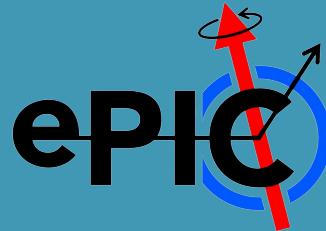


BERKELEY LAB

Bringing Science Solutions to the World

U.S. DEPARTMENT OF
ENERGY
Office of Science

Cooling system design and humidity management


ePIC SVT Working Meeting at Oxford
2025-12-18

Joe Silber (LBNL) - mechanical engineer, presenting

Jaime Cruz Duran (LBNL) and Nick Payne (formerly LBNL) - CFD analyses

Nicole Apadula (LBNL) - thermal tests

Elaine Buron (LBNL) - CAD design

gemen

High level cooling requirements

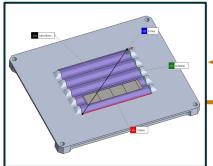
From draft Preliminary Design Report (PDR):

Table 9.2: SVT component temperature requirements (N/S is not specified).

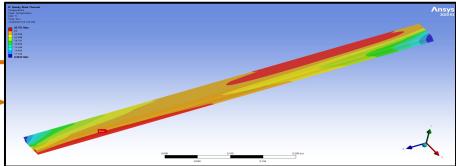
Requirement	LEC	RSU	REC	AncASIC
Maximum T [°C]	65	40	N/S	80
Maximum T variation [°C]	10	1 over 3 mm 10 over full length	N/S	10

Design process from high level req'ts to detailed specs

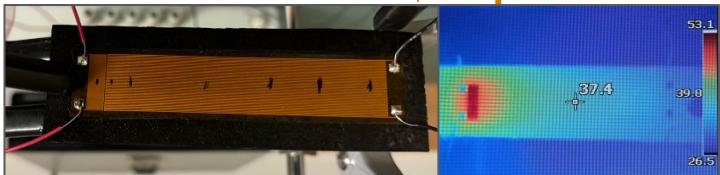
High level requirements


Table 9.2: SVT component temperature requirements (N/S is not specified).

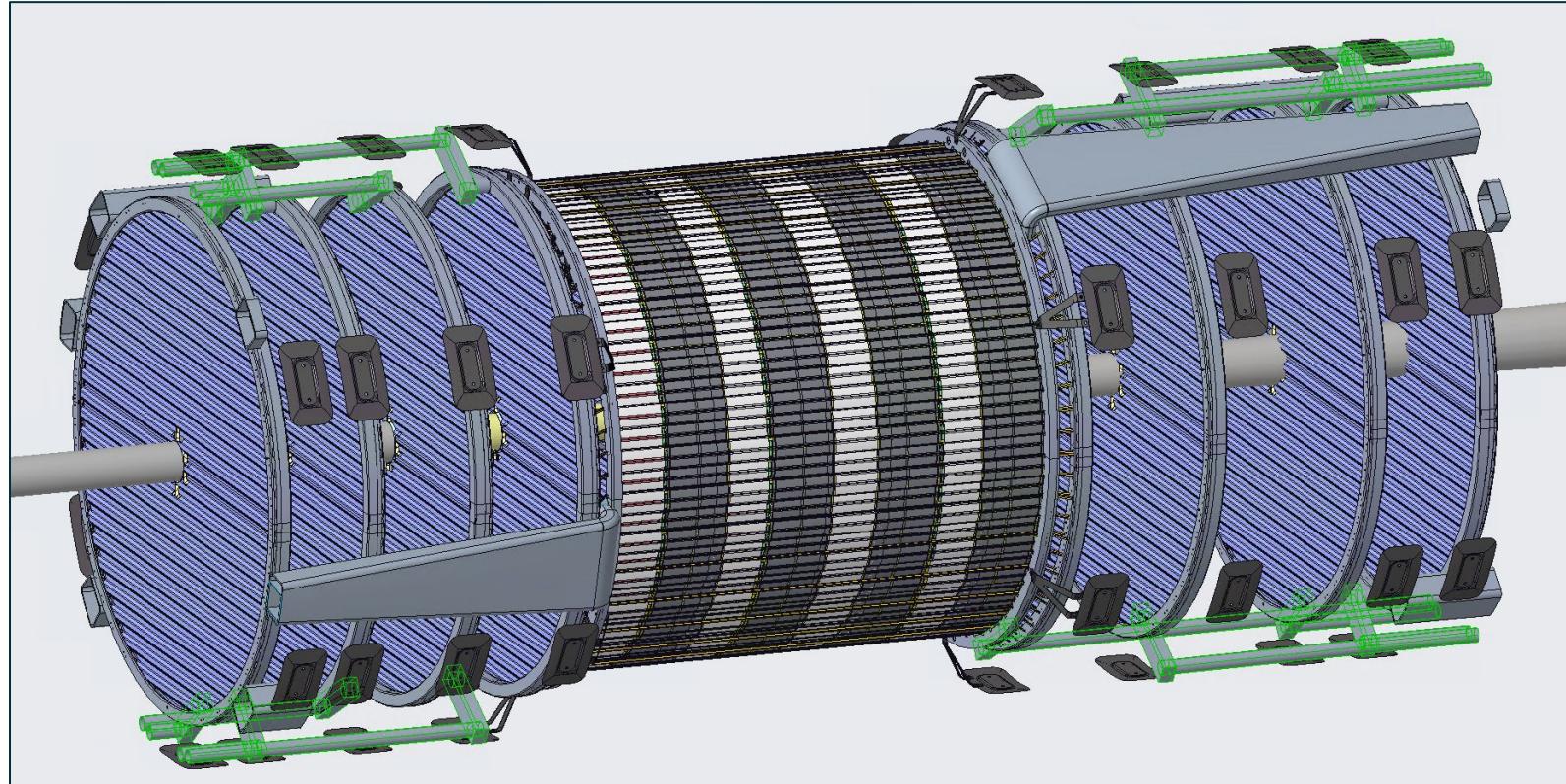
Requirement	LEC	RSU	REC	AncASIC
Maximum T [°C]	65	40	N/S	80
Maximum T variation [°C]	10	1 over 3 mm 10 over full length	N/S	10

