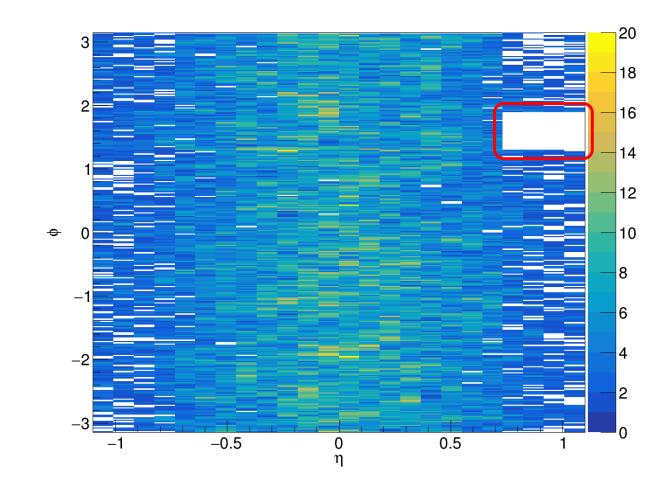
bHCAL Meeting — Acceptance Hole

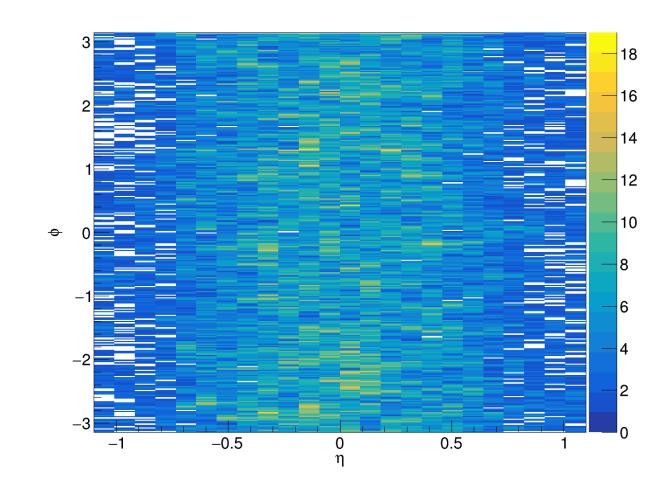
Jan Vanek University of New Hampshire

10/17/2025

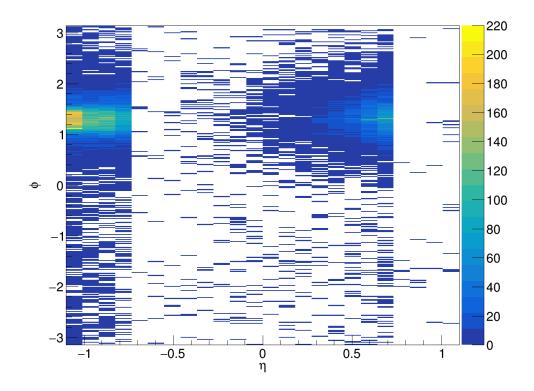

OVERVIEW

• Study to determine origin of hole in bHCAL acceptance in ePIC simulation framework

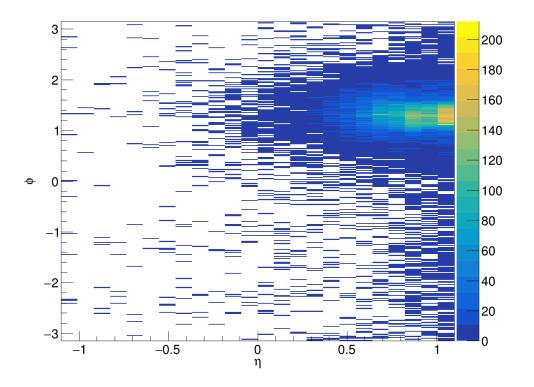
- Simulation setup:
 - 1. Simulate single particles using npsim and pass through ePIC
 - Generated $10k \pi^+$ at 2 GeV for each simulation pass
 - Different kinematic distributions in η and ϕ (details in corresponding slides)
 - 2. Reconstruct using EICRecon
 - 3. Fill histograms


