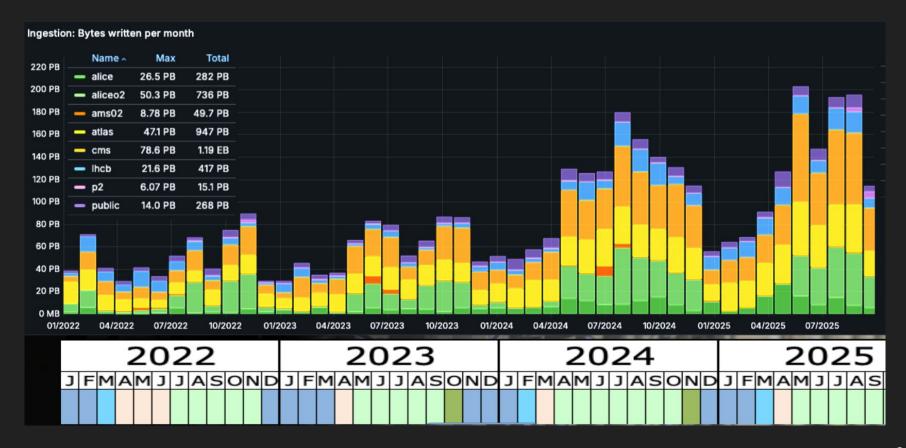

The **EOS** Project Timeline

15 years of history

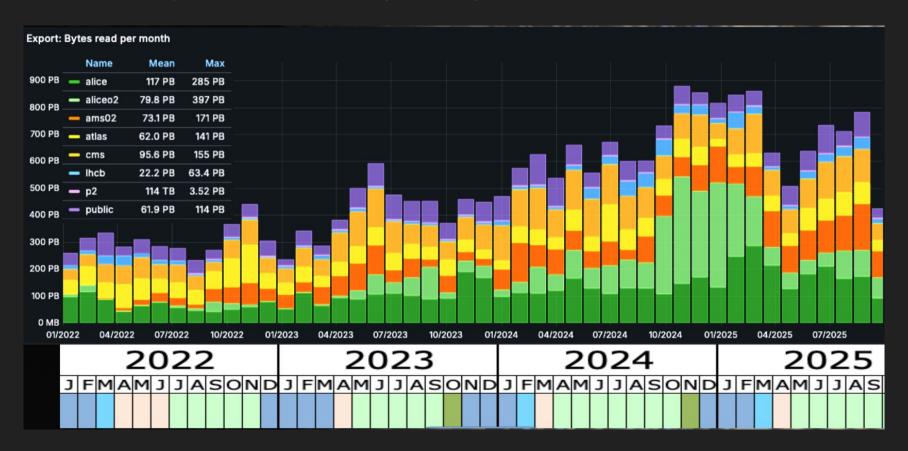
EOS Service in Numbers

How is EOS used?

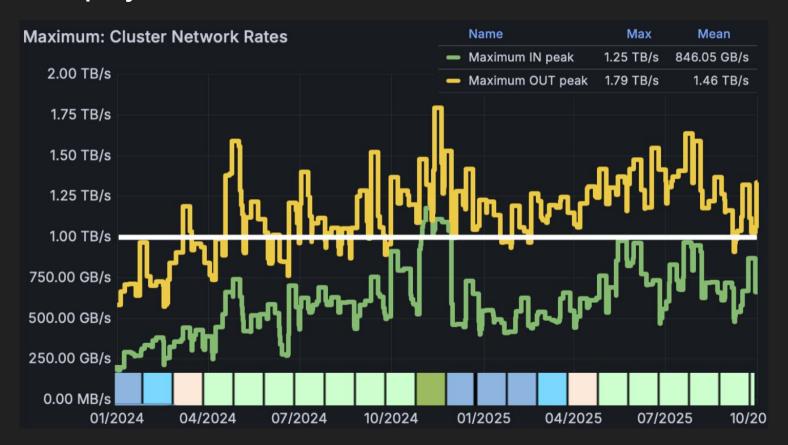
WEB Services for Jupyter Notebooks


WEB Services for Sync&Share

24 individual instances


8 Physics 8 CERNBox 8 CTA

@ CERN	Capacity	Disks	Storage servers
Smallest EOS instance (Project-i02)	3.36 PB	270	6
Biggest EOS instance (ALICEO2)	181 PB	12 000	128