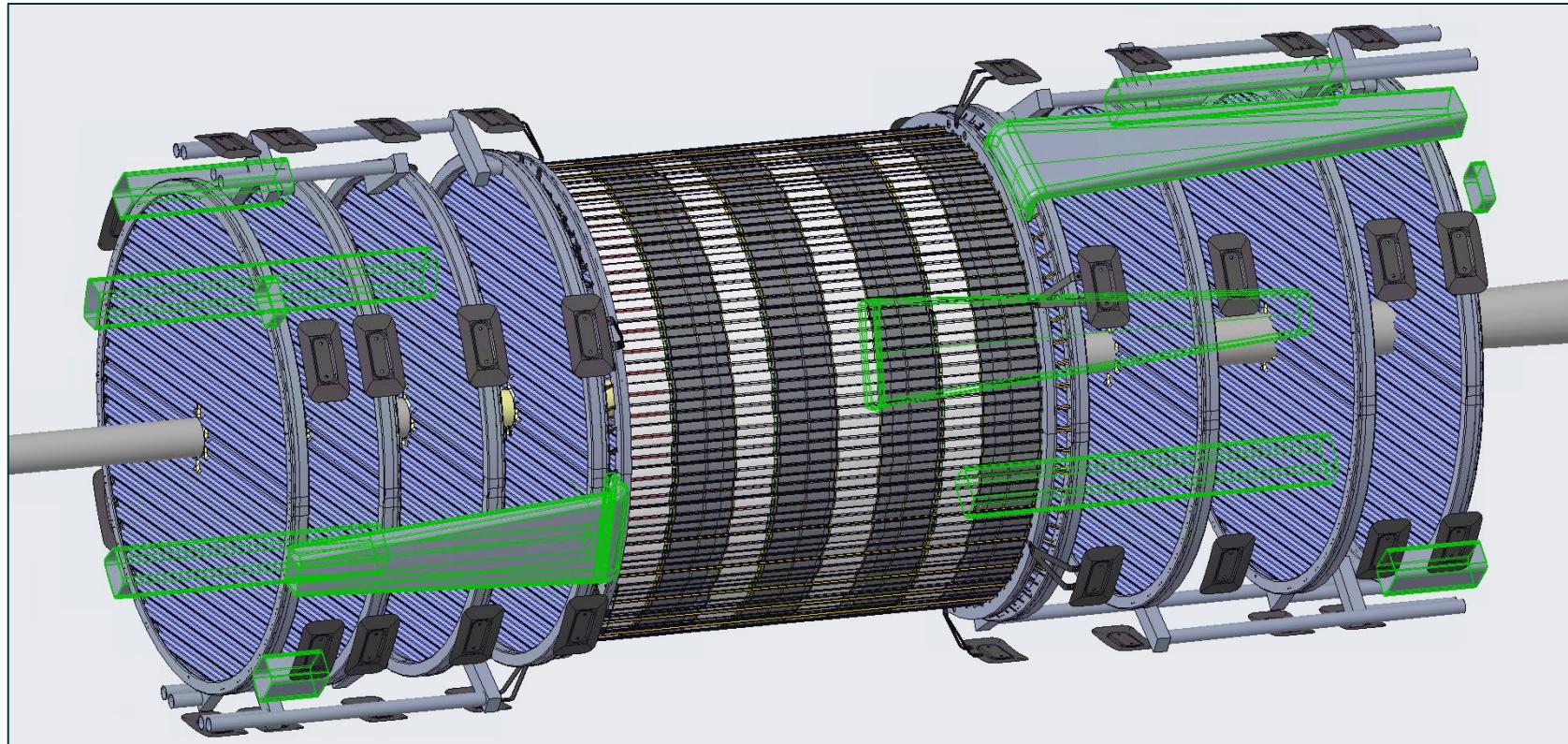

Req't on
 T_{max}

Constraints on
 ΔT , ΔP , air
speed


CAD design

Local supports heat transfer analysis


Local supports physical test


End-to-end system performance calculation

stage description	source \rightarrow	branches to		branches to		pipes into		pipes within		SVT internal	
		hadron +	electron side	top + bottom	halves	ePIC to half	disks to half	disk barrels	barrels	monitored	disk channels
0		1	2	3	4	5	6	7	8	9	10
1		1	2	4	8	32	32	32	710	12	12
m		1	2	4	8	32	32	32	710	12	12
kg/s		0.050	0.475	0.238	0.030	0.030	0.030	0.030	0.001	0.001	0.001
mm		100.000	32.000	16.000	8.000	4.000	2.000	1.000	0.635	0.433	0.304
1		100	50	25	25	25	25	25	11.5	713.8	61.6
mm		m	m	m	m	m	m	m	m	m	m
2		100	50	25	25	25	25	25	0.012	0.714	0.062
m		m	m	m	m	m	m	m	m	m	m
3		100	50	25	25	25	25	25	0.002	4.15E-04	4.15E-03
m		m	m	m	m	m	m	m	m	m	m
4		100	50	25	25	25	25	25	0.003	1.84E-04	1.84E-03
m		m	m	m	m	m	m	m	m	m	m
5		100	50	25	25	25	25	25	0.002	7.04E-02	7.04E-02
m		m	m	m	m	m	m	m	m	m	m
6		100	50	25	25	25	25	25	0.002	7.39E-02	48.20E-04
m		m	m	m	m	m	m	m	m	m	m
7		100	50	25	25	25	25	25	0.002	357.6	357.6
m		m	m	m	m	m	m	m	m	m	m
8		100	50	25	25	25	25	25	0.002	287.12	287.12
m		m	m	m	m	m	m	m	m	m	m
9		100	50	25	25	25	25	25	0.002	287.32	287.32
m		m	m	m	m	m	m	m	m	m	m
10		100	50	25	25	25	25	25	0.002	14.2	14.2
m		m	m	m	m	m	m	m	m	m	m
11		100	50	25	25	25	25	25	0.002	104.35	104.35
m		m	m	m	m	m	m	m	m	m	m
12		100	50	25	25	25	25	25	0.002	103.99	103.99
m		m	m	m	m	m	m	m	m	m	m
13		100	50	25	25	25	25	25	0.002	1.043	1.039
m		m	m	m	m	m	m	m	m	m	m
14		100	50	25	25	25	25	25	0.002	1.264	1.260
m		m	m	m	m	m	m	m	m	m	m
15		100	50	25	25	25	25	25	0.002	1.310	1.308
m		m	m	m	m	m	m	m	m	m	m
16		100	50	25	25	25	25	25	0.002	104.323	103.104
m		m	m	m	m	m	m	m	m	m	m
17		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
18		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
19		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
20		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
21		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
22		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
23		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
24		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
25		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
26		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
27		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
28		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
29		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
30		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
31		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
32		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
33		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
34		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
35		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
36		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
37		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
38		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
39		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
40		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
41		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
42		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
43		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
44		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
45		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
46		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
47		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
48		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
49		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
50		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
51		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
52		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
53		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
54		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
55		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
56		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
57		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
58		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
59		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
60		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
61		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
62		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
63		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
64		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
65		100	50	25	25	25	25	25	0.002	1.043	1.031
m		m	m	m	m	m	m	m	m	m	m
66		100	50	25	25	25	25	25	0		