ORIGINAL GEOMETRY

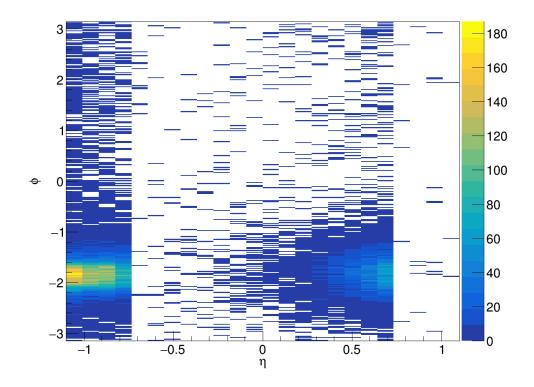
- Old simulation with original geometry
- Particle gun setup:
 - π^+ at 2 GeV (10k)
 - Uniform in ϕ
 - $\theta = (33.5, 146) \text{ deg, with } \cos \theta \text{ distribution}$
- (top) Full ePIC detector
- (bottom) bHCAL only
- With the acceptance hole


NEW GEOMETRY

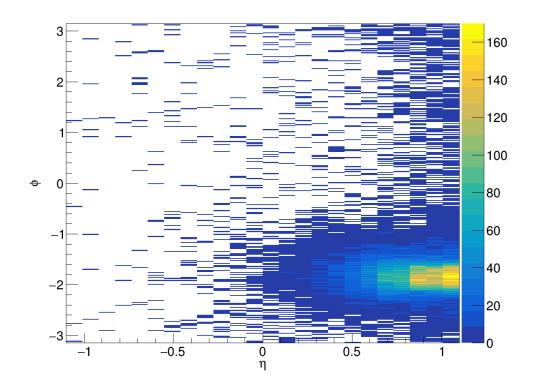
- New simulation with modified geometry
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - Uniform in ϕ
 - $\theta = (33.5, 146) \text{ deg, with } \cos \theta \text{ distribution}$
- (top) Full ePIC detector
- (bottom) bHCAL only
- No acceptance hole


ACCEPTANCE SCAN 1 — OLD

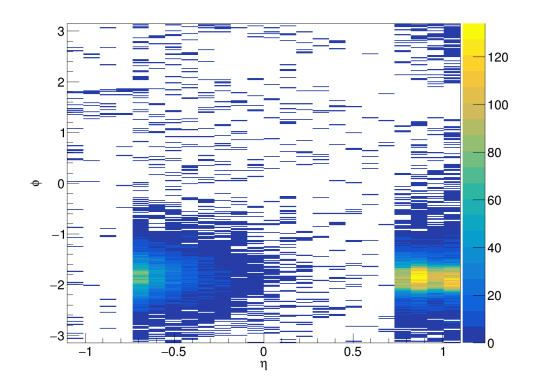
- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - $\phi = (1.35, 1.80)$ rad, uniform
 - $\eta = (0.8, 1.1)$, uniform


ACCEPTANCE SCAN 1 — NEW

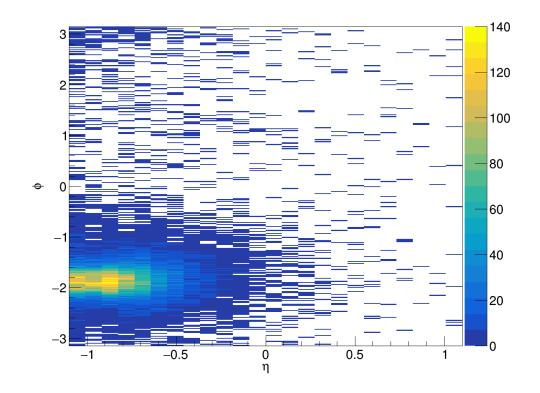
- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - $\phi = (1.35, 1.80)$ rad, uniform
 - $\eta = (0.8, 1.1)$, uniform


ACCEPTANCE SCAN 2 — OLD

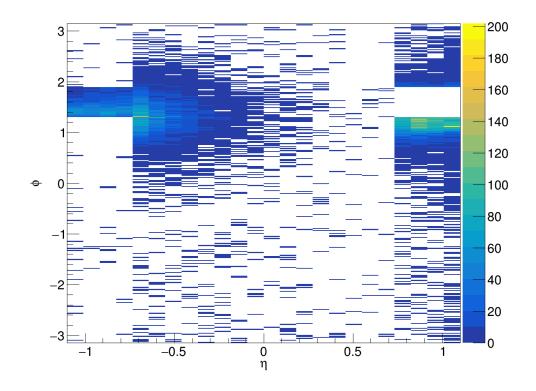
- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - $\phi = (-1.80, -1.35)$ rad, uniform
 - $\eta = (0.8, 1.1)$, uniform