EOS for physics since beginning of LHC RUN 3 - WRITES

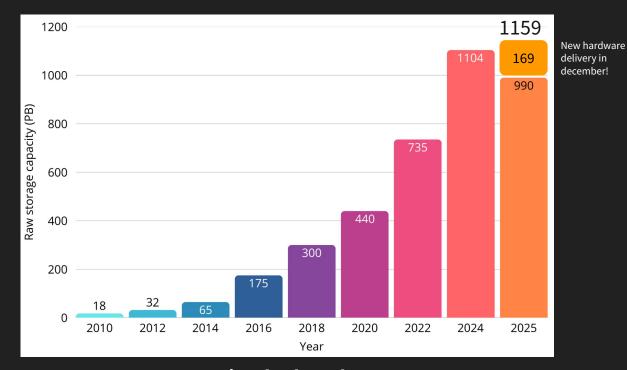
EOS for physics since beginning of LHC RUN 3 - READS

EOS for physics 2024 and 2025 Network rates

The public cloud storage equivalent of **EOS** at CERN

... has provided over 2.9 Million TB-years of storage at a significantly lower cost!

The main goal of the EOS project is to deliver high-performance storage minimising the overall Total Cost of Ownership (TCO)

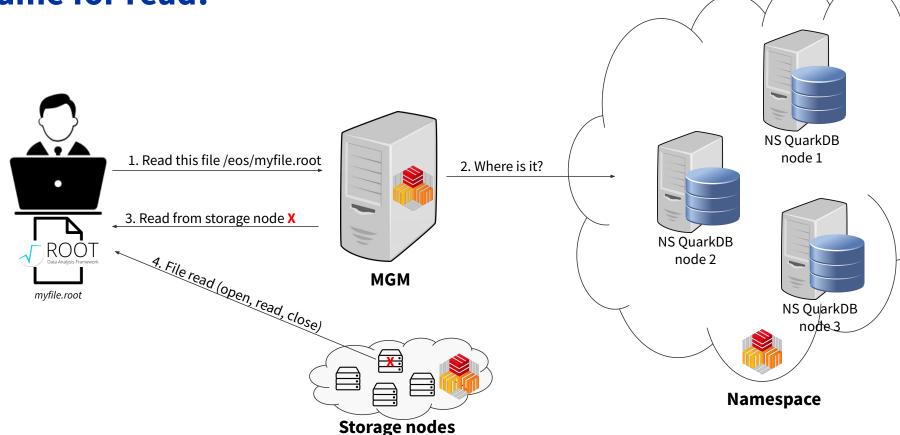


At CERN - EOS Disk Data Storage

959
Disk storage servers

111 000Disks

990 PB
Raw capacity deployed



Raw storage capacity deployed over years @ CERN

What happens when you write a file to EOS? NS QuarkDB node 1 1. Write this file (open) 2. Register FILE metadata 3. OK, write to storage node X 6. NS Commit (size, cksum...) NS QuarkDB RO01 4. File write (open, write, close) node 2 **MGM** myfile.root NS QuarkDB 5. Commit node3 Namespace **Storage nodes**

Same for read!