Air supply pipes

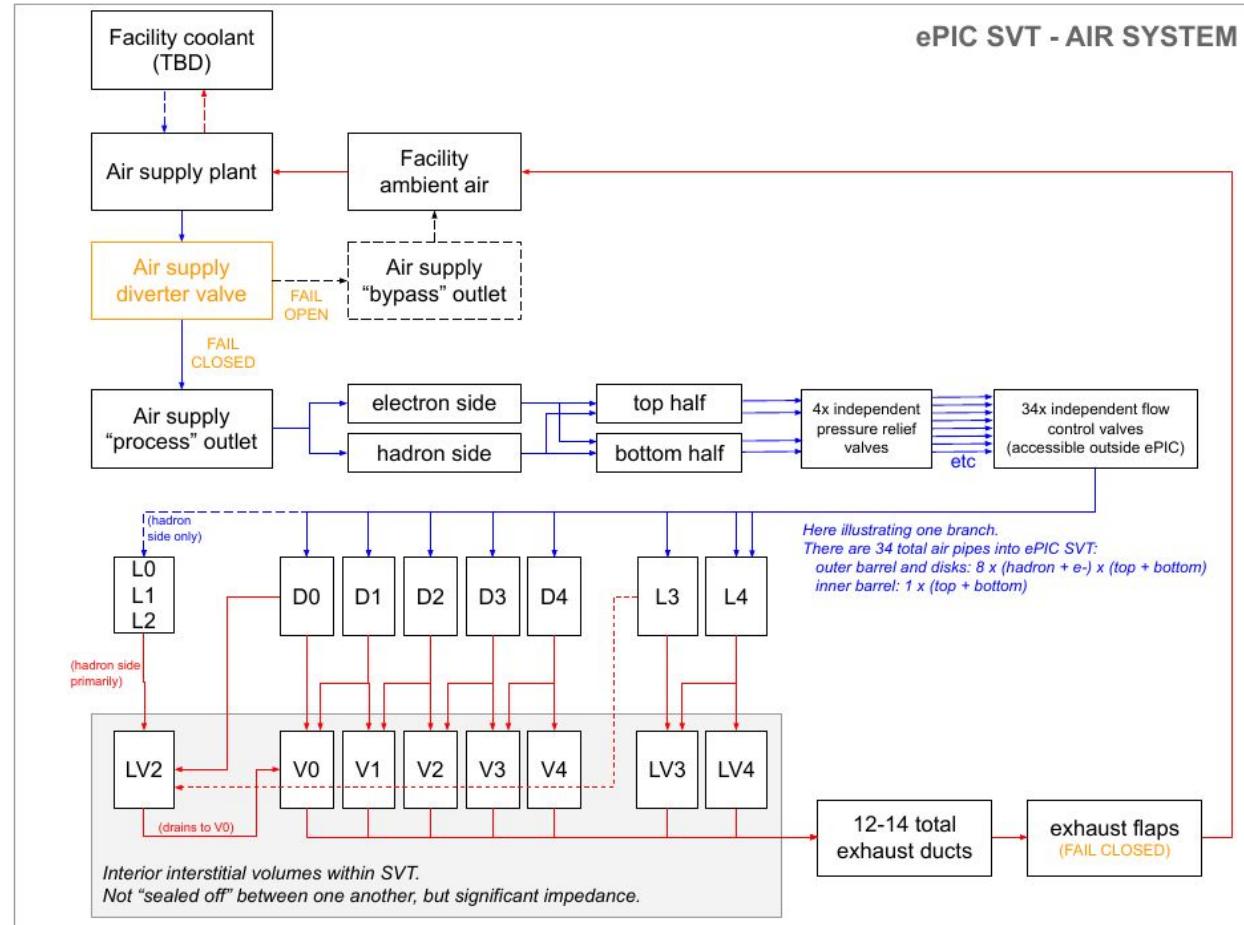
Air exhaust ducts

ePIC SVT - cooling system diagram

Rev	Date	Author	Description
v1	2025-12-11	Joe Silber (LBNL)	initial release
v2	2025-12-12	Joe Silber (LBNL)	add liquid system
v3	2025-12-16	Joe Silber (LBNL)	space out e-/hadron & top/bottom

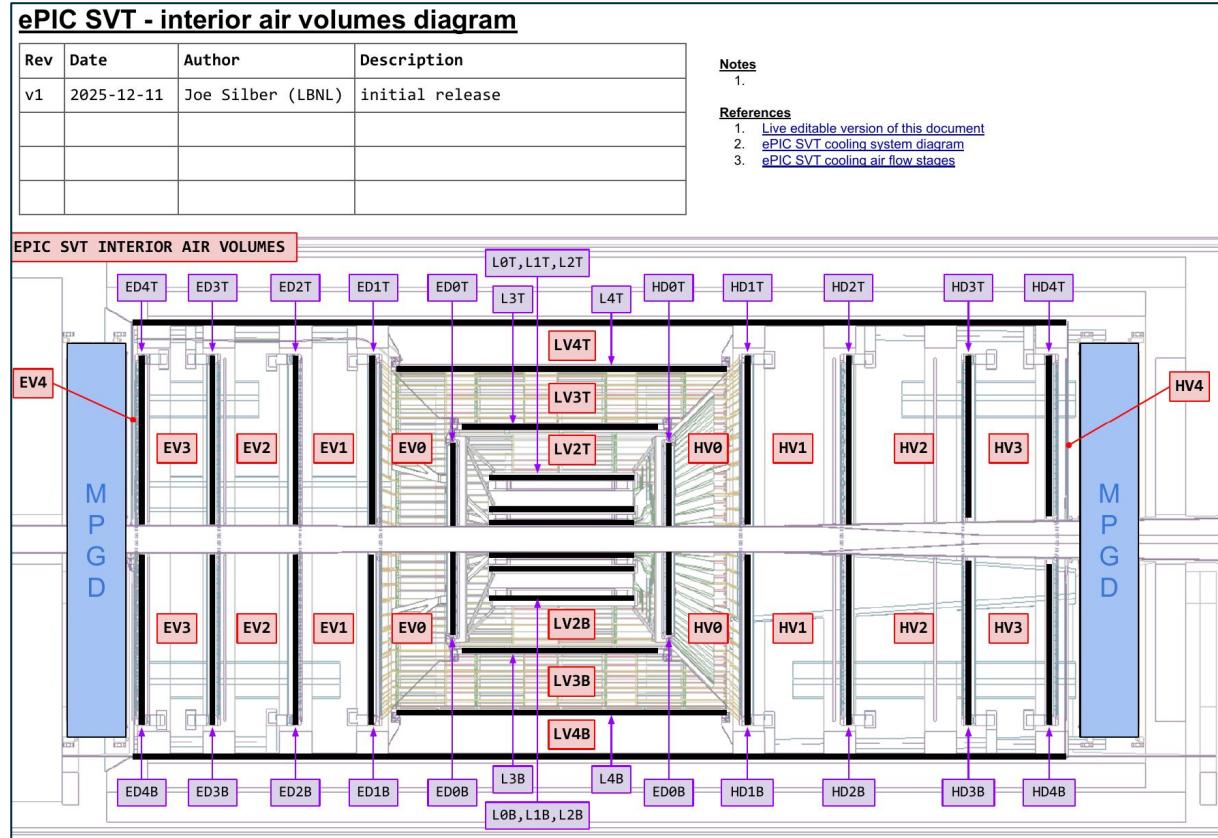
Nomenclature

SVT ... Silicon Vertex Tracker
 TBD ... To Be Determined
 L# ... Barrel layer IDs
 D# ... Disk IDs
 V# ... Disk interstitial volume IDs
 LV# ... Barrel layer interstitial volume IDs
 SCB ... Segment Control Board
 CB ... Control Board


Notes

1. Graphical elements not intended to follow any standard.
2. Color-coding consistency not guaranteed.

Link:


[ePIC SVT cooling system diagram - v3.pdf](#)

ePIC SVT - AIR SYSTEM

Air exhaust

- Exhaust via 12-14 ducts
- Duct hydraulic $\varnothing 62$ mm
 - i.e. much greater cross-section than input pipes (4 x $\varnothing 50$ mm)
- Ducts draw from interior volumes (see diagram)
- These volumes aren't "sealed" from each other, but significant impedance
- Suction could be done but probably not necessary
- Flapper valves at outlets to prevent ingress when flow off

System calculator inputs: local supports geometry

	A	B	C	D	E	F	G
51	Disk geometry						
52	corrugation pitch	xc	mm	34.7			
53	corrugation height	hc	mm	6			
54	corrugation cross-sectional area	$Ac \sim xc * hc / 2$	mm^2	104.1			
55	corrugation hydraulic diameter	$Dc = \sqrt{4 * Ac / \pi}$	mm	11.5			
56	large disk diameter (D1-D4)	Dd14	mm	870			
57	small disk diameter (D0)	Dd0	mm	488			
58	num large disks (per side)	nd14	-	4			
59	num small disks (per side)	nd0	-	1			
60	avg disk diameter (areally weighted)	$Dd = \sqrt{(Dd14^2 * nd14 + Dd0^2 * nd0) / (nd14 + nd0)}$	mm	808.2			
61	avg large disk corrugation length	$Lc14 \sim \pi / 4 * Dd14$	mm	683.3			
62	avg small disk corrugation length	$Lc0 \sim \pi / 4 * Dd0$	mm	383.3			
63	avg corrugation length	$Lc \sim \pi / 4 * Dd$	mm	634.7			
64	avg num corrugations (per half disk)	$ncd \sim (Dd/2) / (xc/2)$	-	23.3	<-- non-integer is ok, it's averaging large and small disks		
65							
66	Layers geometry						
67	stave channel width (this is one side)	ws	mm	20.65			
68	stave channel height at edge	hs1	mm	2.92			
69	stave channel height at center	hs2	mm	7.49			
70	stave channel avg height	$hs = (hs1 + hs2)/2$	mm	5.2			
71	stave channel cross-sectional area	$As \sim ws * hs$	mm^2	107.5			
72	stave channel hydraulic diameter	$Ds = \sqrt{4 * As / \pi}$	mm	11.7			
73	variation from disk corrug hydraulic diameter	$Ds / Dc - 1$	-	1.6%	<-- this is pretty similar to disk corrugation hydraulic diameter		
74	L4 stave length	Ls4	mm	793			
75	L3 stave length	Ls3	mm	503			
76	num L4 staves (per top/bottom half)	ns4	-	35			
77	num L3 staves (per top/bottom half)	ns3	-	22			
78	avg stave channel length	$Ls = (Ls4 * ns4 + Ls3 * ns3) / (ns4 + ns3)$	mm	681.1			
79	variation from disk corrug avg length	$Ls / Lc - 1$	-	7.3%	<-- this is pretty similar to disk average corrugation length		
80	Note: given geometric similarity of average barrel staves to average disk corrugation channels, I treat them all as basically the same in flow calcs below.						
81	num half disks equivalent to an OB half	$nds_equiv = Ls * (ns4 + ns3) / (Lc * nc)$		2.6	<-- non-integer is ok, it's averaging lots of things		
82							

