Projection Trace

NVTX Push/Pop Range Summary

NVTX Push/Pop Range Trace

NVTX Range Kernel Summary

NVTX Range Summary

NVTX Start/End Range Summary
Network Devices Congestion

NvVideo API Summarv

Report is extensive but probably we could
be interested in a small set....

CUDA APl Summary

Time ¥ Total Time
71.8% 217.432 ms
15.8% 47.873 ms
11.5% 34.927 ms
0.4% 1171 ms
0.3% 1.058 ms
0.1% 291.711 ps
0.1% 163.377 ps
0.0% 9.205 ps
0.0% 5.228 ps
0.0% 1.583 us
0.0% 531 ns
0.0% 281 ns

Num Calls

57343
13286
13520

838
18

N NN

Avg

3.791 ps
3.603 ps
2.583 ps
1171 ms
529.107 ps
58.342 ps
195ns
511ns
1.307 ps
791 ns
265ns
140 ns

Med

2.293 ps
3.716 ys
2.453 ps
1171 ms
529.107 ps
58.969 us
181 ns
251 ns
1.146 ps
791 ns
265ns
140 ns

Min
1.832 ps
861 ns
1.612 ps
1171 ms
12.509 ps
2.264 ps
70 ns
170 ns
832ns
431 ns
140 ns
70 ns

Summary of the Cuda APIs being used

Max

10.166 ms
20.471 ps
67.472 ps
1171 ms
1.046 ms
98.819 ps
811 ns
2.224 ps
2.103 ps
1.152 ps
391 ns
211 ns

StdDev
97.834 ps
435ns
1.137 ps
Ons
730.580 ps
38.317 pys
97 ns
645ns
604 ns
509 ns
177 ns
99 ns

Name
cudaLaunchKernel

cudaStreamSynchronize
cudaMemcpyAsync

cudaFree

cudaHostAlloc

cudaMalloc
cuGetProcAddress_v2
cudaEventCreateWithFlags
culnit
cudaStreamlisCapturing_v10000
cudaGetDriverEntryPoint_v11030
cuModuleGetLoadingMode

CUDA GPU Kernel Summary

Time ¥ Total Time

15.9%
13.9%
8.6%
8.5%
7.6%
7.2%
5.7%
3.8%
3.5%
2.9%
2.8%
2.7%

n co

14.850 ms
13.003 ms
8.064 ms
7.931 ms
7.147 ms
6.690 ms
5.324 ms
3.528 ms
3.253 ms
2.757 ms
2.643 ms
2.522 ms

N D00 man

Instances
1052

6403
6000
3000
5106
7500
5716
2665
2050
2248
2108
2108

11977

Avg

14115 ps
2.030 ps
1.344 ps
2.643 ps
1.399 ps
891 ns
931 ns
1.323 ps
1.586 ps
1.226 ps
1.253 ps
1.196 ps

N 1NN i

Med
14.112 ps

2.080 ps
1.311 ps
2432 ps
1.280 ps

896 ns

928 ns
1.312 ps
1.696 ps
1.216 ps
1.248 ps
1.215ps

D119 uin

Min

14.079 ps
1.664 ps
895ns
2.368 ps
1.215ps
863 ns
895 ns
1.215ps
1.344 pys
1.183 ps
1.215 s
1.056 ps

1 TN wam

Max

14.176 ps
3.136 ps
1.792 ps
3.264 ps
1.824 ps
929 ns
1.057 ps
1.537 ps
2.816 ps
1.441 ps
1.409 ps
1.408 ps

