

ePIC Luminosity Systems - Cooling Requirements

Stephen JD Kay
University of York

ePIC Collaboration Meeting 2026
21/01/26

Disclaimer

- A short disclaimer - I will only discuss elements of the luminosity monitoring system in this talk
- Specifically:

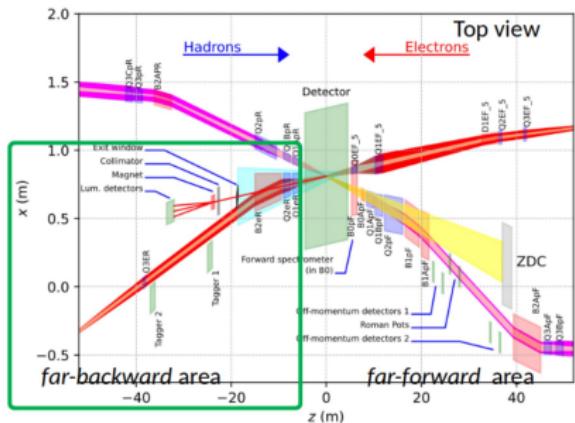
Disclaimer

- A short disclaimer - I will only discuss elements of the luminosity monitoring system in this talk
- Specifically:
 - Pair spectrometer calorimeters
 - Pair spectrometer trackers

Disclaimer

- A short disclaimer - I will only discuss elements of the luminosity monitoring system in this talk
- Specifically:
 - Pair spectrometer calorimeters
 - Pair spectrometer trackers
- Why?

Disclaimer


- A short disclaimer - I will only discuss elements of the luminosity monitoring system in this talk
- Specifically:
 - Pair spectrometer calorimeters
 - Pair spectrometer trackers
- Why?
 - Low Q^2 tagger situation uncertain (and I'm not an expert on this system)
 - Direct Photon Detector → Not ready/in place immediately
 - Concerns/requirements broadly similar to PS calorimeter
 - Low rate version is just another PS calorimeter anyway

Disclaimer

- A short disclaimer - I will only discuss elements of the luminosity monitoring system in this talk
- Specifically:
 - Pair spectrometer calorimeters
 - Pair spectrometer trackers
- Why?
 - Low Q^2 tagger situation uncertain (and I'm not an expert on this system)
 - Direct Photon Detector → Not ready/in place immediately
 - Concerns/requirements broadly similar to PS calorimeter
 - Low rate version is just another PS calorimeter anyway
- Pair spectrometer is machine critical and will need to be in place ahead of startup

Far Backward Region

- So, where are our luminosity detectors?

Far Backward Region

- So, where are our luminosity detectors?
 - Far-backward region
 - 10's of metres from IP

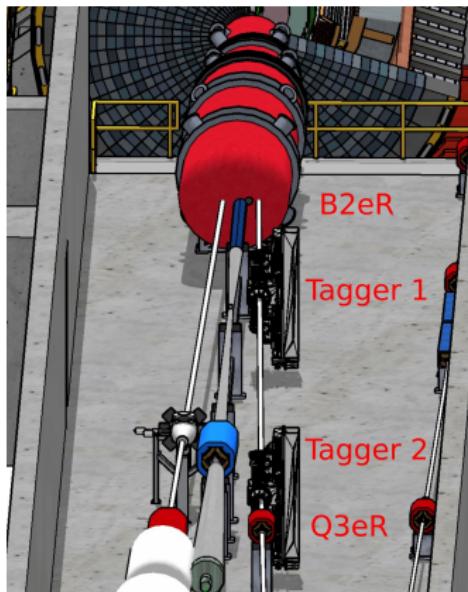
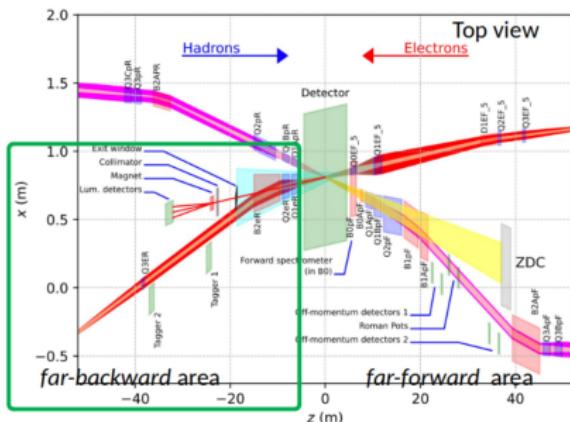
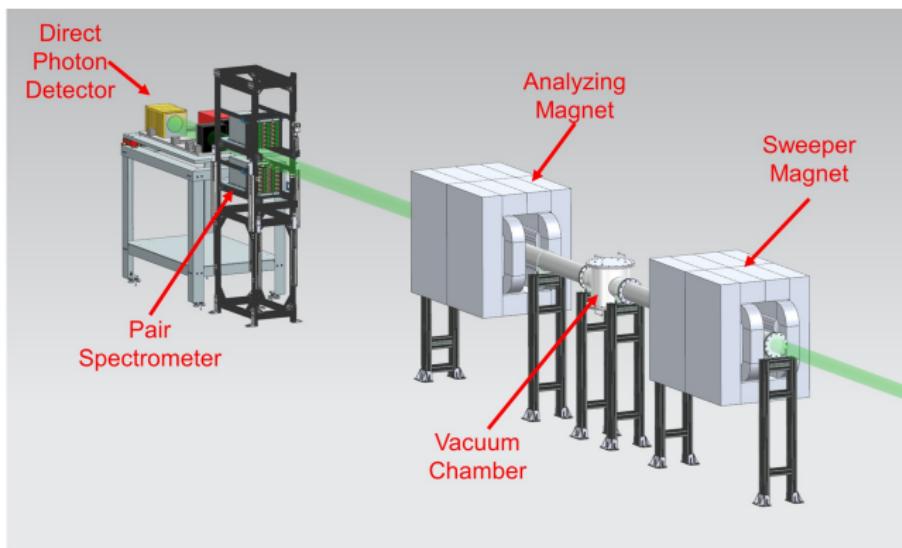