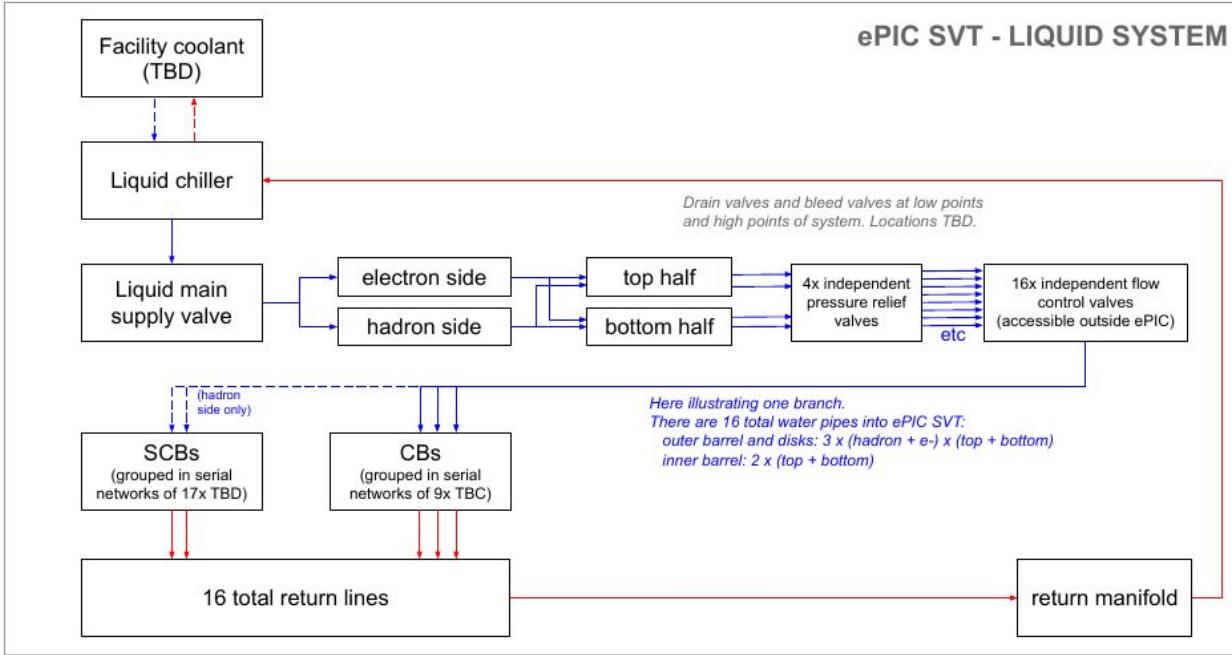
System calculator inputs: internal volumes and exhaust

	A	B	C	D
89	SVT internal volume geometry			
90	approx percent of internal volume which is ambient air	vf_amb	-	90%
91	PST diameter	D_pst	mm	1076
92	PST length	L_pst	mm	2540
93	SVT total internal ambient air volume	$v_{svt} = vf_{amb} * \pi/4 * D_{pst}^2 * L_{pst}$	mm ³	2.08E+09
94	number of internal ambient air subvolumes	n_v	-	12
95	average SVT internal subvolume's volume	$v_{va} = v_{svt} / n_v$	mm ³	1.73E+08
96	num subvolumes between large disks	n_{vl}	-	6
97	typical gap between large disks	g_{vl}	mm	423.2
98	rough equiv hydraulic diameter between large disks	$D_{vl} = \sqrt{(4 / \pi * D_{pst} * g_{vl})}$	mm	761.4
99	L4 diameter	D_L4	mm	840
100	L3 diameter	D_L3	mm	540
101	rough equiv hydraulic diameter outside L4	$Dh_{L4} = \sqrt{(D_{pst}^2 - D_{L4}^2)}$	mm	672.4
102	rough equiv hydraulic diameter between L3/L4	$Dh_{L34} = \sqrt{(D_{L4}^2 - D_{L3}^2)}$	mm	643.4
103	average SVT internal subvolume's hydraulic diameter	$D_{va} = (n_{vl} * D_{vl} + D_{L3} + Dh_{L34} + Dh_{L4}) / (n_v \text{ mm})$	mm	713.8
104	average SVT internal subvolume's length	$L_{va} = v_{va} / (\pi/4 * D_{va}^2)$	mm	432.8
105				
106	Exhaust duct geometry			
107	exhaust duct width	W_ex	mm	55
108	exhaust duct height	h_ex	mm	70
109	exhaust duct cross-sectional area	$A_{ex} = W_{ex} * h_{ex}$	mm ²	3850
110	exhaust duct perimeter	$P_{ex} = 2 * (W_{ex} + h_{ex})$	mm	250
111	exhaust duct hydraulic diameter	$D_{ex} = 4 A_{ex} / P_{ex}$	mm	61.6
112	number of exhaust ducts per internal ambient subvolume	n_{ex}	-	1
113				

System calculator inputs: module power loads

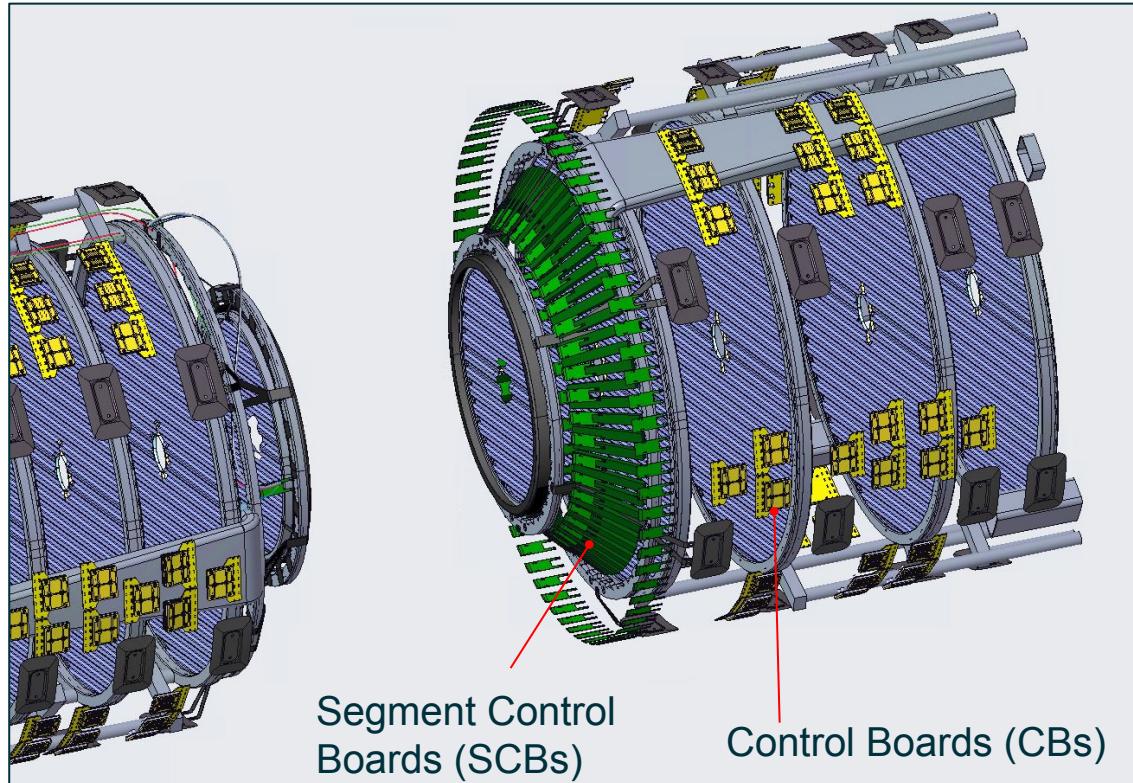
	A	B	C	D	E	F	G
114	Module power loads						
115	reference link for power loads	Copy of EIC-LAS Power - 2025-10-22					
116	power per LEC	Q_1lec	W	0.208			
117	power per RSU	Q_1rsu	W	0.208			
118	typical num RSU per module	n_rsu_per_mod	-	5.652	<-- average, calculated on adjoining sheet		
119	typical EIC-LAS power	Q_eiclas = n_rsu_per_mod * Q_1rsu + Q_1lec	W	1.38			
120	AncASIC power multiple of EIC-LAS	qf_aa	-	45%			
121	typical power per AncASIC	Q_1aa = qf_aa * Q_eiclas	W	0.62			
122	FPC power multiple of EIC-LAS	qf_fpc	-	30%			
123	typical power per FPC	Q_1fpc = qf_fpc * Q_eiclas	W	0.42			
124	length per RSU	L_rsu	mm	21.6			
125	num rsu per avg corrug length (exact coverage)	n_rsu = Lc / L_rsu	-	29.4	<-- non-integer is ok, it's averaging stuff		
126	num modules per avg corrug length	n_mod = n_rsu / n_rsu_per_mod	-	5.2			
127	total RSU power per avg corrug	Qc_rsu = Q_1rsu * n_rsu	W	6.11			
128	total LEC power per avg corrug	Qc_lec = Q_1lec * n_mod	W	1.08			
129	total AncASIC power per avg corrug	Qc_aa = Q_1aa * n_mod	W	3.24			
130	total FPC power per avg corrug	Qc_fpc = Q_1fpc * n_mod	W	2.16			
131	total power per avg corrug	Qc = Qc_rsu + Qc_lec + Qc_aa + Qc_fpc	W	12.59			
132	total power per avg module	Q_mod = Qc / n_mod	W	2.42	<-- cross-check this against others' current-best-estimates		
133	total modules modeled below	n_mod_system = L4 * N4 * n_mod	-	3693.8	<-- cross-check this against others' current-best-estimates		