N NN i

StdDev
17 ns

231ns
268 ns
292 ns
218 ns
18 ns
31ns
55ns
188 ns
38ns
28 ns
92 ns

[a Ta WEVN

Name

void at_cuda_detail::cub::DeviceRadixSortSingleTileKernel<at_cuda_detail::cub::DeviceRe

void at:native:index_elementwise_kernel<(int)128, (int)4, void at::native::gpu_index_kern

void at_cuda_detail::cub::DeviceReduceSingleTileKernel<at_cuda_detail::cub::DeviceRedt

void at::native::elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<void

void at_cuda_detail::cub::DeviceSelectSweepKernel<at_cuda_detail::cub::detail::device_s:

void at_cuda_detail::cub::DeviceCompactinitKernel<at_cuda_detail::cub::ScanTileState<ir

void at

void at

void at::
void at::
void at::

void at::

simid Ak

native::
:native::
native::
native::
native::

native::

m~adiveace

vectorized_elementwise_kernel<(int)2, at::native::FillFunctor<long>, std::ar
elementwise_kernel<(int)128, (int)2, void at::native::gpu_kernel_impl_noca
elementwise_kernel<(int)128, (int)4, void at::native::gpu_kernel_impl<at::n:
vectorized_elementwise_kernel<(int)2, at::native::CUDAFunctor_add<douk
vectorized_elementwise_kernel<(int)2, at::native::BinaryFunctor<double, d

vectorized_elementwise_kernel<(int)4, void at::native::compare_scalar_ke|

imdav Alamantiina barmalolind\190 (ind\ A vnid aticnmativaccmni indav baen

CUDA Operations happening on the backend via torch

CUDA GPU Trace

Start ¥ Duration
3.04351s 352 ns
3.04355s 1.664 ps
3.04362s 1.440 ps
3.05726s 1.600 ps
3.05738s 1.280 ps
3.05743s 1.280 ps
3.06678s 1.504 ps
3.06687s 1.984 ps
3.07296s 1.440 ps

3.0767s 1.696 ps
3.07675s 1.472ps
3.07676s 1.344ps
3.07679s 1.888 us

Corrld
26612

26625
26642
26655
26668
26678
26688
26698
26714
26728
26738
26748
26759

GrdX

R W P P W S e e O)

256

GrdY

N |t | [N = | | [[| | e |

GrdZ

bt |) | | el | | e |) | | el | emd | wd | -

BlkX

128
128
128
128
128
128
128
128
512
128
128
128

BIKY

g N N e S e e S " W R Wy i W T W =

Blkz

bk | d | | wd [wd | el |) [d | el | wed | b | -

Reg/Trd

38
16
16
16
40
38
27
16
16
16
16
26

StcSMem

0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B

DymSMem

0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B
0B

Bytes

80B

Throughput
216.74 MiB/s

SrcMemKd
Pageable

DstMemk
Device

Running NVIDIA Profiling Tool in Wire-cell SPNG

® SPNG uses torch libraries and APIs (Run in GPU, support CPU)
® The backend is NVIDIA
® So the profiler spits out profile report in terms of Core CUDA Calls

Duration (ns)

5,995,345
5,983,467
5,975,265
5,966,472
5,175,169
3,698,413
3,492,032
1,644,178
1,120,038
791,352
750,241
748,869
746,455
746,284
746,254
742,078
730,090
702,459
701,377

Start (ns)

3,988,078,688
4,718,549,610
3,978,597,109
4,709,060,730
4,728,859,837
4,701,803,544
3,971,549,839
2,112,931, 089
3,036,051,392
3,002,198,717
3,986,505,887
3,996, 009,970
4,736,167,600
4,716,974,797
4,726,470,477
3,977,021,585
4,707,473,989
3,985,603,277
4,716,067,930

PID

275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941

TID
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941
275,941

API Name
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020
cudaStreamSynchronize_v3020

Not so useful.

Hard to figure where
these operations are
happening.

Need to get insight in
SPNG API level

NVIDIA Tools Extension (NvToolsExt) library

® Annotate the code and get insights

bool WireCell::SPNG::NoTileMPCoincidence: :operator()(const input_pointer& in, output_pointer& out) {
NVTX_SCOPED_RANGE ("NoTileMPCoincidence: :operator()");
out = nullptr;
if ('in) {

log—>debug("EOS ");
return true;

¥
log—>debug("Running NoTileMPCoincidence');

3s - F326ms +326.5ms +327ms +327.5ms +328ms +328.5ms +329ms +329.5msS\+330ms +330.5ms +331ms +331.5ms +332ms +332.5ms +333ms +333.5ms +334ms +334.5ms