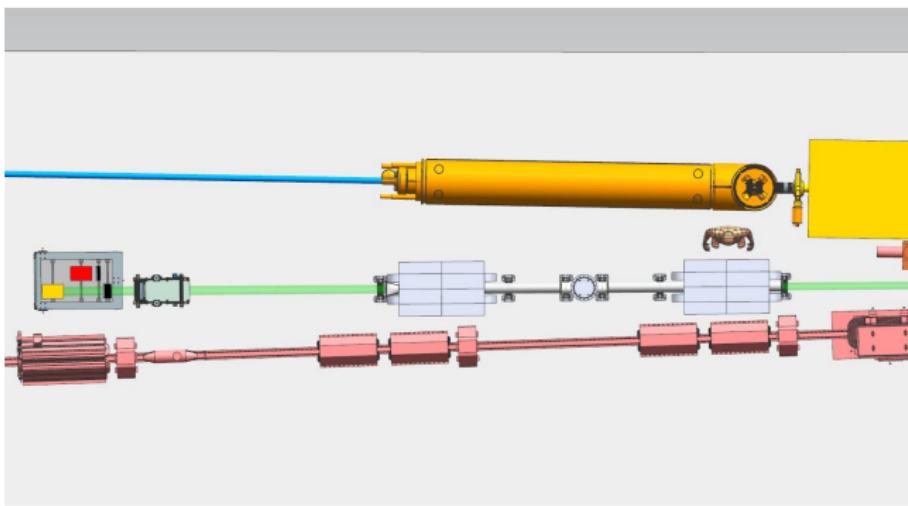
Figure - Igor Korover, MIT, ePIC Collaboration meeting January 2023

Far Backward - Luminosity Monitors

- So, what does our luminosity monitoring region look like?


Far Backward - Luminosity Monitors

- So, what does our luminosity monitoring region look like?


Far Backward - Luminosity Monitors

- So, what does our luminosity monitoring region look like?
- Several components of system

Far Backward - Luminosity Monitors

- So, what does our luminosity monitoring region look like?
- Several components of system
- Situated between two beamlines

Pair Spectrometer Overview

- Pair spectrometer outside of main synchrotron radiation fan

Pair Spectrometer Overview

- Pair spectrometer outside of main synchrotron radiation fan
 - 5σ gap

Pair Spectrometer Overview

- Pair spectrometer outside of main synchrotron radiation fan
 - 5σ gap
- Bremmstrahlung photons converted to e^+e^- pairs