System calculator inputs: boundary conditions

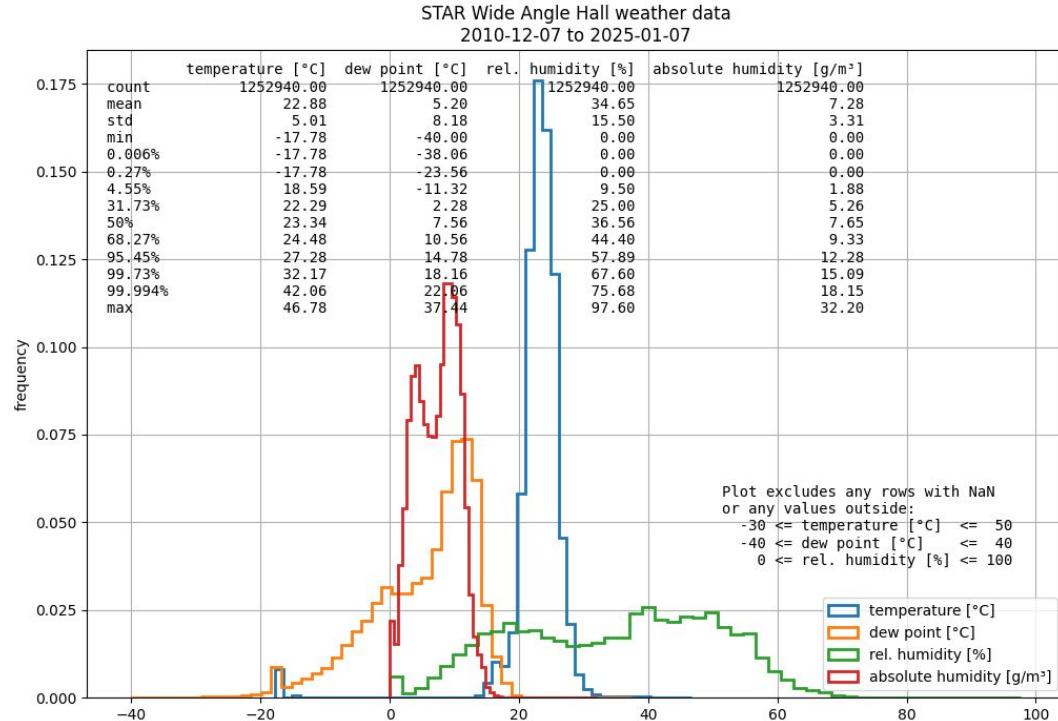
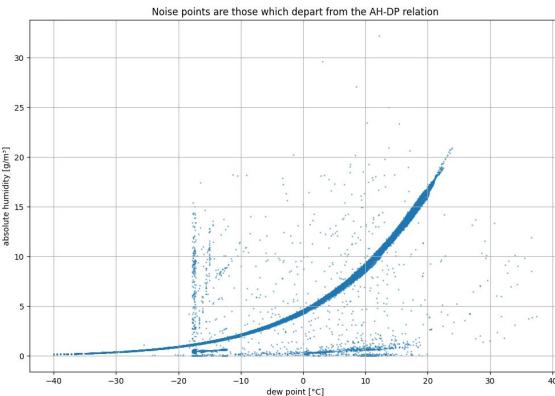

	A	B	C	D	E	F	G
135	Boundary conditions						
136	source temperature	T_s	°C	2.8	276.0	K	
137	source pressure	P_s	bar	1.427	0.413	bar (gauge)	Iteratively solved
138	"	"	Pa	142,654	41,329	Pa (gauge)	
139	"	"	psi	20.7	6.0	psi (gauge)	
140	source mass flow rate	\dot{m}_s	kg/s	0.95			
141	SVT internal ambient volume's positive pressurization	ΔP_+	bar (gauge)	0.03	must be ≥ 0		
142	"	"	in H ₂ O (gauge)	12.0			
143	SVT internal ambient volume's pressure	P_β	bar	1.043	must be ≥ 1.01325 (external atmospheric)		
144	"	"	atm	1.030			

Cooling system performance baseline

- source temperature = 2.8°C
- total mass flow = 0.95 kg/s
- total volume flow = 1135 cfm @ source pressure, 1604 cfm @ exhaust
- source pressure = 1.43 bar → 1.03 bar positive pressure @ exhaust
- channel/stave entrance temperature = 5.0°C
- channel/stave air speed = 10.0 m/s
- total power extracted = 8.9 kW
- SVT internal ambient temperature = 14.4°C