» CUDA HW (0000:41:00.0 - NVIDI Mgg;‘gf;
~ Threads (21)

~ [275941] wire-cell ..t0 100%

0OS runtime libraries
cceL =]
NoTileh Tms]
NVTX NoTileMF loop (647.185 me]
» CUDA API m

Profiler overhead

~ [276010] cuda-EvtHandIr ..t0 100%
0S runtime libraries

Profiler overhead
19 threads hidden — + .10 100%

NvTool to Annotate to understand insight in each code sections

Stats System View ~
Time filter: 3.04 to 3.78 (0.73 seconds or 14.2%).

CUDA API Summary * Time ~ Total Time

CUDA API Trace
CUDA GPU Kernel Summary 52.9%
CUDA GPU Kernel/Grid/Block Summary 47.1%
CUDA GPU MemOps Summary (by Size)

CUDA GPU MemOps Summary (by Time) 0.5%
CUDA GPU Summary (Kernels/MemOps) 0.0%
CUDA GPU Trace 0.0%
CUDA Kernel Launch & Exec Time Summary :
CUDA Kernel Launch & Exec Time Trace 0.0%
CUDA Summary (API/Kernels/MemOps) 0.0%
DX11 PIX Range Summary .
DX12 GPU Command List PIX Ranges Summa 0.0%
DX12 PIX Range Summary 0.0%
MPI Event Summary .
MPI Event Trace b 0.0%
Time ~ Total Time Num Calls
72.0% 215.882 ms 57343
16.1% 48.226 ms 13286
11.1% 33.296 ms 13520
0.4% 1178 ms 1
0.3% 924.414 ps 2
0.1% 297.306 ps 5
0.1% 153.659 ps 838
0.0% 8.964 ps 18
0.0% 4.437 ps 4
0.0% 1.502 ps 2
0.0% 421 ns 2
0.0% 180 ns 2

Avg

1.000 s
901.385ms
8.864 ms
920.068 ps
381.274 ps
37.907 ps
28.883 us
9.745 ps
8.052 ps
6.580 ps

3.764 ps
3.629 us
2.462 ps
1178 ms
462.207 ps
59.461 ps
183 ns
498 ns
1.109 ps
751 ns
210ns
90 ns

Num Calls Avg Med Min

2 500.085 ms 500.085 ms

9 100.154 ms 100.147 ms

74 119.783 ps 122.344 ps

30 30.668 ps 28.593 ps

22 17.330 ps 17.251 ps

2 18.953 ps 18.953 ps

2 14.441 ps 14.441 ps

2 4.872 us 4.872 s

2 4.026 ps 4.026 ps

1 6.580 ps 6.580 ps

Med Min Max

2.224 ps 1.822 ps 13.534 ms
3.756 ps 1.732 ps 16.555 s
2.334 ps 1.562 ps 53.581 ps
1.178 ms 1178 ms 1178 ms
462.207 ps 14.182 ps 910.232 ps
65.308 ps 2.193 ps 97.837 ps
170 ns 50 ns 651 ns
260 ns 150 ns 2.033 ps
866 ns 741 ns 1.963 ps
751 ns 631 ns 871ns
210ns 131 ns 290 ns
90 ns 70 ns 110 ns

Max
500.077 ms
100.118 ms
2314 ps
6.940 ps
3.315ps
11.708 ps
3.726 ps
1.022 ps
3.465 ps
6.580 ps

StdDev

104.819 ps

393 ns

874ns

Ons

633.603 ps

36.290 ps

95ns

609 ns

572ns

169 ns

112ns

28ns

StdDev
500.093 ms 11.379 ps
100.238 ms 33.370 ps
735.779 ps 107.000 ps
71.498 ps 15.269 ps
22.925 pus 3.631 ps
26.199 ps 10.246 ps
25.157 us 15.154 ps
8.723 s 5.445 ps
4.587 ps 793 ns
6.580 ps Ons
Name
cudalaunchKernel