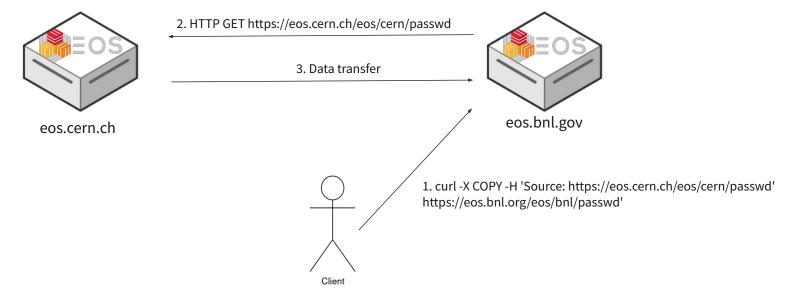
EOS Architecture

- 3 entities to operate
 - MGM The "brain" of EOS
 - FST The physical data storage servers
 - QuarkDB The namespace metadata key-value store

Protocols

- Data transfer protocol supported
 - XRootD
 - Write: xrdcp /etc/passwd root:// eos.bnl.gov//eos/bnl/passwd
 - Read: xrdcp root://eos.bnl.gov//eos/bnl/passwd /tmp/passwd
 - HTTPS
 - Write: curl --upload-file /etc/passwdhttps://eos.bnl.gov/eos/bnl/passwd
 - Read: curl https://eos.bnl.gov/eos/bnl/passwd -o /tmp/passwd
 - o FUSE
 - EOS mounted directly on the local machine (cp, cat, ls...)

Transfer data between two datacenters



HTTP Third Party Copy (TPC)

```
o curl -X COPY -H 'Source: <a href="https://eos.cern.ch/eos/cern/passwd">https://eos.bnl.org/eos/bnl/passwd</a>
```

No data streaming via the client (see next slide)

HTTP Third Party Copy (TPC)

EOS Authentication

- X509 certificate authentication
 - DN to username mapping
 - VOMS role to username mapping
- Kerberos only for XRootD transfers
 - kinit <u>username@BNL.GOV</u> (only for xrootd transfers)
- Tokens
 - Scientific tokens (SciTokens)
 - EOS-native tokens

EOS Authorization

POSIX

```
      EOS Console [root://localhost] |/> cd /eos/dteam001

      EOS Console [root://localhost] |/eos/dteam001/> ls -alhrt

      drwx-----
      1 dteam001 dteam001
      104.86 M Sep 1 11:42 .

      drwxrwxr-x
      1 root
      418.57 M Nov 25 09:24 .

      drwx-----
      1 dteam001 dteam001
      104.86 M Sep 26 14:40 http_test

      -rw-r----
      1 dteam001 dteam001
      1491 May 30 2025 passwd

      -rw-rw-r--
      1 dteam001 dteam001
      2514 Jun 3 2025 passwd2
```

EOS Authorization

Access Control List (ACL)

Example: sys.acl="g:1470:rx!d,u:111522:rwx+d,egroup:lhcb-datamanagement:rwx+d"

tag	definition				
r	grant read permission				
W	grant write permission				
х	grant browsing permission				
m	grant change mode permission				
!m	forbid change mode operation				
!d	forbid deletion of files and directories				
+d	overwrite a '!d' rule and allow deletion of files and directories				
!u	forbid update of files				
+u	overwrite a 'lu' rule and allow updates for files				
q	grant 'set quota' permissions on a quota node				
С	grant 'change owner' permission on directory children				
1.	set the immutable flag				
a	grant archiving permission				

EOS Quota system

Set files/storage limit on a specific tree for users and groups

┌ > Quota No	ode: /eos/f	use/							
user	used bytes	logi bytes	used files	aval bytes	aval logib	aval files	filled[%]	vol-status	ino-status
ccaffy	212.33 MB	212.33 MB	10	0 B	0 B	0	100.00 %	ignored	ignored
group	used bytes	logi bytes	used files	aval bytes	aval logib	aval files	filled[%]	vol-status	ino-status
99 ccaffy	0 B 212.33 MB		0 10	0 B 20.00 GB			100.00 % 2.12 %	9	ignored ok
summary	used bytes	logi bytes	used files	aval bytes	aval logib	aval files	filled[%]	vol-status	ino-status
All users All groups	212.33 MB 212.33 MB		10 10	0 B 20.00 GB	0 B 10.00 GB		100.00 % 2.12 %		ignored ok

