
FEMC Minimal Energy: Reconsidering the Requirements

A.Bazilevsky

November 2025

YR: Detector Requirements

Section 8.2.5: $\Sigma \rightarrow \Lambda \gamma$

"We concluded that a requirement of γ detection with the nominal resolution in that region for E γ > 200 MeV up to η =3.0 and E γ > 400 MeV for 3.0 < η < 4.0 is sufficient to maintain a reasonable acceptance for Σ 0s."

Section 8.3.5: Jets

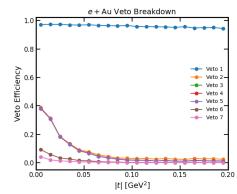
"... have assumed minimum energy thresholds of 200 MeV/c and see good jet energy scales and missing transverse energy resolutions."

Section 8.3.7: SIDIS

"An energy threshold of 100 MeV or better is also requested."

In Project:

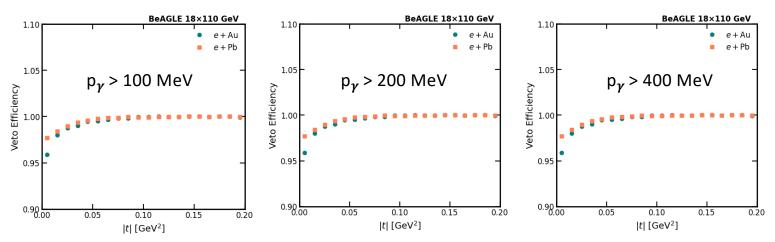
"General, Functional, and Performance Requirements for the EIC Detector Systems"


 $E_{min}=100 \text{ MeV}$ is used

Keeping 100 MeV requirement in FEMC is a big challenge, which may require expensive design modification (if possible at all)

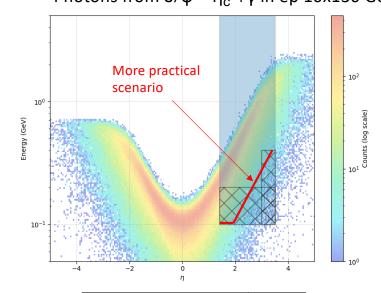
Can we accept higher threshold, e.g. 200 MeV for 1.4 < η < 3.0 and 400 MeV η > 3.0?

Tagging incoherent vector-meson production


- Veto.1: no activity other than e^- and J/ψ in the main detector ($|\eta| < 4.0$ and $p_T > 100 \text{ MeV}/c$);
- Veto.2: Veto.1 and no neutron in ZDC;
- Veto.3: Veto.2 and no proton in RP;
- Veto.4: Veto.3 and no proton in OMDs;
- Veto.5: Veto.4 and no proton in B0;
- Veto.6: Veto.5 and no photon in B0;

Mathias Labonté

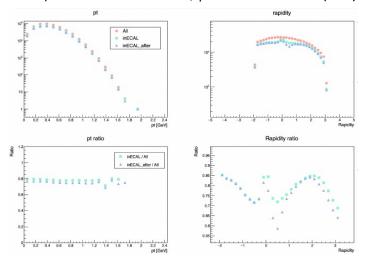
Exclusive, Diffraction, & Tagging Meeting June 30, 2025


Measuring photons coming from nuclear de-excitations can serve as a means of tagging incoherent events

No impact, because all photons are very forward and are tagged by BO and ZDC

Charmonium radiative decays

Photons from $J/\psi \rightarrow \eta_c + \gamma$ in ep 10x130 GeV

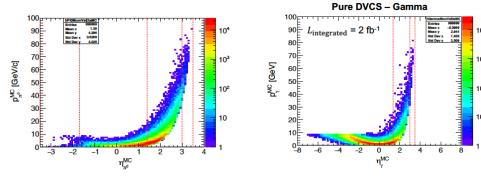

Photon in EMC acceptance eta < 3.5 & E > 100 MeV	78.56%
Photon in FEMC acceptance 1.4 < eta < 3.5 & E > 100 MeV	22.75%
Fraction of photon rejected due to new threshold (hashed area)	2.62%

Minjun Kim

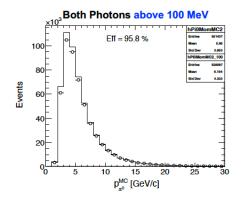
Exclusive, Diffraction, & Tagging Meeting June 30, 2025

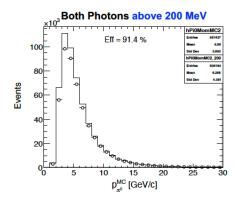
Using the $J/\psi \rightarrow \eta_c + \gamma$ channel as a benchmark Represents a general case for studies of charmonium radiative decays, as many of these processes emit photons in a similar energy range.