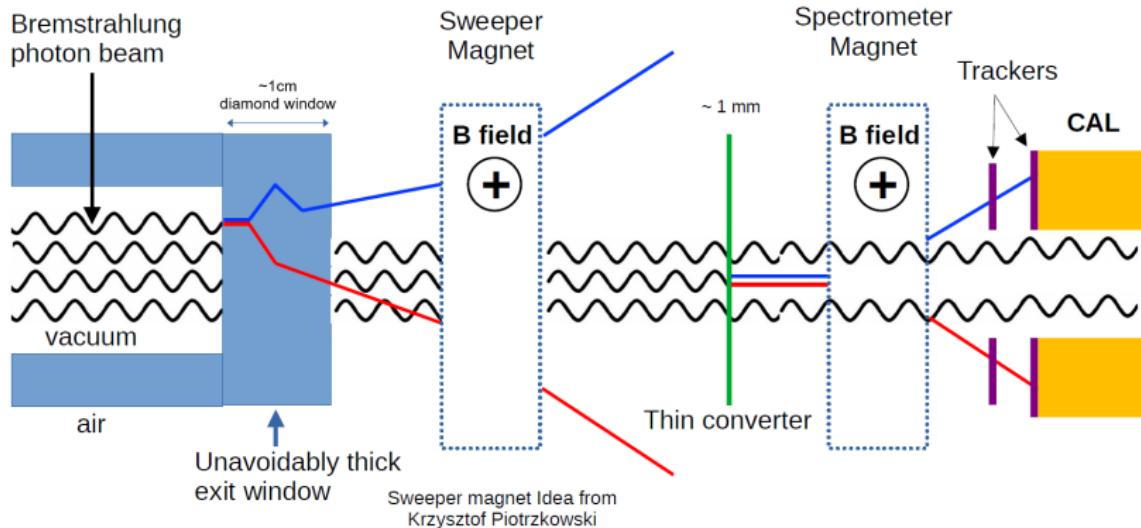
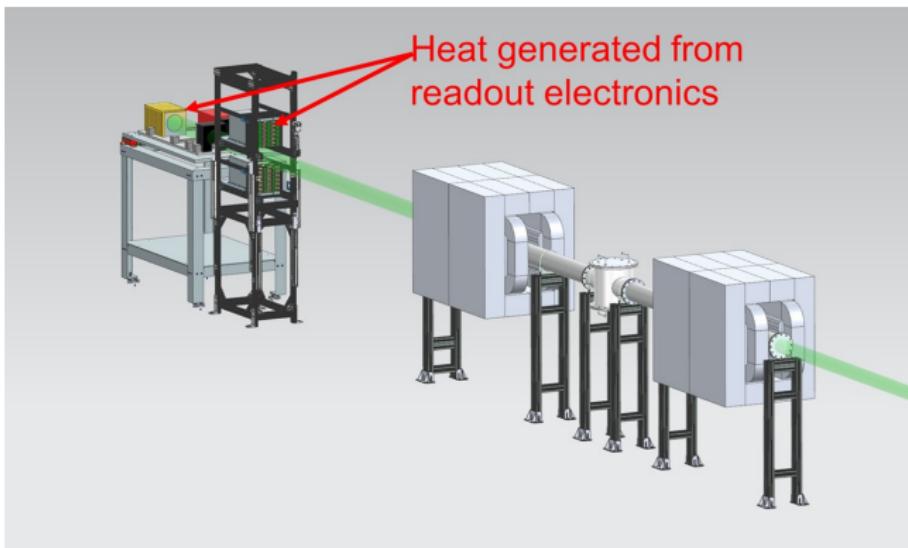
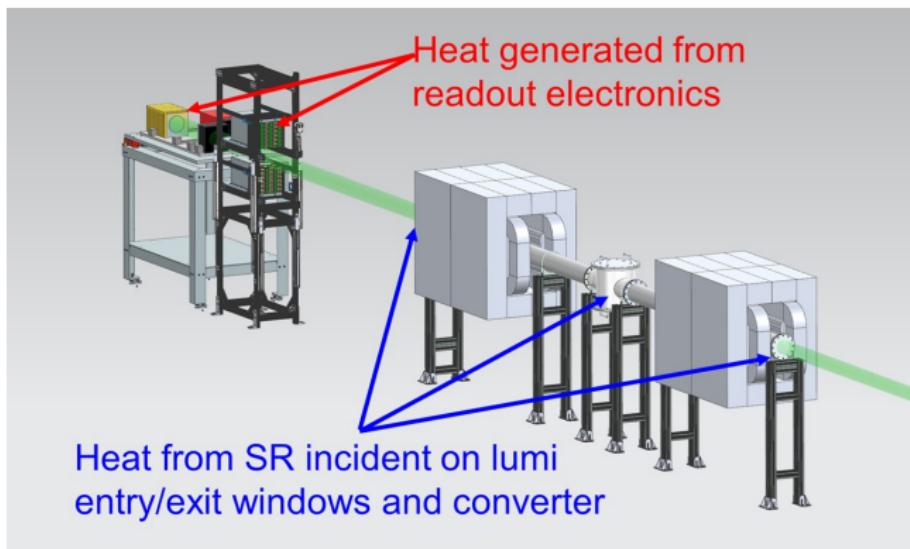


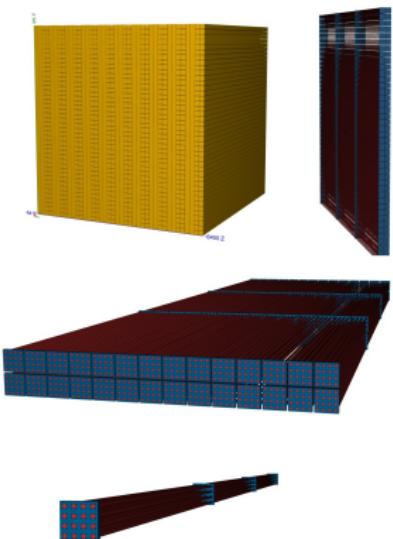
Figure - D. Gangadharan, University of Houston


Luminosity Monitors - Heat Overview

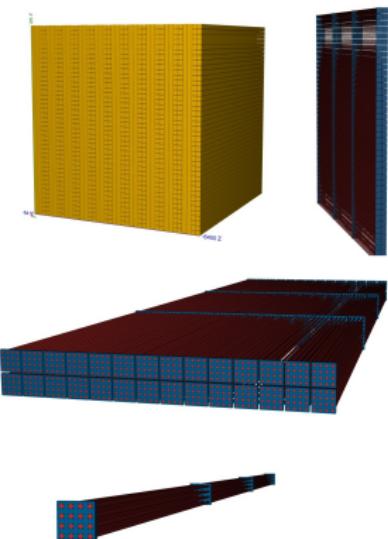
- Two main sources of heat to mitigate in lumi system