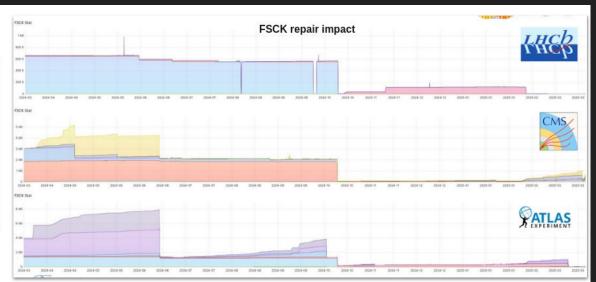
Ensure data availability on EOS

- Configurable data storage layout to ensure data availability
 - Replica layout (1-replica, 2-replica, ..., N-replica)
 - Create N copies of the same file on different data storage servers
 - Erasure-coding (RAIN Redundant Array of Inexpensive Nodes)
 - Split, encode and create parity stripes every <*N*> MB block of a file
 - Distribute all stripes across different storage servers
 - Ex: EC(10+2): 10 data stripes, 2 parities distributed across 12 servers

Ensure data integrity on EOS

Checksumming

- o adler32, crc32c, md5, blake3, sha-1, sha-256
- Multiple checksums for same file support with EOS > 5.4 (2026)


Ensure data integrity on EOS

- EOS FSCK (FileSystem ChecK)
 - Collection: Background task scanning files on all data storage servers
 - Repair: Early fix inconsistency error to avoid data loss

```
[root@eosams02-ip563 (mgm:master) -]$ eos fsck stat
Info: collection thread status -> enabled
Info: repair thread status -> enabled
Info: repair category -> all
Info: best effort -> true
250328 00:02:41 1743116561.474107 5tart error collection
250328 00:02:41 1743116561.474116 Filesystems to check: 4408
250328 00:02:41 1743116561.497339 d_cx_diff : 4
250328 00:02:41 1743116561.497356 d_mem_sz_diff : 4
250328 00:02:41 1743116561.497379 m_mem_sz_diff : 3
250328 00:02:41 1743116561.497379 m_mem_sz_diff : 14
250328 00:02:41 1743116561.497379 rep_missing_n : 30
250328 00:02:41 1743116561.497379 rep_missing_n : 30
250328 00:02:41 1743116561.497391 stripe_err : 175
250328 00:02:41 1743116561.497394 Finished error collection
250328 00:02:41 1743116561.497394 Finished error collection
250328 00:02:41 1743116561.497394 Finished error collection
```

FSCK collection summary

Operating EOS

EOS CLI interface

- Administrate data storage nodes (FST), disks, namespace operation
- eos node ls, eos fs ls, eos ns ...
- EOS was conceived to help storage operators, plenty of monitoring information available at hand

GRPC interface

CERNBox and CTA integration

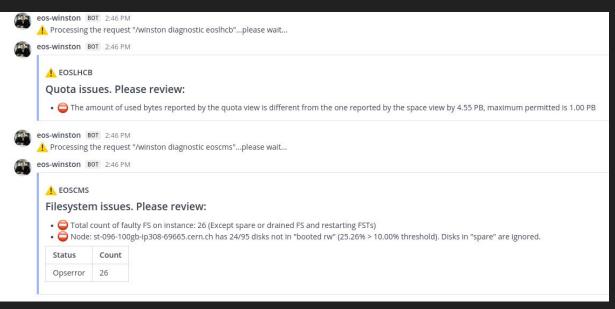
Operating EOS

- EOS microservices managed internally
 - Balancers: balance the volume usage on disks
 - Converter engine: Change data storage layout
 - LRU engine: namespace cleanup or file conversion
 - E.g: create a temporary space where files get automatically cleaned up after 30 days

- File-transfer probe
 - Is EOS up and running?
 - EOS probe
 - Copy, download, delete a file to EOS
 - In case of failure
 - SMS to EOS operation team
 - Mattermost notification
 - Email notification

Gitlab link to the probe: https://gitlab.cern.ch/eos/ops/probe

- Automate tasks using rundeck
 - Automated Data Servers gradual rolling EOS upgrade
 - Gracefully shutdown data storage server for hardware repair
 - EOS Logs Backups
 - EOS Namespace Backups