	A	B	C	D	E	F	G	H	I	J	K	L
	stage description										SVT internal ambient volumes	exhaust ducts
150	stage index	-	-	0	1	2	3	4	5	6	7	8
151	num channels (per parent channel)	n_i	-	1	2	2	8	1	1	22.2	0.0169	1
152	total num channels in system	$N_i = \text{product}(n_i)$	m	1	2	4	32	32	32	710	12	12
153	mass flow per channel	$\dot{m} = (\dot{m}_s \text{ or previous stage } \dot{m}) / n_i$	kg/s	0.950	0.475	0.238	0.030	0.030	0.030	0.001	0.079	0.079
155	length	L	m	10.000	10.000	15.000	7.000	3.000	0.100	0.635	0.433	10.000
156	hydraulic diameter (mm)	D_{mm}	mm	100	75	50	23	23	23	11.5	713.8	61.6
158	single channel cross-sectional area along length L	$A_{12} = \pi D^2 / 4$	m^2	7.85E-03	4.42E-03	1.96E-03	4.15E-04	4.15E-04	4.15E-04	1.04E-04	4.00E-01	2.98E-03
160	all channels total cross-sectional area	$\Sigma A_{12} = A_{12} * N_i$	cm^2	78.5	88.4	78.5	133.0	133.0	133.0	739.6	48,024.7	357.6
162	entrance temperature	$T_1 = T_s \text{ or previous stage } T_3$	$^{\circ}\text{C}$	2.8	3.2	2.4	3.9	3.7	3.5	5.0	14.1	14.2
164	entrance pressure	$P_1 = P_s \text{ or previous stage } P_3$	bar	1.427	1.390	1.325	1.178	1.084	1.040	1.044	1.043	1.039
167	Reynold's number	$Re = 4 \dot{m} / (\pi D \mu_i)$	-	6.99E+05	4.66E+05	3.50E+05	9.48E+04	9.48E+04	9.48E+04	8.50E+03	7.91E+03	9.18E+04
169	friction pressure drop (Darcy-Weisbach)	$\Delta P_{12} = -f * (L/D) * \dot{m}^2 / (2 \rho_1 A_{12}^2)$	Pa	-4,438	-5,317	-17,025	-9,440	-4,394	-153	-114	0	-825
171	downstream pressure	$P_2 = P_1 + \Delta P_{12}$	bar	1.382	1.337	1.154	1.084	1.040	1.039	1.043	1.043	1.043
172	ambient pressure in the downstream area of this stage	$P_{\text{local_ambient}}$	bar	1.013	1.013	1.013	1.043	1.043	1.043	1.043	1.043	1.013
173	downstream pressure relative to local ambient	description($P_2 - P_{\text{local_ambient}}$)	-	positive	positive	positive	positive	approx neutral	approx neutral	approx neutral	approx neutral	positive
174	module power input to stream	$Q = Q_c * N_i \text{ if channel or stave else } 0$	W	0.0	0.0	0.0	0.0	0.0	0.0	8943.9	0.0	0.0
175	stream temperature rise due to external heat input	$\Delta T_{q12} = Q / (N_i * \dot{m} * c_p)$	K	0.0	0.0	0.0	0.0	0.0	0.0	9.4	0.0	0.0
181	downstream temperature	$T_2 = T_1 + \Delta T_{q12} + \Delta T_{k12}$	$^{\circ}\text{C}$	2.7	3.0	1.6	3.7	3.5	3.5	14.3	14.4	14.2
185	average volumetric flow	$V_a = \dot{m} / p_a$	m^3/s	0.536	0.276	0.151	0.021	0.022	0.023	0.001	0.063	0.063
187	total volumetric flow (all channels)	$\Sigma V_a = V_a * N_i$	m^3/s	0.536	0.552	0.605	0.667	0.710	0.726	0.738	0.751	0.757
188	"	"	cfm	1134.9	1170.2	1282.8	1414.1	1505.3	1537.9	1564.8	1592.3	1603.5
189	average air speed	$u_a = V_a / A_{12}$	m/s	68.2	62.5	77.1	50.2	53.4	54.6	10.0	0.2	21.2
194	pressure ratio calculated with non-choked eqn	$\beta_{3n} = P_{3n} / P_2$	-	1.006	0.993	1.028	1.000	1.000	1.018	1.001	0.997	1.003
195	is choked?	$\beta_{3n} < \beta_x$	boolean	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
214	system energy balance error	$\dot{E}_{\text{err}} = (\dot{E}_2 - \Sigma Q_i) - \dot{E}_{\text{1_stage0}}$	W	-2	-4	-24	-26	-27	-27	-24	-24	-24
215	system energy balance error fraction (w.r.t. total energy)	$\dot{E}_{\text{err_frac}} = \dot{E}_{\text{err}} / \dot{E}_{\text{1_stage0}}$	-	-0.001%	-0.002%	-0.009%	-0.010%	-0.010%	-0.010%	-0.009%	-0.009%	-0.009%
216	system energy balance error fraction (w.r.t. total input pov)	$\dot{E}_{\text{err_frac}} = \dot{E}_{\text{err}} / \Sigma Q_i$	-	-0.027%	-0.049%	-0.274%	-0.293%	-0.307%	-0.307%	-0.272%	-0.272%	-0.272%

Link: [ePIC SVT cooling air flow stages - v15.xlsx](http://ePIC.SVTCoolingAirFlowStages-v15.xlsx)



Liquid cooling of CBs and SCBs

- Current thought is to group CBs into serial cooling chains of ~9x
 - i.e. 12x such networks
 - assemble and test a network outside detector, prior to assembly
 - still working on patterning
 - might make sense to unify multiple CBs into fewer cold plates
- And group SCBs into networks of 17x
- Very much a work in progress

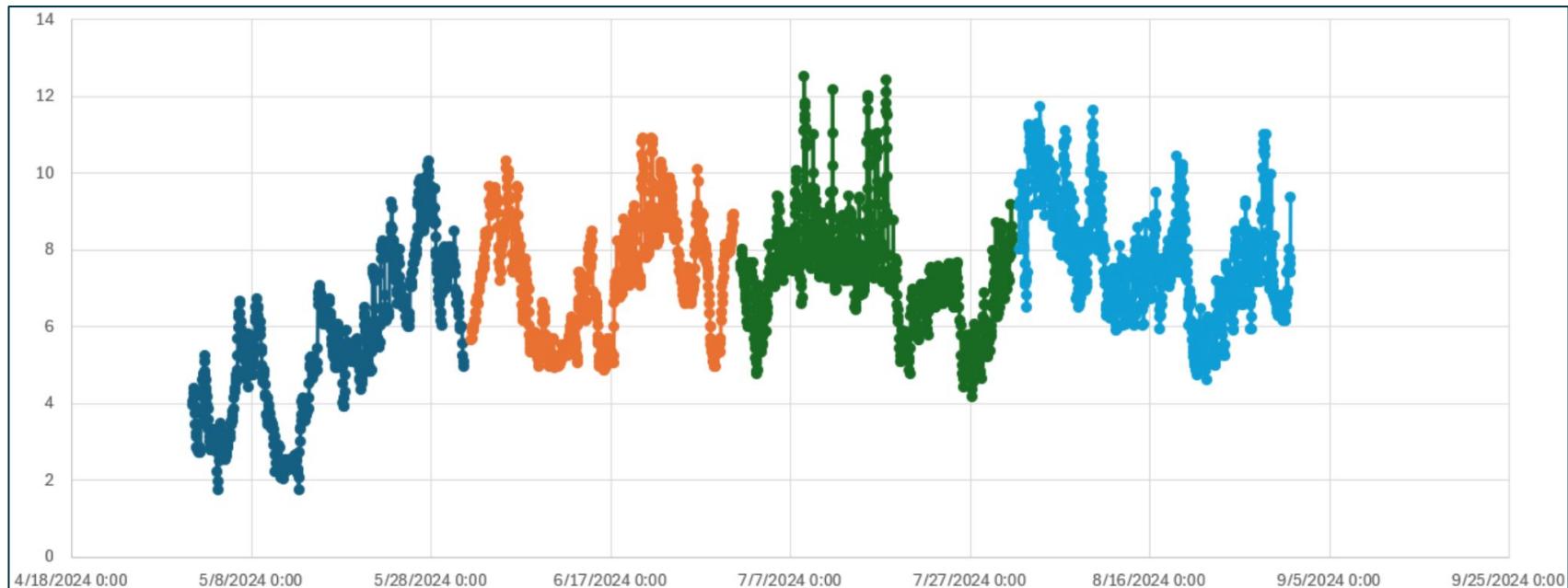
STAR WAH environmental data over 14 years

- extreme hot/wet condition:
 - **dew point ~ 22.1 C**
 - **ambient temp ~ 35.0 C**
- Some noise in the WAH data
- Especially early in time history
- But I'm pretty confident the hot/wet condition stated above was a real event – see abs humidity vs dew point (these are physically correlated)