Luminosity Monitors - Heat Overview

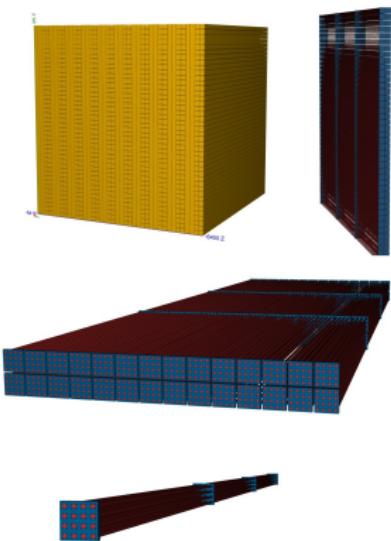
- Two main sources of heat to mitigate in lumi system
- Heat from readout electronics


Luminosity Monitors - Heat Overview

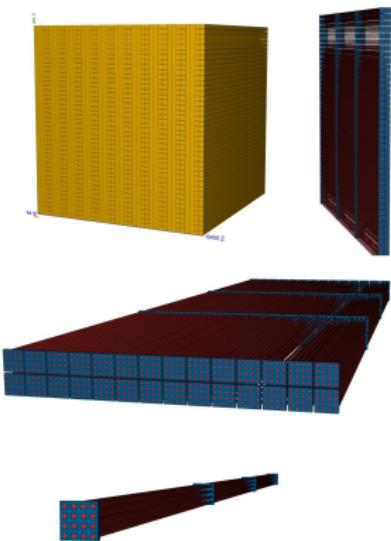
- Two main sources of heat to mitigate in lumi system
- Heat from readout electronics
- Heat from synchrotron radiation (SR) incident on vacuum system (entry/exit windows and converter foil)


Pair Spectrometer Calorimeters - Overview

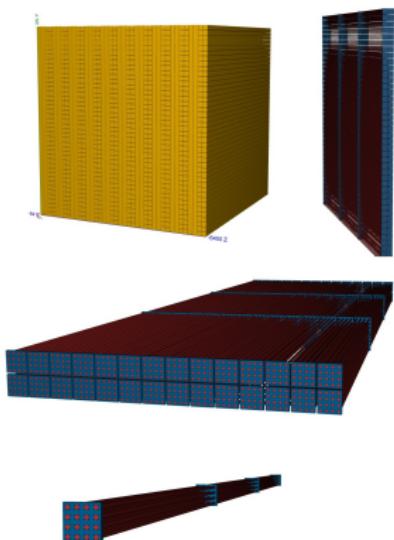
- Updated design - tungsten scintillating fiber calorimeter (WSciFi)


Pair Spectrometer Calorimeters - Overview

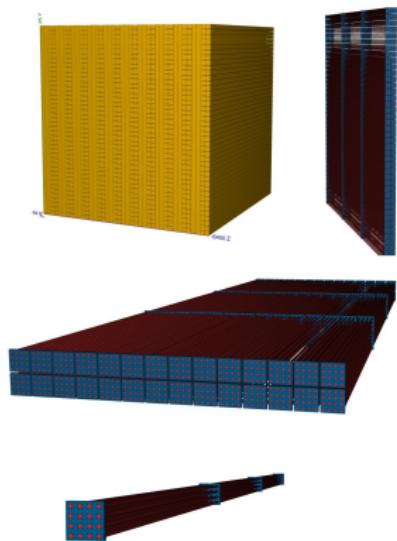
- Updated design - tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy


Pair Spectrometer Calorimeters - Overview

- Updated design - tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius
 - Sampling fraction
 - Energy resolution


Pair Spectrometer Calorimeters - Overview

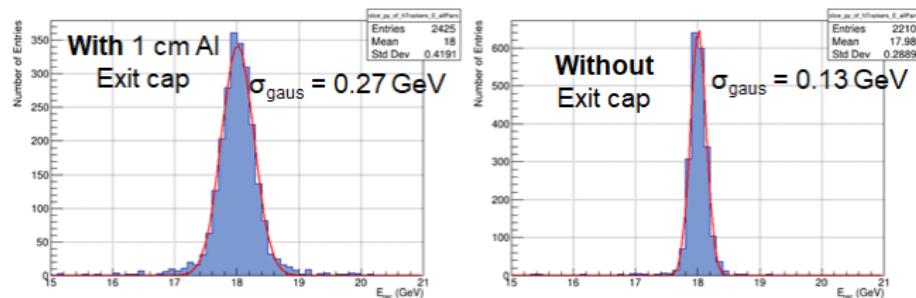
- Updated design - tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius
 - Sampling fraction
 - Energy resolution
- XY orientated fiber design


Pair Spectrometer Calorimeters - Overview

- Updated design - tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius
 - Sampling fraction
 - Energy resolution
- XY orientated fiber design
 - 3D shower profile possible
 - Potential AI/ML applications