- Anomaly Detection: EOS Winston
 - Integrated to Mattermost Chat

Command	Description
/winston diagnostic [instance]	The diagnostic for a specific instance. If the option is not there, it will run a diagnostic on all instances
/winston eosversionsummary	EOS Version summary
/winston eosclientsummary	EOS Client summary
/winston eosclientversionsummary	EOS Clients Version summary
/winston eosaccesssummary	User Access summary

- Anomaly Detection: EOS Winston
 - Integrated to Mattermost

- Anomaly Detection: EOS Winston
 - Integrated to Mattermost

Latest EOS reports as of 10 Dec 2025 14:47

Instance: eosalice

Headnode version: eos-server-5.3.22-1.el9.x86_64

106 nodes have version 5.3.22-1.

Instance: eosatlas

Headnode version: eos-server-5.3.26-1.el9.x86_64

105 nodes have version 5.3.22-1.

Instance: eoscms

Headnode version: eos-server-5.3.25-1.el9.x86_64

119 nodes have version 5.3.22-1.

Instance: eoslhcb

Headnode version: eos-server-5.3.26-1.el9.x86 64

72 nodes have version 5.3.25-1.

- Al chatbot PoC
 - Integrated to Mattermost
 - Available on the <u>eos-community</u> forum
 - accgpt BOT 10:27 AM (Only visible to you)

 Got it! Processing your question: *"How do I display all storage nodes in EOS?..."*
 - accgpt BOT 10:27 AM

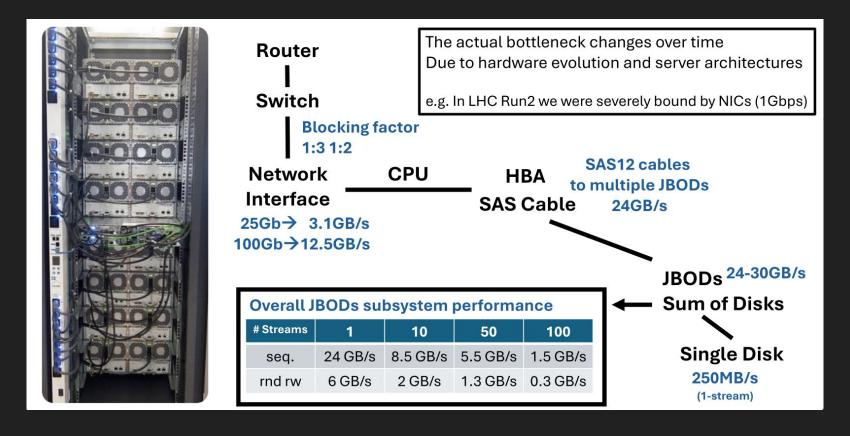

 Question: How do I display all storage nodes in EOS?

Answer: To display all storage nodes in EOS, you can use the command: eos node ls. This command will list the nodes along with their details such as host, port, id, path, schedgroup, and status. For more detailed information, you can use additional output options like -l or --io with the command, for example: eos node ls -l.

- 1. eos-docs.web.cern.ch (Confidence: 60.6%)
- 2. eos-docs.web.cern.ch (Confidence: 59.5%)

EOS Future

- The evolution of EOS is still ongoing:
 - Simplification and Performance Improvement of the overall architecture


• Tiered-Storage: **EOS-**Flow

- EOS-R&D of the EOS-Connect architecture merging disk & tape deployments
- EOS-R&D with new technologies like QLC flash

Tracking of Disk Storage HW Bottlenecks

Disks are bigger, but not faster

Latest WD on Market

All latest technological advancements

- 11-platters
- ePMR
- Triple-stage Actuator
- · Helio Sealed
- UltraSMR
- OptiNAND
- ArmorCache