System calculator inputs: humidity and insulation

	A	B	C	D	E
39	Insulation properties, boundary conditions, and assumptions				
40	insulation material thermal conductivity	k_insul	W/(m*K)	0.02	<- 0.05 for typical insulation wraps, ATLAS uses silica aerogel ~ 0.02 W/(m*K)
41	"	"	US R-value @ 1"	7.2	
42	insulation thickness design factor	t_design_factor	-	2.0	
43	typical convection coefficient outside insulation	h_insul	W/(m ² * K)	5.0	
44	exterior hot/wet dew point	Td_humid	°C	22.1	4σ (99.994% envelope) value in WAH data 2010-2025
45	exterior hot/wet temperature	Tamb_humid	°C	35.0	corresponding ambient temperature in WAH data 2010-2025
46	SVT interior average air temperature	Tamb_svt	°C	14.4	from calculations below
47	air supply relative humidity	RH_supply	%	30%	
48	SVT interior dewpoint calc intermediate term	$y_svt = \ln(RH_supply * \exp((17.62 * T_amb_svt) / (243.12 + T_amb_svt)))$	-	-0.2192	using Magnus model
49	SVT interior dew point	$Td_svt = (243.12 * y) / (17.62 - y)$	°C	-3.0	assuming 100% displacement of by supply (i.e. supply input >> moist air back flow or effusion from outside ambient)

This assumed -3°C dew point value is used to size the insulation (next slide). It assumes an HVAC-like supply (30% RH). I expect it will end up being quite conservative because we more likely will buy a compressed air system with Class 2 (-40°C) or Class 3 (-20°C) pressure dew point.


Baseline calculations of insulation thickness

	A	B	C	D	E	F	G	H	I	J	K	L
	stage description	-	-	source -> ePIC	branches to hadron + electron sides	branches to top + bottom halves	pipes into ePIC to half disks and half barrels	SVT to half disks and half barrels	pipes within manifold	disk channels and staves	SVT internal ambient volumes	exhaust ducts
150	stage index	-	-	0	1	2	3	4	5	6	7	8
151	num channels (per parent channel)	n_i	-	1	2	2	8	1	1	22.2	0.0169	1
152	total num channels in system	$N_i = \text{product}(n_i)$	m	1	2	4	32	32	32	710	12	12
153	mass flow per channel	$\dot{m} = (\dot{m}_i \text{ or previous stage } \dot{m}) / n_i$	kg/s	0.950	0.475	0.238	0.030	0.030	0.030	0.001	0.079	0.079
154	length	L	m	10.000	10.000	15.000	7.000	3.000	0.100	0.635	0.433	10.000
155	hydraulic diameter (mm)	D_{mm}	mm	100	75	50	23	23	23	11.5	713.8	61.6
156	is exterior? (fully or partially)	-	boolean	1	1	1	1	0	0	0	n/a	1
219	min temperature this stage	$T_{min} = \min(T_1, T_2)$	°C	2.7	3.0	1.6	3.7	3.5	3.5	5.0	-	14.2
220	air stream temperature relative to the local dewpoint	$\Delta T_d = T_{min} - \text{select}(T_d)$	°C	-19.4	-19.1	-20.5	-18.4	6.5	6.5	8.0	-	-7.9
221	temperature difference needing insulation	$\Delta T_{insul} = \text{abs}(\min(0, \Delta T_{insul}))$	°C	19.4	19.1	20.5	18.4	0.0	0.0	0.0	-	7.9
222	temperature diff from a condensing surface to local ambient	$\Delta T_{cond2amb} = \text{select}(T_{amb}) - \text{select}(T_d)$	°C	12.9	12.9	12.9	12.9	17.4	17.4	17.4	-	12.9
223	iterative thickness calc intermediate value	$\lambda = k * \Delta T_{insul} / (h_{insul} * \Delta T_{cond2amb})$	mm	6.0	5.9	6.4	5.7	0.0	0.0	0.0	-	2.5
224	insulation minimum outside diameter (neglects pipe wall)	$D_{min_insul} = 2 * \lambda / \ln(D_{insul} / D)$	mm	111.4	86.1	61.5	32.7	23.0	23.0	11.5	-	66.3
225	insulation minimum thickness (no margin)	t_{min_insul}	mm	5.7	5.5	5.7	4.8	0.0	0.0	0.0	-	2.4
226	insulation design thickness	$t_{insul} = t_{design_factor} * t_{min_insul}$	mm	11.4	11.1	11.5	9.7	0.0	0.0	0.0	-	4.7
227	pipe + insulation outer diameter (pipe wall neglected)	$D_{total_no_wall}$	mm	122.9	97.1	72.9	42.3	23.0	23.0	11.5	-	71.1

With respect to either the exterior extreme dew point value (22.1°C) or the interior (-3°C).

This 10 mm thick insulation around the hydraulic Ø23 mm air pipes occurs in the region of uncertain dryness within ePIC but outside SVT. May be challenging to cross-sectional area.

sPHENIX Hall (IR) dewpoint data May-Aug 2024

(courtesy Dan Cacace)

Same insulation calcs as before, but assuming:

1. max exterior dew point in the Wide Angle Hall is 13°C rather than 22.1°
2. interlock stops operation when DP > 13°C (i.e. WAH HVAC goes down)

	A	B	C	D	E	F	G	H	I	J	K	L
	stage description			source --> ePIC	branches to hadron + electron sides	branches to top + bottom halves	pipes into ePIC and half disks and half barrels	SVT to half disks and half barrels	manifold	disk channels and staves	SVT internal ambient volumes	exhaust ducts
150	stage index	-	-	0	1	2	3	4	5	6	7	8
151	num channels (per parent channel)	n_i	-	1	2	2	8	1	1	22.2	0.0169	1
152	total num channels in system	$N_i = \text{product}(n_i)$	m	1	2	4	32	32	32	710	12	12
154	mass flow per channel	$m = (m_s \text{ or previous stage } m) / n_i$	kg/s	0.950	0.475	0.238	0.030	0.030	0.030	0.001	0.079	0.079
155	length	L	m	10.000	10.000	15.000	7.000	3.000	0.100	0.635	0.433	10.000
156	hydraulic diameter (mm)	D_{mm}	mm	100	75	50	23	23	23	11.5	713.8	61.6
219	is exterior? (fully or partially)	-	boolean	1	1	1	1	0	0	0	n/a	1
221	min temperature this stage	$T_{\text{min}} = \min(T_1, T_2)$	$^{\circ}\text{C}$	2.7	3.0	1.6	3.7	3.5	3.5	5.0	-	14.2
222	air stream temperature relative to the local dewpoint	$\Delta T_d = T_{\text{min}} - \text{select}(T_d)$	$^{\circ}\text{C}$	-10.3	-10.0	-11.4	-9.3	6.5	6.5	8.0	-	1.2
223	temperature difference needing insulation	$\Delta T_{\text{insul}} = \text{abs}(\min(0, \Delta T_{\text{insul}}))$	$^{\circ}\text{C}$	10.3	10.0	11.4	9.3	0.0	0.0	0.0	-	0.0
224	temperature diff from a condensing surface to local ambient	$\Delta T_{\text{cond2amb}} = \text{select}(T_{\text{amb}}) - \text{select}(T_d)$	$^{\circ}\text{C}$	22.0	22.0	22.0	22.0	17.4	17.4	17.4	-	22.0
225	iterative thickness calc intermediate value	$\lambda = k * \Delta T_{\text{insul}} / (h_{\text{insul}} * \Delta T_{\text{cond2amb}})$	mm	1.9	1.8	2.1	1.7	0.0	0.0	0.0	-	0.0
226	insulation minimum outside diameter (neglects pipe wall)	$D_{\text{min_insul}} = 2 * \lambda / \ln(D_{\text{insul}} / D)$	mm	104.4	80.6	54.0	26.2	23.0	23.0	11.5	-	67.8
227	insulation minimum thickness (no margin)	$t_{\text{min_insul}}$	mm	2.2	2.8	2.0	1.6	0.0	0.0	0.0	-	3.1
228	insulation design thickness	$t_{\text{insul}} = t_{\text{design_factor}} * t_{\text{min_insul}}$	mm	4.4	5.6	4.0	3.2	0.0	0.0	0.0	-	6.2
229	pipe + insulation outer diameter (pipe wall neglected)	$D_{\text{total_no_wall}}$	mm	108.8	86.1	58.0	29.4	23.0	23.0	11.5	-	73.9