cudaStreamSynchronize

cudaMemcpyAsync

cudaFree

cudaHostAlloc

cudaMalloc

cuGetProcAddress_v2

cudaEventCreateWithFlags

culnit

Name
pthread_cond_timedwait
poll
ioctl
pthread_rwlock_wrlock
pthread_rwlock_rdlock
pthread_mutex_lock
mmap
fwrite
fflush

munmap

cudaStreamlisCapturing_v10000
cudaGetDriverEntryPoint_v11030

cuModuleGetLoadingMode

OS (CPU) Runt Time summary and CUDA APl Summary for
NoTileMPConcidence::Operator

10

Configuring SPNG for nvTools

® Current spng branch of wire-cell toolkit

® Configuration is similar to how you configure SPNG except
o Add —with-nvtx flag

o Add path to nvTools library in —with-libtorch-lib
o Add path to nvTools header in —with-libtorch-include

e Example from mine (may not work in yours)

Jwcb configure --prefix=$PREFIX --boost-mt --boost-libs=$PREFIX/lib --boost-include=$PREFIX/include
--with-jsonnet-libs=gojsonnet --with-cuda-lib=/usr/lib/x86_64-linux-gnu,$PREF|X/targets/x86_64-linux/lib
--with-cuda-include=$PREF|X/targets/x86_64-linux/include --with-libtorch=$TDIR

--with-libtorch-include=$TDIR/include,$ TDIR/include/torch/csrc/api/include, $PREFIX/targets/x86_64-linux/include
--with-libtorch-lib=$ TDIR/lib,S§PREFIX/targets/x86_64-linux/lib --with-root=$PREF|X ==with-nvtx

11

For the code part to be annotated

Add the header file
o WireCellSpng/TorchnvTools.h

Annotate the code to be profiler

bool WireCell::SPNG::NoTileMPCoincidence::operator()(const input_pointer& in, output_pointer& ou
NVTX_SCOPED_RANGE ("NoTileMPCoincidence: :operator()");

out = nullptr;

if (!in) {

log—>debug("EOS ");
return true;
}
log—>debug ("Running NoTileMPCoincidence");

NVTX_SCOPED_RANGE profiles the operator function

NVTX_RANGE_PUSH("NoTileMPCoincidence: :gather_channels");
convert_wires_to_channels(output_tensor_active, m_plane_channels_to_wires [m|
output_tensor_active = output_tensor_active.reshape({nbatch, nsamples, -1})

convert_wires_to_channels(output_tensor_inactive, m_plane_channels_to_wires
output_tensor_inactive = output_tensor_inactive.reshape({nbatch, nsamples,
NVTX_RANGE_POP() ;

Annotate part of code using PUSH/POP combination
Can support nested annotation as well.

12

Profiling the SPNG

We can attempt to profile the SPNG code in a generic way to get some
general sense

Target 1/O, memory hot/cold areas from the information we gather from the
generalized profiling

Generalized profiling still needs annotation to know the ball park of where
/0, memory, hot/cold areas fall

SPNG Workflow in General

Input waveform — Deconvolution — Filters — Initial ROIs + MP2/MP3 formation— DNNROI — Output
waveform with ROIs

13

Actual Data Flow Graph (To Run DNNROI)

Tasks to produce ingredients to find ROls in 1 plane:
e Decon (for all Planes)
e Filters (For all planes, filters depending upon induction/collection type)

e MP Finding (Target Induction Plane, MP information in Other 2 planes)
14

Annotating the SPNG

® Annotate each FunctionNode nvtx tool

® Annotate any function or parts of the code that does heavy lifting (both in
CPU or GPU)

® Exclude functions that do configurations

® Sometimes functions call other function. But we want to include that

o For example DNNROI calls TorchService. Annotate both of them.
o Nested Annotation is supported.