301B SATA	301B SAS	32183
WSH723200ALxxyz	WSH723200ALxxyz	WSH72322
30TB	30TB	32
SMR	SMR	SN
SATA 6 Gb/s	SAS 12 Gb/s	SATA 6
512e:512 4Kn: 4096	512e:512 4Kn: 4096	512e:512 4
1385	1385	148
/s (1-strea	m)	
512	512	51
7200	7200	720
4.16	4.16	4
4.16 600	4.16	4.
	3018 SMR SATA 6 Gb/s 512e512 4Kn: 4096 1385 3/S (11-strea 512 7200	WSH723200ALxxyz WSH723200ALxxyz 30TB 30TB SMR SMR SATA 6 Gb/s SAS 12 Gb/s 512e512 4Kn: 4096 512e512 4Kn: 4096 1385 1385 5/\$ (1-stream) 512 512 512

Comparison with other products

512MB

WD Gold® Enterprise Class SATA HDD

WSH723220ALx

Specifications

Form factor 3.5-inch 3.5-inch 3.5-inch 3.5-inch 3.5-inch 3.5-Inch SATA 6 Gb/s 512n / 512e user sectors per drive⁵ 512e 512e 512e 512e 512e 512e OptiNAND" technology Yes Yes Yes Yes Yes ArmorCache" Yes Yes Yes Yes No RoHS compliant Yes Yes Yes Yes Yes Yes 285MB/s 279MB/s 298MB/s 291MB/s 285MB/s 285MB/s Data transfer rate7 (max sustained)

512MB

512MB

512MB

~280-300 MB/s (1-stream)

512MB

'512MB

Servers hold more data, but deliver less speed!

100 PB comparison over hardware generations

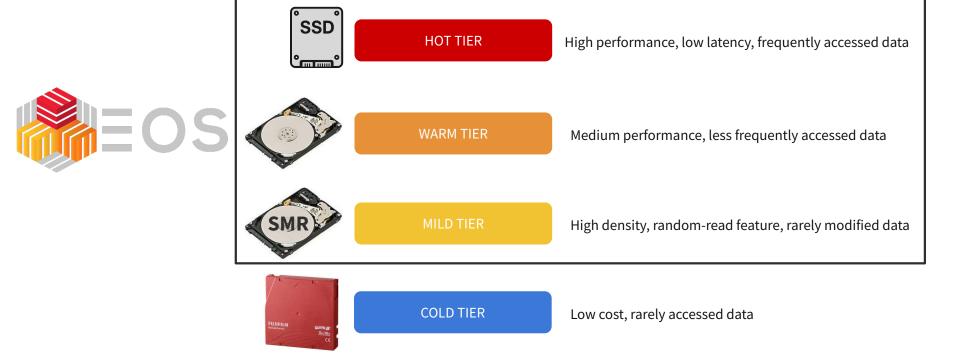
	HW Generation 2017 10Gbps 48x6TB	HW Generation 2018-2019 25Gbps 96X12TB	HW Generation 2020-2022 100Gbps 96x18TB	HW Generation 2024-2025 100Gbps 120x24TB	
Number of servers	347	87	58	35	
Sum of NICs	433 GB/s	272 GB/s	725 GB/s	425 GB/s	
Disk Speed (est.)	150MB/s per disk	200MB/s per disk	250MB/s per disk	250MB/s per disk	
Sum of Disk BW (1-stream)	~2.5TB/s	~1.67TB/s	~1.39TB/s	~1TB/s	
Sum of Disk BW (10-streams)	~890 GB/s	~600 GB/s	~500 GB/s	~360 GB/s	

What can we do about it?

Categorize and store data on ≠ types of media

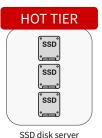
Based on

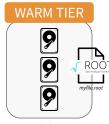
- Performance
- Costs
- Access frequency