Insulation thickness at the entrance pipes is much reduced

Humidity management strategy

- Supply air quality: water content
 - \leq Class 3 (i.e. -20°C pressure dew point)
 - per ISO 8573-1:2010
- Insulate exterior cold pipes
 - from air supply plant to ePIC: efficiency, good housekeeping
 - from exterior to SVT: prevent condensation on detectors
 - once inside SVT we have guarantees on air dryness
- Interlock if WAH HVAC fails and/or exterior dew point above insulation design value (e.g. 13°C TBC)
- If air flow shuts down while interior structures are cold...
 - must prevent significant backflow into system from exterior
 - i.e. provide high impedance (not an airtight seal) against moisture effusion
 - flapper valves on exhaust duct outlets
 - closeouts elsewhere
- Air supply diverter valve
 - vents air to bypass outlet if fault condition
 - during startup no air flow to SVT until guaranteed dry
 - supply plant can be tested / operated / fixed without running air to SVT

Air quality strategy

- ISO 8573-1:2010 defines compressed air purity classes
- Supply air quality
 - solid particulate: Class 1
 - total oil: Class 1
 - water: \leq Class 3
- Air supply diverter valve
 - vent supply air to bypass outlet for startup, air quality test, etc
- Additional air filters at manifolds just outside ePIC
 - extra line of defense

CLASS	SOLID/DIRT			WATER		OIL Including vapor
	Particle size 0.1-0.5 μm	0.5-1.0 μm	1.0-5.0 μm	@7 bar/100 psi Pressure Dewpoint		
	Maximum number of particles per m^3			$^{\circ}\text{C}$	$^{\circ}\text{F}$	mg/m^3
0	As specified by the equipment user or supplier					
1	$\leq 20\,000$	≤ 400	≤ 10	-70	-94	≤ 0.01
2	$\leq 400\,000$	$\leq 6\,000$	≤ 100	-40	-40	≤ 0.1
3	-	$\leq 90\,000$	$\leq 1\,000$	-20	-4	≤ 1
4	-	-	$\leq 10\,000$	+3	+38	≤ 5
5	-	-	$\leq 100\,000$	+7	+45	> 5
6	-	-	-	+10	+50	-

Source: [Atlas Copco](#)

System calcs + humidity management + air quality + control considerations → detailed specs on air supply plant

	A	B	C	D	E	F	G	H	I	
1 ePIC SVT Air Supply Plant - Requirements										
2										
3 Contact										
4 Joe Silber <jsilber@lbl.gov>										
5 Lawrence Berkeley National Laboratory										
6										
7 Version history										
8 v1 - 2025-11-11 - JHS - initial version										
9 v2 - 2025-11-19 - JHS - wider T_stability, diverter, moisture in terms of DPs, possible enclosure, add'1 comments										
10										
11 Abstract										
The Silicon Vertex Tracker (SVT) is a key subsystem of the Electron-Proton/Proton Collider (ePIC) detector. It will probe the smallest internal building blocks of visible matter – quarks and gluons – and help us understand the underlying laws that govern the strongest force in nature.										
12 The SVT is composed of thousands of custom silicon sensors. They will be cooled by a steady supply of cleaned, conditioned, cooled air. This specification is for the plant which will generate that cooling air. This specification does not include the transmission of that air to the SVT.										
13										
14										
15 ID	Category		Description		Name	Value (SI)	Units (SI)	Value (US)	Units (US)	Comments
16 00 process air	temperature - nominal				T_nom	3	°C	37.4	°F	Possible future relaxation of T_min to +12°C (TBD)
17 01 output air	temperature - adjustment range - min				T_min	-5	°C	23.0	°F	Possible future relaxation of T_min to +7°C (TBD)
18 02 output air	temperature - adjustment range - max				T_max	30	°C	86.0	°F	
19 03 output air	temperature - stability at setpoint				T_stability	±2	°C	±3.6	°F	
20										
21 04 output air	pressure dew point - max allowable				PDP_max_allow	-10	°C	14.0	°F	Possible future relaxation of PDP_max_allow to +3°C (TBD).
22 05 output air	pressure dew point - stability				PDP_stability	-10	°C	3.6	°F	
23										
24 06 output air	pressure dew point - setpoint adjustment				PDP_setpoint					Pressure dew point shall be settable within a range defined by the AQ_water class (at low end) to PDP_max_allow (at high end).
25 07 output air	pressure - nominal				P_nom	0.44	bar (gauge)	6.4	psi (gauge)	
26 08 output air	pressure - adjustment range - min				P_min	0.03	bar (gauge)	0.4	psi (gauge)	
27 09 output air	pressure - adjustment range - max				P_max	0.75	bar (gauge)	10.9	psi (gauge)	
28 10 output air	pressure - stability about setpoint				P_stability	±0.05	bar (gauge)	±0.20	psi (gauge)	
29 11 output air	mass flow rate - nominal				m_nom	1.6	kg/s	132	lbm/min	
30 12 output air	mass flow rate - nominal				m_min	0.5	kg/s	5.6	lbm/min	
31 13 output air	mass flow rate - adjustment range - min				m_max	1.5	kg/s	198	lbm/min	
32 14 output air	mass flow rate - adjustment range - max				p_nom	1.82	kg/m³	0.11	lbm/ft³	
33 15 output air	density - min				p_min	1.18	kg/m³	0.07	lbm/ft³	
34 16 output air	density - max				p_max	2.27	kg/m³	0.14	lbm/ft³	
35 17 output air	volumetric flow rate - nominal				V_nom	0.55	m³/s	1166	ft³/min	
36 18 output air	volumetric flow rate - min				V_min	0.08	m³/s	179	ft³/min	
37 19 output air	volumetric flow rate - max				V_max	0.66	m³/s	1398	ft³/min	
20 20 output air	air quality - solid particulate				AQ_particulates	Class 1	per ISO 8573-1:2010	-	-	
21 21 output air	air quality - total oil				AQ_oil	Class 1	per ISO 8573-1:2010	-	-	Oil-free compression or high-end filtration is critical to prevent oil contamination

	A	B	C	D	E	F	G	H	I
38 22 output air									
air quality - humidity / water									
AQ_water									
39 23 output air									
output diverter									
diverter_valve									
40 24 facility									
hole inner diameter - process air									
41 25 facility									
hole inner diameter - bypass air									
42 26 facility									
hole fitting type - process air									
43 27 facility									
hole fitting type - bypass air									
44 28 facility									
electrical - plug form									
45 29 facility									
supply voltage									
46 30 facility									
supply frequency									
47 31 facility									
heat rejection - coolant temperature									
48 32 facility									
heat rejection - coolant flow rate limit									
49 33 facility									
heat rejection - coolant pressure									
50 34 facility									
heat rejection - coolant pressure									
51 35 environment									
ambient temperature during operation - avg									
T_amb_avg									
52 36 environment									
ambient temperature during operation - min									
T_amb_min									
53 37 environment									
ambient temperature during operation - max									
T_amb_max									
54 38 environment									
ambient dewpoint during operation - avg									
DP_amb_avg									
55 39 environment									
ambient dewpoint during operation - max									
DP_amb_max									
60 40 control									
fault condition on process air									
process_fault									
61 41 control									
output diverter control									
diverter_ctrl									
62 42 control									
control interface - local									
ctrl_local									
63 43 control									
control interface - remote									
ctrl_remote									
64 44 control									
emergency shut-off - local									
shutoff_local									
65 45 control									
emergency shut-off - remote									
shutoff_remote									
66 46 maintenance									
uptime during normal operations									
67 47 package									
max width									
68 48 package									
max length									
69 49 package									
max height									
70 50 package									
max weight									
71 51 package									
enclosure									