Acceptance as a function of J/ ψ momentum and rapidity


New minimum energy threshold in FEMC rusults in 2-3% reduction in acceptance overall, with some rapidity dependence

The impact is expected to be significantly smaller for smooth $E_{min}(\eta)$


/


Exclusive π 0 and DVCS γ

ep 10x130 GeV

$1.4 < \eta < 3.0$

Jihee Kim

Exclusive, Diffraction, & Tagging Meeting June 16, 2025

1.4< η <3.0, E_{min}=100 MeV \rightarrow 200 MeV: 4.4% decrease in eff 3.0< η <3.5, E_{min}=100 MeV \rightarrow 400 MeV: 1.6% decrease in eff

Background to DVCS (upper bound)

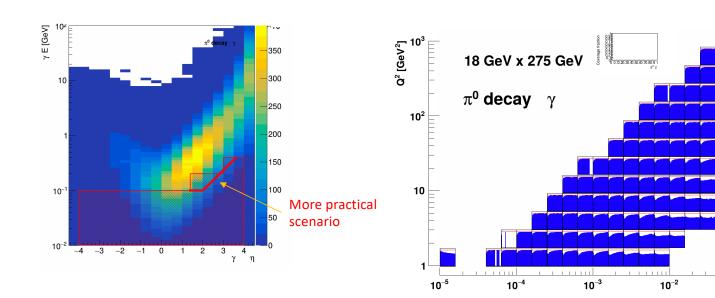
(E.Aschenauer et al, PRD 112, 036010 (2025)):

<1% for 5x41 GeV

<0.5% for 10x100 GeV

<0.05% for 18x275 GeV

A factor of x2 increase (upper bound) may be expected due to new proposed threshold

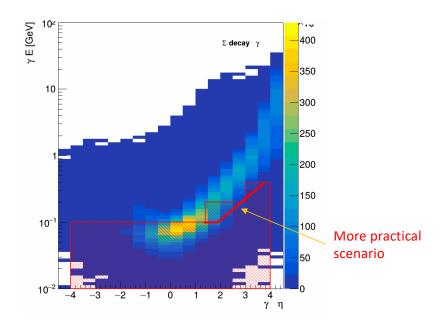

Only minor effect

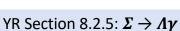
The impact is expected to be significantly smaller for smooth $E_{min}(\eta)$

Ralf Seidl SIDIS Meeting July 8, 2025

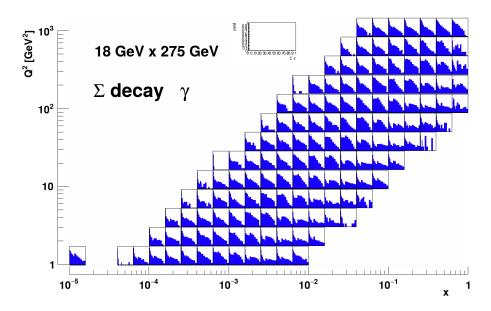
SIDIS: pi0

Not a primary channel, serves mainly as a cross check for charged pion probes (for flavor separation)

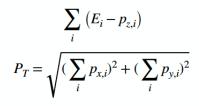

Some minor losses, no phase space reduction


The impact is expected to be significantly smaller for smooth $\mathsf{E}_{\mathsf{min}}(\eta)$