Media-based storage tiering

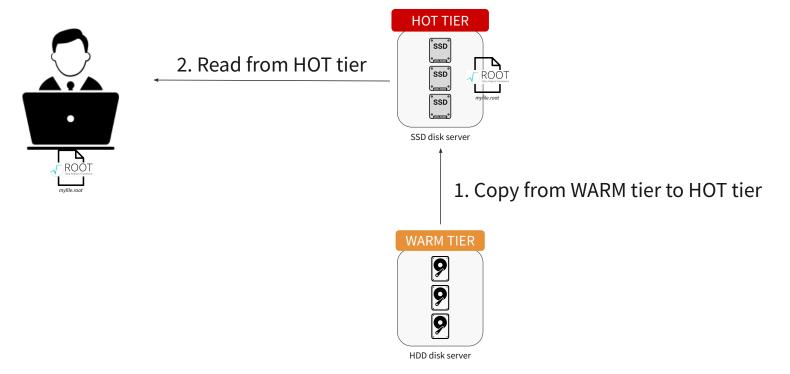
Media-based storage tiering



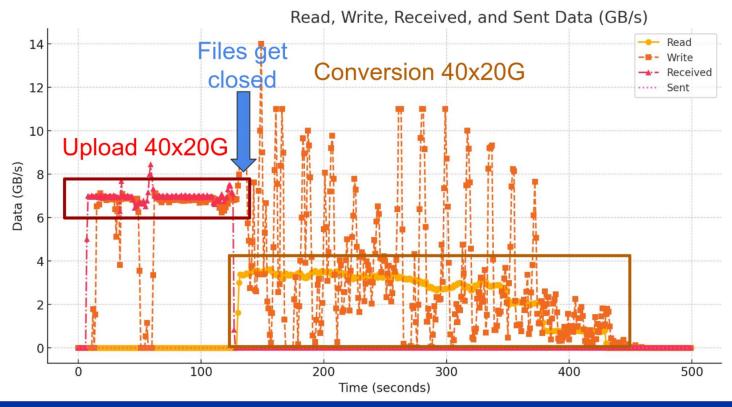

Media-based storage tiering - file write

1. open, write, close

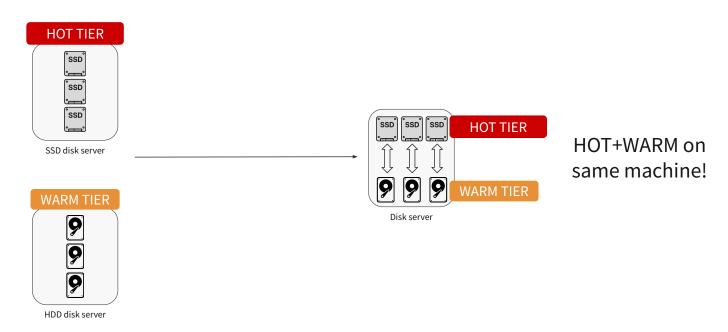
2. Close triggers the asynchronous file move to the warm tier (based on a policy)



HDD disk server


Media-based storage tiering - file read

Storage tiering benchmark


Result

More scalable approach - local tiering - WIP

More infos: https://eos-docs.web.cern.ch/diopside/manual/interfaces.html#storage-tiering

New Functionality: Notifications / Notification Workflow

Example Use Case: transparent Rucio for small experiments

• avoids RUCIO/FTS integration in DAQ systems

New Functionality: Notifications / Notification Workflow

Documentation

Supports four notification transports:

- http(s) (POST)
- grpc (Notify rpc)
- activeMQ (Message)
- redis (PUBLISH)

```
eos attr set
sys.workflow.closew.default=notify:http/localhost:5000/notify//
12000
eos attr set
sys.workflow.closew.default=notify:gclient|localhost|6349|notif
ication | 2000
eos attr set
sys.workflow.closew.default=notify:redis|localhost|6349|notific
ation | 2000
eos attr set
sys.workflow.closew.default=notify;qrpc|localhost|55100||2000
```

New Functionality: Audit Logging

AUDIT LOGGING

AUDIT LOGGING

Documentation

Audit: a new feature on the MGM logging all modifications of the namespace and on demand even all inspections of the namespace (readdir, stat)

Use case:

Who modified this? When? What was changed?

