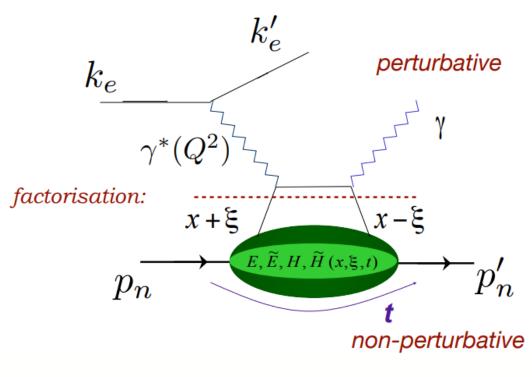
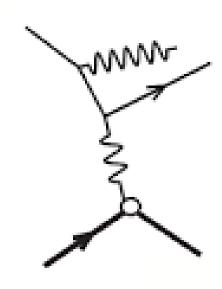


This presentation

- DVCS at ePIC
- Updates since last presentation (27th October)
 - Initial results from October campaign
 - Best t-calculation?



Deeply Virtual Compton Scattering



Deeply Virtual Compton Scattering

 DVCS: electroproduction of a photon off a hadron target

• QM interference: Bethe-Heitler (e⁻ radiates final state photon.

Deeply Virtual Compton Scattering: kinematics

- Default kinematics:
 - $e(k) + p(p) \rightarrow e'(k') + p'(p') + \gamma$
- Inclusive kinematics: scattered electron only ("Electron method" in ElCrecon)

$$Q^2 = -q^2 = -(k - k')^2$$

$$y = \frac{q \cdot p}{k \cdot p}$$

$$x = \frac{Q^2}{2q \cdot p}$$

$$y = \frac{q \cdot p}{k \cdot p} \qquad \qquad x = \frac{Q^2}{2a \cdot p} \qquad \qquad \xi = \frac{x}{2 - x} \approx \frac{x}{2}$$

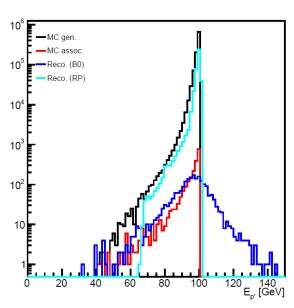
 Mandelstam t: beam and scattered proton (BABE method in tRECO convention)

$$t = (p - p')^2$$

25.10.2 simulation campaign

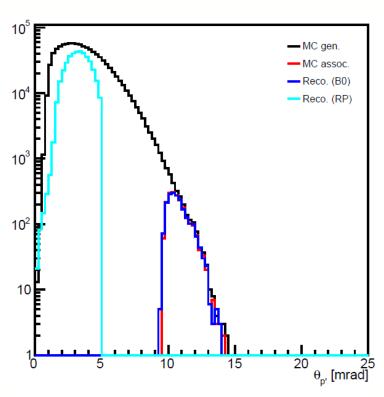
Photon reconstruction issue

 Working with Alex to look at initial results from October simulation campaign.


 25.10.2 campaign required for correct Roman Pot reconstruction algorithm.

Initial observations: RP protons

- New RP algorithm doesn't completely fix unphysical tracks.
 - Need to keep $\theta_{p'}$ cut in place.
- Fewer RP tracks getting reconstructed (~4% drop w.r.t June).
- E_p, distribution better follows generated.
- Seems a hard cut at E_p, ~70 GeV.
 - Not present in June campaign.



Issue: B0 protons

- Initial observation: number of B0 protons has dropped by ~80%!
 - W.r.t June 10x100 campaign (10874 for June; 2070 for October)
- Seems like drop is related to track θ.
 - For October, B0 distribution starts at ~10 mrad.
 - For June, it starts at ~8 mrad.
 - This loses a lot of protons!



Issue: B0 protons

- Been looking at this on-and-off with Alex.
- Cause is unclear.
 - Angular acceptance drop also seen in other energy settings (not just a problem for 10x100).
- Going back this has been a problem since July!
 - Didn't notice it earlier because of photon issue.
 - Only been working with June's campaign.
- GitHub issue raised.

Reconstructing Mandelstam t

Different methods being considered.

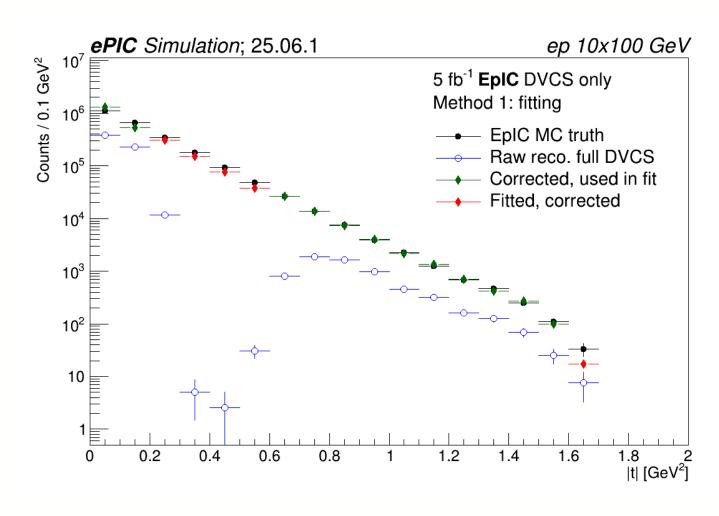
Reconstructing Mandelstam t (repeat from last week)

- Discussion from the PRW: want to find a way to reconstruct t for
 - Missing scattered p.
 - Poor t-resolution.