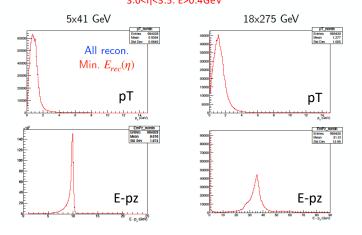
 10^{-1}


SIDIS: $\Sigma \rightarrow \Lambda \gamma$

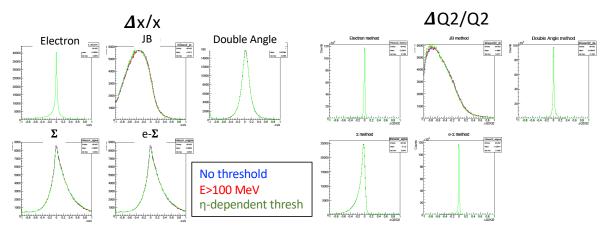
"We concluded that a requirement of γ detection with the nominal resolution in that region for E γ > 200 MeV up to η =3.0 and E γ > 400 MeV for 3.0 < η < 4.0 is sufficient to maintain a reasonable acceptance for Σ 0s."


Phase space not sacrificed

Losses, mainly from 100 MeV threshold in barrel.
Minimal effect from FEMC threshold


Inclusive DIS

Tyler Kutz, Stephen Maple
Inclusive DIS
Private communication


Inclusive kinematics reco with hadronic final state (JB, DA, ...)

-3.5<η<1.4: E>0.1GeV 1.4<η<3.0: E>0.2GeV 3.0<η<3.5: E>0.4GeV

18x275 GeV, 100<Q²<1000 GeV²

Also checked for 5x41 GeV and different Q2 bins

No impact from increased energy threshold in FEMC

Suggestion

Minimal Energy Requirements change in FEMC:

From: 100 MeV

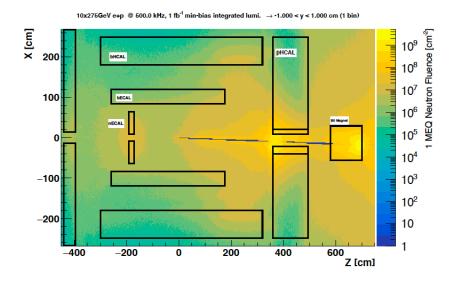
To: 100-400 MeV from low to high pseudo-rapidity

Big Thanks to all physics groups for quick responses and studies performed

Backup

 $\label{thm:continuous} \textbf{Table 3.1:} This matrix summarizes the high level performance of the different subdetectors and a 3 T Solenoid. The interactive version of this matrix can be obtained through the Yellow Report Detector Working Group (https://physdiv.jlab.org/DetectorMatrix/).$

				. 1	racking		Elec	trons and Photo	ons	x/I		HCAL				
η	Nomenclature	Resolution	Relative Momentun	Allowed X/X ₀	Minimum p _r (MeV/c)	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution og/E	PID	Min E Photon	p-Range	Separation	Resolution og/E	Energy	Muons	
< -4.6	Low-Q2 tagger															
4.6 to 4.0								Not Acces	sitie							
4.0 to -3.5			Reduced Performance													
-3.5 to -3.0 -3.0 to -2.5			σ ₈ /p ~ 0.1%×p⊕2%					1%/E ⊕ 2.5%/\E ⊕ 1%	x suppression up to 1:10 ⁻⁴	20 MeV			50% NE			
-2.5 to -2.0	Backward Detector		σ _e /p ~ 0.02% × p		150-300			91%	Sp 11. 2.1.0		≤ 10 GeVc		⊕ 10%		Muons useful for	
-2.0 to -1.5				0.02% × p ⊕ 1%			dca(xy) ~ 40 фγ μm ⊕ 10 μm	dos(z) ~ 100/p _l µm ⊕20 µm	2%/E ⊕ (48)%//E ⊕2%	и suppression up to 1:(10°-10°)	50 MeV					background suppression and
-1.0 to -0.5 -0.5 to 0.0 0.0 to 0.5 0.5 to 1.0	Barrel		σ _θ /p ~ 0.02% × p ⊕ 5%	~5% or less	400	dca(xy) ~ 30φ ₁ μm ⊕5 μm	doa(z) ~ 30 φ ₁ μm ⊕ 5 μm	2%/E ⊕ (12-14)%/E ⊕(2-3)%	x suppression up to 1:10 ²	100 MeV	≤6 GeWo	a 3o	100%/√E ⊕ 10%	~500MeV	improved resolution	
1.0 to 1.5 1.5 to 2.0 2.0 to 2.5	Forward Detectors		σ ₈ /p ~ 0.02% × p ⊕ 1%		150-300	doa(xy) ~ 40 (b ₁ μm (Φ 10 μm	dos(z) ~ 100/ρ _γ μm ⊕20 μm	2%/E ⊕ (#-12/%/\)E = 0.2%	3cre/x upto 15 GeV/c	50 MeV	≤ 50 GeWk		50% NE ⊕ 10%			
2.5 to 3.0 3.0 to 3.5	10.000		σ ₈ /p ~ 0.1%×p⊕2%					⊕2%								
3.5 to 4.0	Instrumentation to separate charged particles from photons						Red	uced Perform	ance			•				
4.0 to 4.5								Not Accessible								
> 4.6	Proton Spectrometer Zero Degree Neutral Detection						, and the second	, and the second								