Pair Spectrometer Calorimeters - Overview

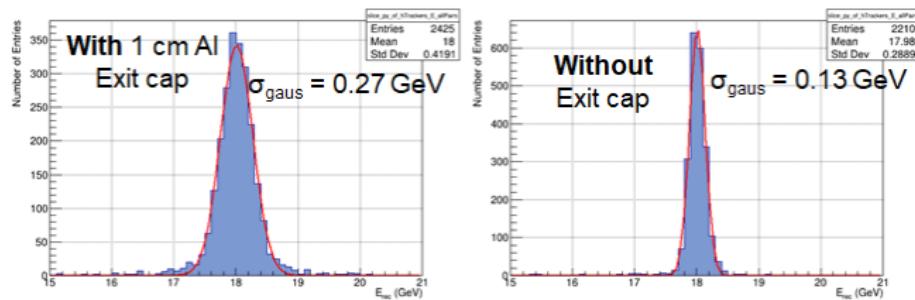
- Updated design - tungsten scintillating fiber calorimeter (WSciFi)
 - Fiber grid embedded within W powder/epoxy
- Tweak volumetric ratio between W/SciFi to adjust many parameters
 - Radiation length
 - Molière radius
 - Sampling fraction
 - Energy resolution
- XY orientated fiber design
 - 3D shower profile possible
 - Potential AI/ML applications
- Up to **1680 SiPM channels** to readout per calorimeter



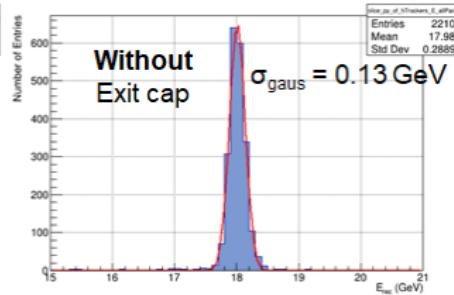
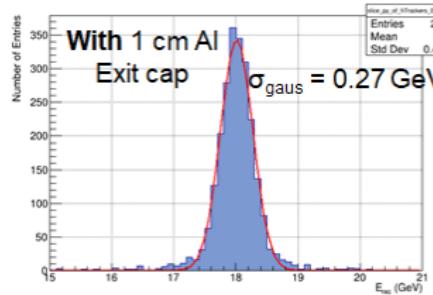
Pair Spectrometer Trackers - Overview

- Trackers enable easy calibration of calorimeters
- Trackers could be used to obtain $\sim 1\%$ energy resolution

Pair Spectrometer Trackers - Overview


- Trackers enable easy calibration of calorimeters
- Trackers could be used to obtain $\sim 1\%$ energy resolution
- Excellent tracking possible
 - Excellent energy and pointing resolutions

Figures - D. Gangadharan, University of Houston



Pair Spectrometer Trackers - Overview

- Trackers enable easy calibration of calorimeters
- Trackers could be used to obtain $\sim 1\%$ energy resolution
- Excellent tracking possible
 - Excellent energy and pointing resolutions
- AC-LGAD pixel detector
 - Synergy with other systems using this technology

Pair Spectrometer Trackers - Overview

- Trackers enable easy calibration of calorimeters
- Trackers could be used to obtain $\sim 1\%$ energy resolution
- Excellent tracking possible
 - Excellent energy and pointing resolutions
- AC-LGAD pixel detector
 - Synergy with other systems using this technology
- Assuming 500 μm pitch, up to **130,000 channels** per plane
 - Pixels in non-dispersive direction could be combined

Pair Spectrometer - Heat Generation

- Heat from readout electronics for calorimeters and tracker
- For calorimeters, **assume heat production similar to boards/SiPMs from FECal**

Pair Spectrometer - Heat Generation

- Heat from readout electronics for calorimeters and tracker
- For calorimeters, **assume heat production similar to boards/SiPMs from FECal**
 - Front-End Boards (FEB) - One per layer, 4.5 W per board, 40 layers total
 - $40 \times 4.5 \text{ W} = 180 \text{ W}$

Pair Spectrometer - Heat Generation

- Heat from readout electronics for calorimeters and tracker
- For calorimeters, **assume heat production similar to boards/SiPMs from FECal**
 - Front-End Boards (FEB) - One per layer, 4.5 W per board, 40 layers total
 - $40 \times 4.5 \text{ W} = 180 \text{ W}$
 - SiPM Boards - One per module, 3 modules per layer, 120 layers total, 0.2975 W per board
 - $120 \times 0.2975 \text{ W} = 35.7 \text{ W}$

Pair Spectrometer - Heat Generation

- Heat from readout electronics for calorimeters and tracker
- For calorimeters, **assume heat production similar to boards/SiPMs from FECal**
 - Front-End Boards (FEB) - One per layer, 4.5 W per board, 40 layers total
 - $40 \times 4.5 \text{ W} = 180 \text{ W}$
 - SiPM Boards - One per module, 3 modules per layer, 120 layers total, 0.2975 W per board
 - $120 \times 0.2975 \text{ W} = 35.7 \text{ W}$
 - Total heat from calorimeter electronics -
 - **215.7 W per calorimeter**

Pair Spectrometer - Heat Generation

- Heat from readout electronics for calorimeters and tracker
- For calorimeters, **assume heat production similar to boards/SiPMs from FECal**
 - Front-End Boards (FEB) - One per layer, 4.5 W per board, 40 layers total
 - $40 \times 4.5 \text{ W} = 180 \text{ W}$
 - SiPM Boards - One per module, 3 modules per layer, 120 layers total, 0.2975 W per board
 - $120 \times 0.2975 \text{ W} = 35.7 \text{ W}$
 - Total heat from calorimeter electronics -
 - **215.7 W per calorimeter**
- For trackers, **use 1-2 mW/ch number from B0Tracker**, max 130,000 channels per layer
 - $130,000 \times 1-2 \text{ W} = \sim 1300-2600 \text{ W per layer}$