ACCEPTANCE SCAN 2 — NEW

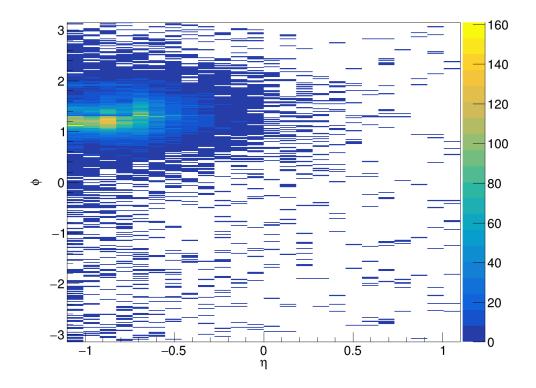
- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - $\phi = (-1.80, -1.35)$ rad, uniform
 - $\eta = (0.8, 1.1)$, uniform


ACCEPTANCE SCAN 3 — OLD

- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - $\phi = (-1.80, -1.35)$ rad, uniform
 - $\eta = (-1.1, -0.8)$, uniform


ACCEPTANCE SCAN 3 — NEW

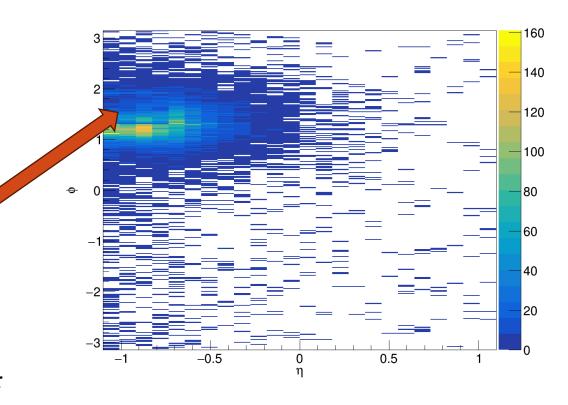
- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - $\phi = (-1.80, -1.35)$ rad, uniform
 - $\eta = (-1.1, -0.8)$, uniform


ACCEPTANCE SCAN 4 — OLD

- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^{+} at 2 GeV (10k)
 - $\phi = (1.35, 1.80)$ rad, uniform
 - $\eta = (-1.1, -0.8)$, uniform

ACCEPTANCE SCAN 4 — NEW

- Test simulation scanning bHCAL acceptance
 - Shooting π^+ to a window about the size of the hole
 - Changing position of the window
- Particle gun setup:
 - π^+ at 2 GeV (10k)
 - $\phi = (1.35, 1.80)$ rad, uniform
 - $\eta = (-1.1, -0.8)$, uniform


ACCEPTANCE SCAN 4 — NEW

Test simulation scanning bHCAL acceptance

• Shooting π^+ to a window about the size of the hole

Changing position of the window

- Particle gun setup:
 - π^+ at 2 GeV (10k)
 - $\phi = (1.35, 1.80)$ rad, uniform
 - $\eta = (-1.1, -0.8)$, uniform
- Chimney tiles visible
 - They are physically smaller than regular tiles smaller reconstructed signal

CHANGES TO GEOMETRY

- The issue with the misplaced η hits was identified to be caused by different default tile position in the gdml files for Tiles 09-12 (4 outer η rings) than for Tiles 01-08 (central η rings) and Chimney Tiles
 - Tiles 01-08 and Chimney Tiles
 - Default position is close to center of the coordinate system
 - Tiles 09-12 (original)
 - Default position is far in negative x

Tile08_reduced.gdml

```
2?xml version='1.0' encoding='us-ascit'?>
<gdml xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://service-spi.web.com/define>
<position name="Mesh2Tess_0" unit="mm" x="-1668.665+1852.807861328125" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_1" unit="mm" x="-1668.665+1852.807861328125" y="-426.824+808.344482421875" z="3.5" />
<position name="Mesh2Tess_2" unit="mm" x="-1668.665+1462.767822265625" y="-426.824+80.0" z="-3.5" />
<position name="Mesh2Tess_3" unit="mm" x="-1668.665+1852.807861328125" y="-426.824+799.2944946289062" z="-3.5" />
<position name="Mesh2Tess_4" unit="mm" x="-1668.665+1462.767822265625" y="-426.824+799.2944946289062" z="-3.5" />
<position name="Mesh2Tess_5" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+799.2944946289062" z="-3.5" />
<position name="Mesh2Tess_5" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+799.2944946289062" z="-3.5" />
<position name="Mesh2Tess_5" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+799.2944946289062" z="-3.5" />
<position name="Mesh2Tess_7" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_5" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_5" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_10" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_10" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_11" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_12" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_13" unit="mm" x="-1668.665+1262.767822265625" y="-426.824+808.344482421875" z="-3.5" />
<position name="Mesh2Tess_13" unit="mm" x="-1668.665+1262.7678222656
```