Table 11.50: This matrix summarizes the high level performance of the different subdetectors and a 3 T Solenoid. The interactive version of this matrix can be obtained through the Yellow Report Detector Working Group (https://physdiv.jlab.org/DetectorMatrix/).

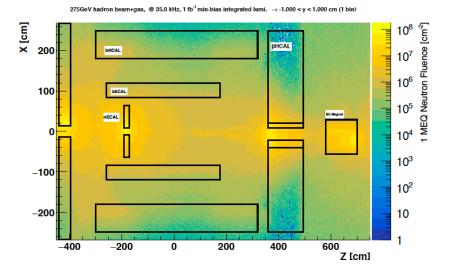
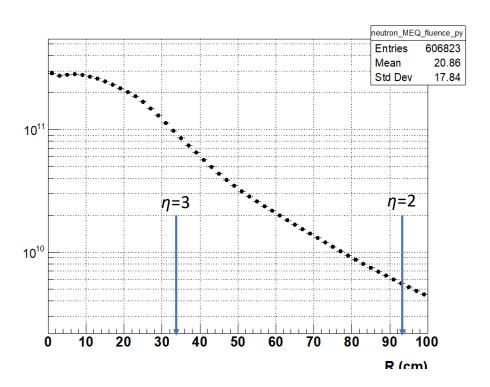

					Tucking						Electrons and Photons			π/K/p		HCAL			
η θ		Nomendature			Resolution	Relative Momentum	Allowed X/X _O	Minimum-pT	Transverse Pointing Res.	Longitudinal Pointing Res.	Resolution ag/E	PID	Min E Photon	p-Range (GeVIC)	Separation	Resolution org/E	Energy	Nuons	
<-6.6			Far Backward Detectors	low-G2 tagger															
-4.6 to -4.0		1p/A				Not Accessible													
-4.0 to -3.5						Reduced Performance													
-3.5 to -3.0						Sult								s to GeVis		10% 25910%		1	
-3.0 to -2.3						-0.2%-p/0.5%		70-150 MWW-38-15 D			56.00 E G 2564	TI suppression up to 11E-4	20.660					Maons aseful for blos.	
-2.5 to -2.0				Business Connector			1												
-2.0 to -1.5						# _Q /tc			dcahot.:	ska/al-	256E-064	TL SURGRESSION							
-15 to -10						0.04%-p#2%					40/bil um.(i) 10 µm	100kLum@ 20.µm	856/Em.2%	10-10 (10 E-3 - 1E-2)	SOME				
-10 to -0.5							1			eku(ş) - 30e)							1		
-0.5 to 0.0			Central.			Sala	-5% or less X	200 MW	darkyta 30ME.um./b		255E,602: 1656E,602:		100.HeV 8.6.GeVX	k3o	100%	-SOOMeV			
0.0 to 0.5			Detector	Barrel.	DAILS.		-0.04%+p@1%	STRUCTURE A	ALC: NO.	2.um	µm.R.5µm	375	up to HE-2	IUU.FREE	ALUEN	8.40	3E+10%	SAULINEX	
0.5 to 1.0																			
10 to 1.5							1		datet	dos(a) -					1				
15 to 2.0						•	292		70 - 150	40/yili µm (il) 10 µm	100kLum/h	28/6/8							
20 to 25						-0.04%-e-0.2%	MeNt 0 - 15		10.00	20 um	147-12756/E	Screen up to 15 GSVs	SO MeV	5.50 Gelos		50%/ 5E-10%		-	
25 to 3.0						Opti		D			(0.2%							-	
3.0 to 3.5						±0.2%±0/95%					1							-	
3.5 to 4.0				instrumentation to assaults charged particles from photons							Reduced Per	formance							
4.0 to 4.5		Te .									Not Accessible								
>4.6			Far Forward Detectors	Proton Spectrometer Zero Degree Neutral Detection															