(meta-data only)

```
"timestamp": 1730985600,
  "path": "/eos/user/a/alice/data/file.txt",
  "operation": "WRITE",
  "client ip": "192.0.2.10",
  "account": "alice",
  "auth": { "mechanism": "krb5", "attributes": { "principal":
"alice@EXAMPLE.ORG" } },
  "authorization": { "reasons": ["uid-match"] },
  "trace id": "srv-abc123",
  "uuid": "550e8400-e29b-41d4-a716-446655440000",
  "tid": "cli-xyz789",
  "app": "eoscp",
  "svc": "mam",
  "before": { "ctime": 1730980000, "mtime": 1730981000, "uid": 1000, "gid":
1000, "mode": 420, "mode octal": "0100644", "size": 1024, "checksum":
"a1b2..." },
  "after": { "ctime": 1730980000, "mtime": 1730985600, "ctime ns":
"1730980000.000000000", "mtime ns": "1730985600.123456789", "uid": 1000,
"qid": 1000, "mode": 420, "mode octal": "0100644", "size": 4096, "checksum":
"dead..." },
  "src file": "mgm/FuseServer/Server.cc",
  "src line": 2600,
  "version": "<eos-version>"
```


New Functionality: ZSTD compressed log files and reports

ZSTD Logs ZSTD Reports ZSTD Audits

Audit Logs are always ZSTD compressed, **Log files** are optionally ZSTD compressed, same for **Report logs**.

One difference is, that there is no **need for external log rotation anymore** and the most recent file is a symlink to the time labeled log file.

We provide an executable **zstdtail**, which behaves like the LINUX tail command to follow logfiles for parsing etc.

By default ZSTD comes with **zstdcat** and **zstdless**.

```
    Stream current audit records:
    zstdcat <logdir>/audit/audit.zstd | jq '.'
    Follow audit logs across rotations (like tail -F):
    zstdtail <logdir>/audit/audit.zstd
    # Or with filtering:
    zstdtail <logdir>/audit/audit.zstd -- jq 'select(.operation == "DELETE")'
```

Save the date! EOS Workshop 2026

9th - 11th of March 2026 at CERN

Thank you! Questions?

Backup

Backup slide - questions from Tony W.

- What storage needs/constraints do you face or your existing storage solution address? What criteria are used to choose it over other available solutions?
 - Storage needs
 - Store PetaBytes of expensive physics data efficiently and reliably at the lowest cost possible
 - Ensuring full control and complete insight into the software to enable rapid incident response and resolution
 - Ensuring the timely addressing of new requirements from CERN's experiments
 - 24/7 data availability for physics use-cases at low operational costs
 - Constraints
 - Fixed budget, very heterogeneous hardware (~10 years old data storage servers)
 - Must interact with the Worldwide LHC Computing Grid (data created at CERN is also stored all around the globe)
 - Support multiple physics use cases from DAQ data storage to data reconstruction, data reprocessing, data analysis and ensure these activities don't interfere with each other

Backup slide - questions from Tony W.

- What are the advantages and disadvantages of your storage solution? What does it do well, and where does it need improvement, operationally-speaking?
 - Advantages
 - Scale-out data storage architecture
 - Multi-protocol and Multi-authentication (each protocol see the same set of data)
 - Integration with CTA and CERNBox
 - EOS was conceived to streamline and simplify service operations
 - Many tunable to protect (or limit) dedicated activities or users
 - Disadvantages
 - EOS is not providing block devices to end-users (RBD, DRBD, ...)
 - Special configuration can be tricky in some cases
 - This is why our team is there to advise and help:)
 - Performance depends on hardware used and its configuration
 - Possible operational improvements
 - In the future, we plan to provide native NFS access instead of using FUSE.

Backup slide - questions from Tony W.

- What storage challenges do you foresee in the near future and does your solution scale up to meet these challenges? If not, what upgrades/modifications are planned?
 - Storage challenge for the future
 - HL-LHC (Run 4) expectations
 - Disk storage capacity: 3 EB of usable storage
 - Bandwidth: 4-5TB/s
 - Transfer rate: Avg 2.2M parallel transfer at all times
 - Incoming hardware has more capacity per machine → less bandwidth per storage!
 - Storage tiering will help in this respect
 - We are always evolving EOS to increase its performance and meet experiments needs