Tile09_reduced.gdml (original)

14

CHANGES TO GEOMETRY

- The issue with the misplaced η hits was identified to be caused by different default tile position in the gdml files for Tiles 09-12 (4 outer η rings) than for Tiles 01-08 (central η rings) and Chimney Tiles
 - Tiles 01-08 and Chimney Tiles
 - Default position is close to center of the coordinate system
 - Tiles 09-12 (original)
 - Default position is far in negative x

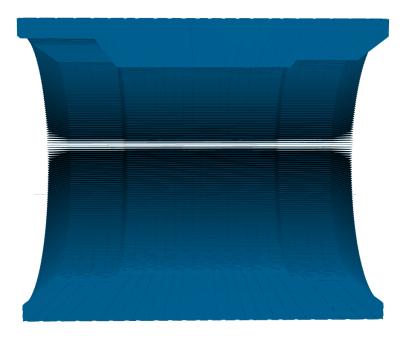
Tile08_reduced.gdml

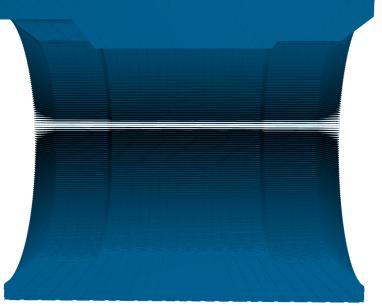
Tile09_reduced.gdml (original)

5 15

CHANGES TO GEOWETRY

- The issue with the misplaced η hits was identified to be caused by different default tile position in the gdml files for Tiles 09-12 (4 outer η rings) than for Tiles 01-08 (central η rings) and Chimney Tiles
 - Tiles 01-08 and Chimney Tiles
 - Default position is close to center of the coordinate system
 - Tiles 09-12 (original)
 - Default position is far in negative x
 - Tiles 09-12 (new)
 - Default position shifted to the center, to be consistent with other tiles
 - Re-calculated offsets so that mesh vertices land in the same place as in the original geometry
 - Modified cpp file that builds the detector to place the new tiles correctly

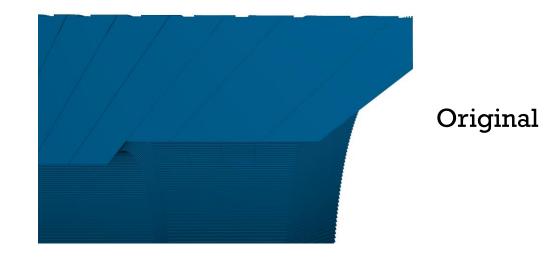

Tile08_reduced.gdml


Tile09_reduced.gdml (new)

GEOMETRY CHECK

- Visual check that the new geometry is consistent with the original one
 - Direct comparison of the exported geometry
 - No obvious differences
 - New geometry appears consistent with the original
- Other checks
 - With available macros to check overlaps
 - During npsim runtime
 - No error messages

Original


Jan Vanek, bHCAL meeting

10/17/2025

New

GEOMETRY CHICK

- Visual check that the new geometry is consistent with the original one
 - Direct comparison of the exported geometry
 - No obvious differences
 - New geometry appears consistent with the original
- Other checks
 - With available macros to check overlaps
 - During npsim runtime
 - No error messages

SUMMARY AND OUTLOOK

- Was able to fix the acceptance hole issue
 - Fixed geometry in individual tile geometry gdml files for 4 outer η rings (Tile09-12)
- New geometry tested for overlaps and used in simulation
 - New version seem to pass all tests
- Ran new simulations with updated geometry
 - New results look OK

In progress:

- Updated gdml files for Tile09-12 to epic-data repo (separate branch)
 - https://github.com/eic/epic-data/tree/bHCAL hole patch
- Submitted a pull request to the main epic repo
 - PR #967

10/17/2025

THANK YOU FOR ATTENTION