Pair Spectrometer - Heat Generation

- Heat from readout electronics for calorimeters and tracker
- For calorimeters, **assume heat production similar to boards/SiPMs from FECal**
 - Front-End Boards (FEB) - One per layer, 4.5 W per board, 40 layers total
 - $40 \times 4.5 \text{ W} = 180 \text{ W}$
 - SiPM Boards - One per module, 3 modules per layer, 120 layers total, 0.2975 W per board
 - $120 \times 0.2975 \text{ W} = 35.7 \text{ W}$
 - Total heat from calorimeter electronics -
 - **215.7 W per calorimeter**
- For trackers, **use 1-2 mW/ch number from B0Tracker**, max 130,000 channels per layer
 - $130,000 \times 1-2 \text{ W} = \sim 1300-2600 \text{ W per layer}$
- Total heat from trackers - **$\sim 2-5 \text{ kW}$**

PS Vacuum - Overview

- Vacuum system between sweeper and analyser magnets
- Contains conversion foil for pair production

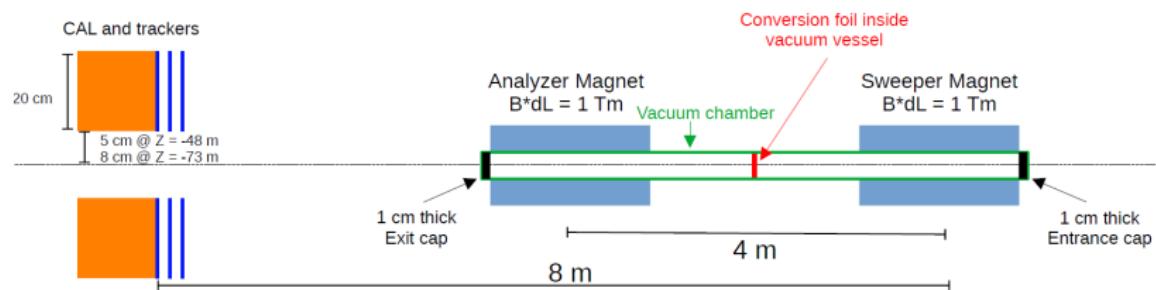


Figure - D. Gangadharan, University of Houston

PS Vacuum - Overview

- Vacuum system between sweeper and analyser magnets
- Contains conversion foil for pair production
- Will have heat from bremmstrahlung beam and any synchrotron radiation that reaches this region

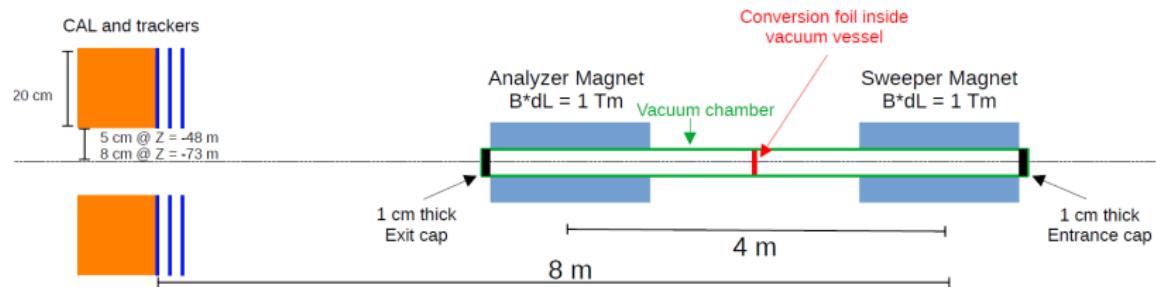


Figure - D. Gangadharan, University of Houston

PS Vacuum - Heating Load

- Brem beam and SR incident on vacuum system

PS Vacuum - Heating Load

- Brem beam and SR incident on vacuum system
- Thick entry/exit windows
- Thin converter
- Far from IP