Table 10.6: This matrix summarizes the high level requirements for the detector performance. The interactive version of this matrix can be obtained through the Yellow Report Physics Working Group WIKI page (https://wiki.bnl.gov/eicug/index.php/Yellow.Report.Physics.Common).


						Tracking	Electrons	and Phot	ons	n/K/p		Muons							
ste		Nomenc	Nomenclature Resolution Allowed minimum-pT				SI-Vertex	p-Range	Separati	Resolution ay E	Energy	MUONS							
9 to -5.8			low-Q2 tagger	# Q2 ≤ 10-2 GeV2															
to 4.5	1					300 MeV pions													
5 to -4.0			Instrumentation to separate charged particles from photons			300 MeV pions		2%/\E(+1-3%)		50 MeV									
0 to -3.5	J. D/A	Auxiliary D								50 MeV			-50%/viE + 6%						
5 to -3.0						1				50 MeV					1				
0 to -2.5	1		Backward	σpT/pT ~ 0.1%@0.5%			σ_xy≃30/pTμm +40 μm			50 MeV	57 GeWic		-45%/VE+6%		muon				
5 to -2.0			Detector	σpT/pT			d_xy~30/pTµm	2%/\E(+1-3%)		50 MeV	37 0000		45,010.03		useful				
.0 to -1.5				opT/pT			+20 µm	7%NE(+1-3%)	suppres	50 MeV					bkg.				
.5 to -1.0	-			0.05% ⊕ 0.5%				7%/vE(+1-3%)	to 1:1E-	50 MeV		-			impro				
.0 to -0.5							σχyz - 20 μm,		4	50 MeV			~851UNE+716		resolu				
.5 to 0.0	+	Central	Barrel	σpT/pT	-5% or		$d\theta(z) \sim d\theta(r\Phi)$			50 MeV	≤ 10 GeV/c		~8516/VE+716	-500					
0 to 0.5		Detector		~0.05%*pT+0.5%	loss X		~ 20/pTGeV µm + 5 µm			50 MeV		≥3σ	-85%/VE+7%	MeV					
5 to 1.0							µm + 5 µm			50 MeV	≤ 15 GeWe	1	-851GNE+75C						
Oto 1.5				σpT/pT		<100MeV pions, 135MeV kaons	e vor≃anio Tum	1		50 MeV	≤ 30 GeWe								
.5 to 2.0				~0.05%*pT+1.0%		<100 MeV Bions, 13 SMeV Raons	+20 µm			50 MeV	≤ 50 GeWs	1							
0 to 2.5				elisera pri-liiore				-		50 MeV									
.5 to 3.0			Outschara						σpT/pT ~ 0.1%×p T +2.0%			σ_κγ≏30/pTμm +40 μm	(10- 12/%/o/E(+1-	За е/п	50 MeV	≤ 30 GeWc	35%//E		
0 to 3.5	_			0.1% ×p1+2.0%			σ_xy∼30/pTμm +60 μm	3%)		50 MeV	s 45 GeWc								
.5 to 4.0			Instrumentation to separate charged particles from photons	Tracking capabilities are desirable for forward tagging						50 MeV									
.0 to 4.5	* e	Auditory		i				1		50 MeV			35%/NE (goal).						
	7	Detectors	Neutron					4.5%/kE for	<= 3				<50%/KE						
.5 to 5.0			Detection			300 MeV plons		photon energy > 20	cm granular	50 MeV			(acceptable)*, 3mrad/\E						
	+			dintrinsic([t])([t] <				GeV	ity	_		-	(goal)	_	_				
6.2			Proton Spectrometer	1%; Acceptance: 0.2 < pt < 1.2 GeV/c															

11

$n_{eq}(R)$ flux in FEMC

Material in front of FEMC