- Need some method to reconstruct t without the detection of the scattered proton.
 - Using tRECO convention note, 2 methods exist: eX / eXBE.
 - 'e' Scattered/DIS electron
 - 'X' Rest of final state without the scattered baryon (i.e. DVCS γ)
 - 'BE' "Beam" hadron

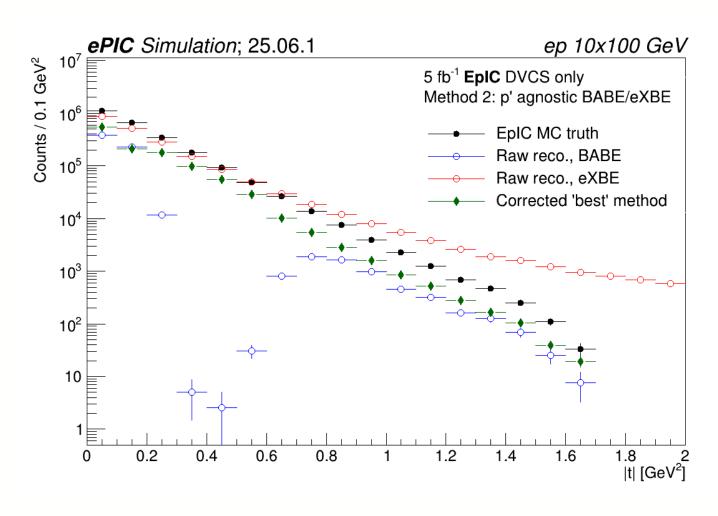
Methods used

- 3 methods under consideration:
 - Fitting Fit corrected BABE distributions from full DVCS events, and use the fit in the gap
 - 2. Bin-by-bin (proton agnostic) Reconstruct t using multiple methods based on final state particles, then choose the best for a given t-bin.
 - 3. Bin-by-bin combined combine t from events with missing protons with those where proton is reconstructed.

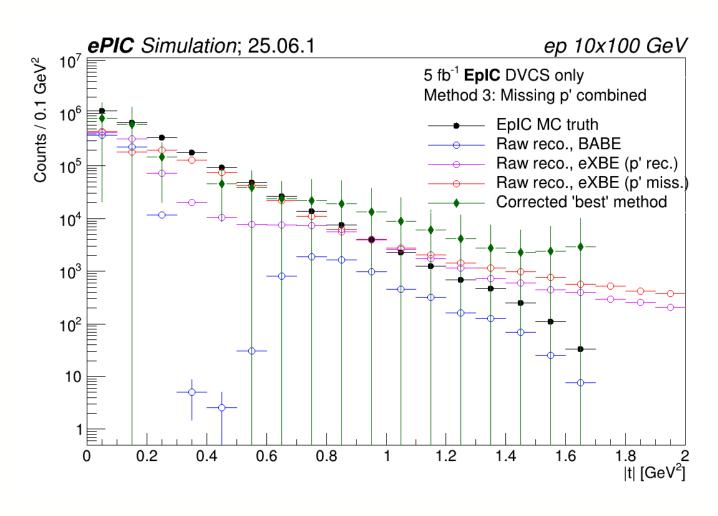


- Just using data from full DVCS events, corrected for detector acceptance.
 - $Q^2 > 1 \text{ GeV}^2$; $M_{\text{miss}}^2 < 1 \text{ GeV}^2$
- Only use points in fit if purity of t-reconstruction method is >50%.

 Final distribution is sum of data used in fit, plus fit result where data not used/available.



- Using both the eXBE and BABE formulae for all events (if event not viable, set t outside range of histogram).
 - BABE: full DVCS event cuts (as prior)
 - eXBE: e' γ reconstructed, Q² > 1 GeV², $|p_{miss} p_{beam h}| < 5\% p_{beam h}$
- Look at 3 different t-distributions bin-by-bin (B0 BABE, RP BABE, eXBE).
 - Use value of detector corrected distribution for method with best purity in each bin.



- Similar to method 2.
- Separate out events with missing protons from those where proton is reconstructed.
- Combine "missing proton" (a) distribution with "reconstructed proton" distribution from best method (b) as decided for method 2.
 - Reco. sum of (a) and (b)
 - Acceptance average of (a) and (b)
- Correct for detector acceptance at end of calculation

Which to use?

- These plots are at a very early stage.
 - Hence errors for method 3 (needs fixing).
- Which method is the most 'correct'?
 - Which do we want to present (pre-TDR/early science paper)?
 - Once decided, more study can be devoted to that method.

Concluding remarks

Summary of this update

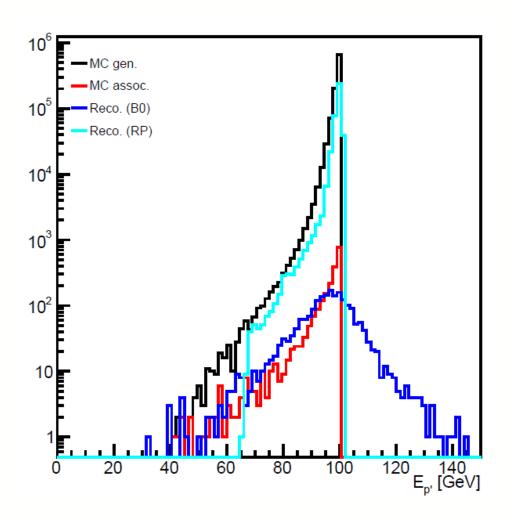
- 25.10.2 campaign out and available.
- New RP reconstruction algorithm behaving well.
- Problem seems to arise for B0 reconstruction.

- Different methods for t-reconstruction being looked at.
 - Need to decide what we want to use for the pre-TDR sooner rather than later.

Thank you for listening!

Any questions?

Offline questions? Ping me an email!



Backup

25.10.2 reco. proton energy