SPNGThreshol ldROI
[pgth hld _pl neo]

cpu = [
thr h ld rms _factor = 3
SPNGApplleSp ctrum nsqueeze_input = Fal
[spng_tight_roi_plane0]
0 | base_spectrum_name = Tor thS ctrumt rch_ldspec_roi_tight 0 | 0

=)

4] }Bosltﬂ;deeconsre%} p]lort 0l % & dim T}:’TC;IIDSDeCtTUm
multiplicity =3~ output_s t t 9 ROmght [m Ldsy tg]
\ spectra = list(2):| [HtFl]t W ught U L(Fllt er:ROI_tight_If]
SPNGApply1DSp ctrum
TorchFRERSpectrum [spng roi_plane0] i
[torch_frer plane0] 0 | base_spectrum_name = Torc| thSp ectrum:torch_idspec_roi_loose 0 | 0
ADC_mV = 11702142857.142859 dim¢ =2
ddbf lf? cehcp _8810 output.s t t g ROToos ‘Torch1DSpectrum
default_ntic] ilsls 6000 [torch_1dspec_roi_loose_0]
tra_scale = 1 debug_force_cpu = False
| field_r g = F eld e 1d0 [SPNGApply1DSpectrum 1 spectra = list(2):[HfFilter:Wiener_tight_U,L{Filter:ROI_loose_If]

15

After Annotating with Nvtx Library

. 02s = 04 = 06s 08 = 1s = 12s = 14s = 16s = 18s 2s 2.2s 2.4s 2.6s 2.8s 3s

| &)

Runs of 4.2 seconds ~ Consistent with the wire-cell timer

28

16

After Annotating with Nvtx Library

0.2s 0.4s 0.6s 0.8s 1s 1.2s 1.4s 1.6s 1.8s 2s 2.2s 2.4s 2.6s 2.8s 3s 3.2s 3.4s 3.6s 3.8s 4s

- Y = = e = e -1 iR
/ % 81 ifiE B S 18 i B

® Runs of 4.2 seconds ~ Consistent with the wire-cell timer
® SPNG spends most of its time on (descending order)

o NoTileMPCoincidence

o TorchFRERSpectrum

o DNNROI

Time spent by Wire-cell in each Component

Operations vs Time (nano seconds)

100000000
1000000
10000
100

& :

00 \0 Q & Q‘ 0\0 &0 é \. 0 0
@Q O\Q & O%Q ,\é ? o\b QQ‘Q/ '\é O\Q ,g?)(\% Q—O QQQ O\Q
¢ & » & 2N ¢ & XL R\ N
SR R VAEIRNORER QPN R RS N S QRS

18

Average Number of GPU Operations

Includes both GPU
Total Number of GPU Operations operations and |I/O

10000

1000

100
10 I

o o & « S § 0 e
& 8& °Q 2 S\Q’Q \§~ Qg’q. /\5\0 o<2K e}‘%o O 09Q o<20
& & N < S & & A F & &
N X 2 X X N
& & ©» ¢ &€ S S ¢C© LSS
N Q Q 8 S ,\‘(\‘ <0 & Q <9 R ,\o& 3

Very Highly Dominated by NoTileMPCoincidence

More on this later.... e

GPU Utilization

e Fraction of operations handled by the GPU (Total = GPU + CPU)
e Overall GPU Utilization is ~12%
e Inthose 12%:

o 86% of the time, GPU does actual work (operations
o 14% of the time it does I/O

20

GPU Utilization in Annotated parts of the code

GPU Utilization per NVTX Range

DNNROIPostProcess: :postprocess I, 4.

DNNROIPreProcess: : preprocess NG 65.13%
ApplyROI::operator() N 30.14%
DNNROIProcess: :operator() INNEEG_G_—___ 25.20%
Apply1DSpectrum::operator() I 25.01%
NoTileMPCoincidence: :main_loop I 14.49%
Decon::operator() I 14.38%
NoTileMPCoincidence::operator() I 13.71%
ThresholdROIs: :operator() I 10.92%
TorchFRERSpectrum::configure il 5.19%
NoTileMPCoincidence::gather_channelsill 3.43%
Torch1DSpectrum::spectrumfl 1.78%
0 20 40 60 80

GPU Utilization (%)

NVTX Range

Note that NoTileMPCoincidence dominates the SPNG GPU
Operations.

21

NoTileMPCoincidence

® [More on this next week

22