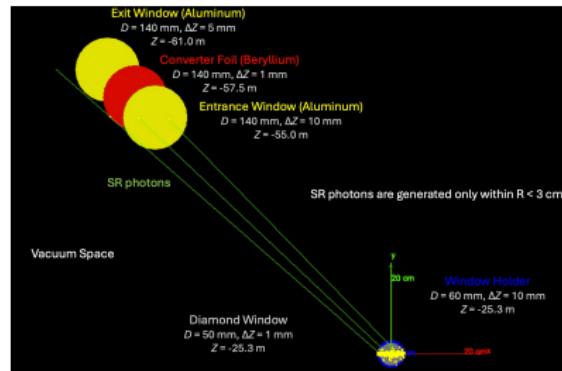
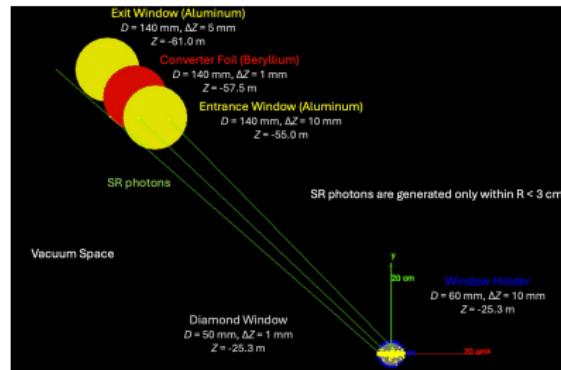
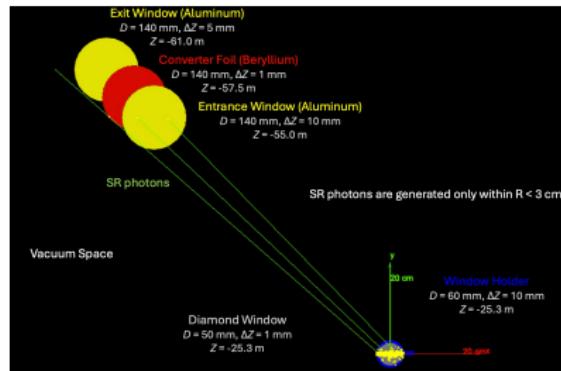



Figure and Table - A. Natochii, BNL, <https://indico.bnl.gov/event/27437/>

PS Vacuum - Heating Load

- Brem beam and SR incident on vacuum system
- Thick entry/exit windows
- Thin converter
- Far from IP



Beam Energy [GeV]	Max. Absorbed Power Density [W/mm ²]			Total Absorbed Power [W]		
	Entrance Window	Exit Window	Converter Foil	Entrance Window	Exit Window	Converter Foil
5 x100	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
10 x275	0.21	0.01	< 0.01	67.50	0.05	< 0.01
18 x275	2.06	0.07	< 0.01	611.71	19.28	0.26

Figure and Table - A. Natochii, BNL, <https://indico.bnl.gov/event/27437/>

PS Vacuum - Heating Load

- Brem beam and SR incident on vacuum system
- Thick entry/exit windows
- Thin converter
- Far from IP
- SR Heat load primarily on entrance window

Beam Energy [GeV]	Max. Absorbed Power Density [W/mm ²]			Total Absorbed Power [W]		
	Entrance Window	Exit Window	Converter Foil	Entrance Window	Exit Window	Converter Foil
5 x100	< 0.01	< 0.01	< 0.01	0.01	< 0.01	< 0.01
10 x275	0.21	0.01	< 0.01	67.50	0.05	< 0.01
18 x275	2.06	0.07	< 0.01	611.71	19.28	0.26

Figure and Table - A. Natochii, BNL, <https://indico.bnl.gov/event/27437/>

Cooling Options

- Heat load from calorimeter electronics and SR seems modest
- Far-backward luminosity region has a (relatively) large amount of space available

Cooling Options

- Heat load from calorimeter electronics and SR seems modest
- Far-backward luminosity region has a (relatively) large amount of space available
- Air cooling for PS calorimeters should be sufficient?

Cooling Options

- Heat load from calorimeter electronics and SR seems modest
- Far-backward luminosity region has a (relatively) large amount of space available
- Air cooling for PS calorimeters should be sufficient?
- For vacuum system, entrance window takes most of the SR
 - Energy deposition is peaked in first 1-2 mm

Cooling Options

- Heat load from calorimeter electronics and SR seems modest
- Far-backward luminosity region has a (relatively) large amount of space available
- Air cooling for PS calorimeters should be sufficient?
- For vacuum system, entrance window takes most of the SR
 - Energy deposition is peaked in first 1-2 mm
- Is ambient dissipation enough or air cooling needed here too?

Cooling Options

- Heat load from calorimeter electronics and SR seems modest
- Far-backward luminosity region has a (relatively) large amount of space available
- Air cooling for PS calorimeters should be sufficient?
- For vacuum system, entrance window takes most of the SR
 - Energy deposition is peaked in first 1-2 mm
- Is ambient dissipation enough or air cooling needed here too?
- Conversion foil sees small heat load, but is very thin and under vacuum - **must not melt!**
 - Need to fold in Brem heat load too
 - Mount in water cooled holder?

Cooling Options

- Heat load from calorimeter electronics and SR seems modest
- Far-backward luminosity region has a (relatively) large amount of space available
- Air cooling for PS calorimeters should be sufficient?
- For vacuum system, entrance window takes most of the SR
 - Energy deposition is peaked in first 1-2 mm
- Is ambient dissipation enough or air cooling needed here too?
- Conversion foil sees small heat load, but is very thin and under vacuum - **must not melt!**
 - Need to fold in Brem heat load too
 - Mount in water cooled holder?
- Heat generation of tracker layers seems very high
 - Is estimate realistic?

Cooling Options

- Heat load from calorimeter electronics and SR seems modest
- Far-backward luminosity region has a (relatively) large amount of space available
- Air cooling for PS calorimeters should be sufficient?
- For vacuum system, entrance window takes most of the SR
 - Energy deposition is peaked in first 1-2 mm
- Is ambient dissipation enough or air cooling needed here too?
- Conversion foil sees small heat load, but is very thin and under vacuum - **must not melt!**
 - Need to fold in Brem heat load too
 - Mount in water cooled holder?
- Heat generation of tracker layers seems very high
 - Is estimate realistic?
 - If it is, how to cool? Air cool staves/layers?

Heat Simulation Support

- Recent focus has been on design and construction procedure for calorimeter modules
- Simulation efforts have focused on performance

Heat Simulation Support

- Recent focus has been on design and construction procedure for calorimeter modules
- Simulation efforts have focused on performance
- Support is needed in heat/cooling simulation efforts**

Heat Simulation Support

- Recent focus has been on design and construction procedure for calorimeter modules
- Simulation efforts have focused on performance
- Support is needed in heat/cooling simulation efforts**
- Are proposed heat generation numbers realistic?
- Are proposed/expected cooling solutions feasible?**

Heat Simulation Support

- Recent focus has been on design and construction procedure for calorimeter modules
- Simulation efforts have focused on performance
- Support is needed in heat/cooling simulation efforts**
- Are proposed heat generation numbers realistic?
- Are proposed/expected cooling solutions feasible?**
- Also need to revisit SR load following machine changes
 - Simulations were from last April

Heat Simulation Support

- Recent focus has been on design and construction procedure for calorimeter modules
- Simulation efforts have focused on performance
- Support is needed in heat/cooling simulation efforts**
- Are proposed heat generation numbers realistic?
- Are proposed/expected cooling solutions feasible?**
- Also need to revisit SR load following machine changes
 - Simulations were from last April
- Vacuum system and magnets are currently being reviewed**

Heat Simulation Support

- Recent focus has been on design and construction procedure for calorimeter modules
- Simulation efforts have focused on performance
- Support is needed in heat/cooling simulation efforts**
- Are proposed heat generation numbers realistic?
- Are proposed/expected cooling solutions feasible?**
- Also need to revisit SR load following machine changes
 - Simulations were from last April
- Vacuum system and magnets are currently being reviewed**
- Revisit tracker system? Lower channel count?

Summary

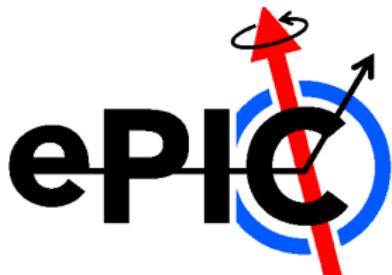
- Heat generated from incident SR and from readout electronics in FB lumi region
- Calorimeter heat generation seems low/tolerable, but trackers seem high - are numbers realistic?

Summary

- Heat generated from incident SR and from readout electronics in FB lumi region
- Calorimeter heat generation seems low/tolerable, but trackers seem high - are numbers realistic?
 - Support on estimates for tracker needed
 - Reduce number of channels?

Summary

- Heat generated from incident SR and from readout electronics in FB lumi region
- Calorimeter heat generation seems low/tolerable, but trackers seem high - are numbers realistic?
 - Support on estimates for tracker needed
 - Reduce number of channels?
- SR heat load on vacuum system typically low, some configurations more problematic


Summary

- Heat generated from incident SR and from readout electronics in FB lumi region
- Calorimeter heat generation seems low/tolerable, but trackers seem high - are numbers realistic?
 - Support on estimates for tracker needed
 - Reduce number of channels?
- SR heat load on vacuum system typically low, some configurations more problematic
- FB Lumi region has relatively large space available for cooling

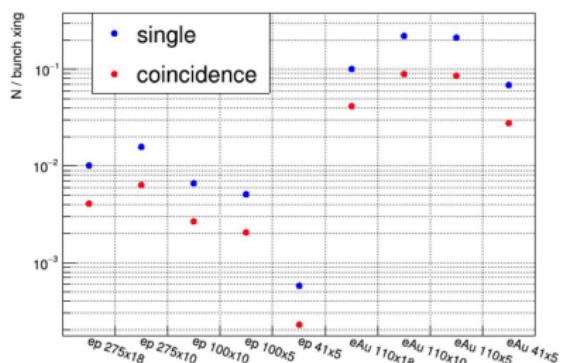
Summary

- Heat generated from incident SR and from readout electronics in FB lumi region
- Calorimeter heat generation seems low/tolerable, but trackers seem high - are numbers realistic?
 - Support on estimates for tracker needed
 - Reduce number of channels?
- SR heat load on vacuum system typically low, some configurations more problematic
- FB Lumi region has relatively large space available for cooling
- Utilise air cooling throughout region?
- Support needed to assess how much would be needed and therefore, what system might be suitable

Thanks for listening, any questions?

UNIVERSITY
of York

Science and
Technology
Facilities Council


stephen.kay@york.ac.uk

This research was supported by UK Research and Innovation: Science and Technology Facilities council
(UKRI:STFC) grant ST/W004852/1

Backup Zone

Pair Spectrometer - Expected Rates

- Expected signal rates using nominal \mathcal{L} , accounting for -
 - Conversion in 1 cm
 - Conversion in 37 m air
 - Conversion in 1 cm Al vacuum chamber entrance
 - All conversions before foil are swept away
 - 1 mm Al conversion foil, 1%, detected in pair spec
 - At most, ~ 0.2 electrons per bunch crossing on average

